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Abstract. Gene expression patterns determine the manner whereby or-
ganisms regulate various cellular processes and therefore their organ
functions.These patterns do not emerge on their own, but as a result
of diverse regulatory factors such as, DNA binding proteins known as
transcription factors (TF), chromatin structure and various other envi-
ronmental factors. TFs play a pivotal role in gene regulation by binding
to different locations on the genome and influencing the expression of
their target genes. Therefore, predicting target genes and their regula-
tion becomes an important task for understanding mechanisms that con-
trol cellular processes governing both healthy and diseased cells.In this
paper, we propose an integrated inference pipeline for predicting target
genes and their regulatory effects for a specific TF using next-generation
data analysis tools.
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1 Introduction

Omics technologies are key drivers of the data revolution that has taken place
in the life sciences domain from last few decades. These technologies enable un-
biased investigation of biological systems at genomic scales. Using high through-
put Next Generation Sequencing (NGS) methods, genome-wide data is collected
from cells, tissues and model organisms (Raza & Ahmad, 2016). These data are
key to investigate biological phenomena governing different cellular functions
and also help biomedical researchers to better understand the disease etiologies
which have not been previously explored. NGS protocols such as, ChIP-seq and
RNA-seq are to generate datasets from where we can obtain genome-wide bind-
ing map of TFs and epigenetic signatures(Park, 2009; Furey, 2012) and can also
measure the gene expression abundance within the cell for the whole genome
(Costa, Angelini, De Feis, & Ciccodicola, 2010; Wang, Gerstein, & Snyder, 2009;
Ozsolak & Milos, 2011).

Numerous efforts have been put forth to uncover the interplay between ge-
nomic datasets obtained from ChIP-seq and RNA-seq for gene regulation stud-
ies of individual TFs (Wang. et al., 2013) or mapping Transcription Regulatory
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Networks as in (Wade, 2015). Revealing such interaction between these data
has significant biomedical implications in various pathological states as well as
in normal physiological processes (Yue et al., 2014).Therefore, there is a com-
pelling need to integrate these data to predict the pattern of gene expression
during cell differentiation (Kadaja et al., 2014) and development (Comes et al.,
2013) and to study human diseases such as , cancer as outlined in (Portela &
Esteller, 2010).

The aim of this study is to integrate genome-wide protein DNA interaction
(ChIP-seq) and transcriptomic data (RNA-seq) using a multi-step bioinformat-
ics pipeline to infer the gene targets of a TF which serve as building blocks of a
transcriptional regulatory network.We have developed a Perl script that imple-
ments this multistage pipeline by integrating tools in the same order as depicted
in Fig. (1). The choice of tools for each stage is a consequence of thorough lit-
erature study among the set of tools available in their respective domains.Our
implementation is a partially automated system that requires supervision at the
time of quality control of raw reads, but progresses smoothly onwards without
any manual intervention to integrate the two datasets and generate TF-specific
gene targets.

2 Related Literature

Software tools and methods exist that predict and analyze gene targets by
processing ChIP-seq data. A distinguishable group of peak callers such as ,
CisGenome (H. Jiang, Wang, Dyer, & Wong, 2010), BayesPeak (Spyrou, Stark,
Lynch, & Tavaré, 2009), Model-based Analysis of ChIP-seq (MACS) (Zhang et
al., 2008),Peakseq (Rozowsky et al., 2009), SICER (Zang et al., 2009) are some
of the widely used tools that identify TF-binding sites. These peak callers iden-
tify the target genes either by looking for peaks in promoter region or assign a
proximal nearest gene in the vicinity of peaks. However, with most TFs ChIP-
seq data having peaks in and around the promoter regions is very less. Also
predicting targets using nearest peak is not always reliable.TIP (Cheng, Min, &
Gerstein, 2011) is another tool that builds a probabilistic model to predict gene
targets, but does not take into account gene expression data. Certain databases
such as JASPAR (Sandelin, Alkema, Engström, Wasserman, & Lenhard, 2004),
TRED (C. Jiang, Xuan, Zhao, & Zhang, 2007) etc. identify target genes for a
selected set of TFs based on the motif analysis of the promoter regions using
Position Weight Matrices (PWMs). A recent study (Essebier, Lamprecht, Piper,
& Boden, 2017) combines multiple approaches to predict target genes.

On the contrary, some earlier studies used gene expression data for predicting
target genes. (Qian et al., 2003) use Support Vector Machines (SVM) to discover
relationships between the TFs and their targets; (Honkela et al., 2010) identify
targets with time-series expression data by creating a linear activation model
based on Gaussian process.
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3 Materials and Methods

The proposed pipeline operates on raw NGS data, ChIP-seq & RNA-seq. After
preprocessing the raw sequences it yields differential gene expression and peak
information of genes from these data sets. Both these datasets are integrated to
yield target genes for the ChIPred TF.A working description of the proposed
pipeline is presented below.

3.1 Datasets

NGS data is primarily accessed from Sequence Read Archive (SRA) at NCBI
(Leinonen. & Sugawara., 2010) and European Nucleotide Archive (ENA) at EBI
(Leinonen et al., 2010). Raw sequences in the form of FASTQ files are freely
available for download for a variety of cell types, diseases, treatments and con-
ditions. Besides the public databases, a number of projects and consortia offer
public access to their data repositories.For example, ENCODE(Consortium et
al., 2004) is a publicly funded project that has generated large sets of data for
a variety of cell lines, tissues and organs. Raw as well as pre-processed data can
be accessed and freely downloaded from ENCODE data portal. Another pub-
licly funded research project, The Cancer Genome Atlas (TCGA) (Weinstein et
al., 2013) also provides datasets for a variety of cancer types. For the current
study we have downloaded ChIP-seq data of MCF7 breast cancer cell line from
ENCODE experiment ENCFF580EKN and RNA-Seq data of transcriptomic
study PRJNA312817 from Eurpean Nucleotide Archive. The RNA-seq experi-
ment contains 30 samples of time course gene expression data from MCF7 cell
line subjected to estrogen stimulation.

3.2 Pipeline Workflow

Molecular measurements within the NGS data exist in the form of millions of
reads and are stored as FASTQ files. Information within the raw files is hardly of
any value and needs extensive pre-processing before this data can be analyzed.
The pre-processing task is a multi-step process and involves the application of a
number of software tools. In this section, we present a detailed NGS pipeline that
describes necessary steps from pre-processing of RNA-Seq and ChIP-seq data to
target genes regulated by ChIPred TF.The pipeline has been implemented using
a Perl script by integrating various NGS data processing & analysis tools.Fig.
(1) is a graphical depiction of the proposed inference pipeline.

Quality Control
Almost all sequencing technologies produce their outputs in FSATQ files.

FASTQ has emerged as the de facto file format for data exchange between var-
ious bioinformatics tools that handle NGS data. FASTQ (Cock, Fields, Goto,
Heuer, & Rice, 2009) format is a simple extension to existing FASTA format; the
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Fig. 1: Proposed inference pipeline for target gene prediction
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files are plain ASCII text files with the ability to store both nucleotide sequences
along with a corresponding quality score for each nucleotide call.

Base sequence qualities are usually interpreted in terms of Phred quality
scores. Phred quality scores Q are defined as a property which is logarithmically
linked to error probabilities P of called bases and can be computed as shown in
equation(1).

Q = −10log10P (1)

Phred’s error probabilities have been shown to be very accurate (Ewing, Hillier,
Wendl, & C., 1998), e.g. if Phred assigns a quality score of 10 means that 1 out
of 10 base calls is incorrect, a score of 20 depicts that 1 in 100 bases has been
called incorrectly.Usually, a Phred score >= 20 is considered as acceptable read
quality, otherwise read quality improvement is required. If read quality is not
improved by trimming, filtering, and cropping, there may be some error during
library preparation and sequencing. FASTQC (Andrews et al., 2010) is a Java
based tool that is used to assess the quality of the reads produced by Next
Generation DNA Sequencers. Low quality reads are excised from the FASTQ
files to improve the quality of the reads. Various tools are available that can be
used to trim bases with poor Phred scores i,e. Phred score less than 20.

Download 
Sequence Data

RNA-seq 
(fastq)

ChIP-seq 
(fastq)

Quality Check
(FastQC)

Phred score
 > 20

Filtered 
Qulaity 
Reads

Read trimming 
and Adpter 

Cliping
(Trimmomatic)

Is RNA-seq

Remove 
ribosomal RNA
(sortmeRNA)

Yes

Yes

No

No

Fig. 2: Flowchart showing quality control check, adapter clipping and trimming steps
of raw reads

Trimmomatic (Bolger, Lohse, & Usadel, 2014) is a Java based open source
tool used for trimming illumina FASTQ data and removing adapters. Addition-
ally RNA extracted using NGS does include non-coding RNA molecules besides
the coding ones. These non-coding RNAs are usually the ribosomal RNA. For
quantifying the gene expression patterns using RNA-seq, it is essential that these
non-coding RNAs be filtered from the existing reads. SortMeRNA (Kopylova,
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Noé, & Touzet, 2012) is a very efficient and accurate tool that is used to filter
out the ribosomal RNA from the metatranscriptomic data.A diagrammatic flow
of qulaity check and trimming is shown in Fig.(2).

Mapping sequence reads to a reference genome
With required read quality achieved after trimming and adapter clipping ,

the next step is to align the short reads to a reference sequence. The reference
sequence is our case is human genome assembly hg38/hg19 but it can also be
a reference transcriptome, or a de novo assembly incase a reference sequence is
not available. There are numerous software tools that have been developed to
map reads to a reference sequence. Besides the common goal of mapping these
tools vary considerably from each other both in algorithmic implementation and
speed. A brief account can be found in (Flicek & Birney, 2009)

In this pipeline we used Bowtie2 genome aligner (Langmead & Salzberg,
2012), because it is a memory-efficient and an ultrafast tool for aligning se-
quencing reads. Bowtie2 performs optimally with read lengths longer than 50bp
or beyond 1000bp (e.g. mammalian) genomes. It builds an FM Index while map-
ping reads to keep its memory footprint small and for the human genome it is
typically around 3.2 GB of RAM.

Expression quantification of RNA-Seq
Although raw RNA-seq reads do not directly correspond to the gene expres-

sion, but we can infer the expression profiles from the sequence coverage or
the mapping reads that map to a particular area of the transcriptome. A num-
ber of computational tools are available to quantify the gene expression pro-
files from RNA-seq data. Software tools, such as Cufflinks, HTSeq, IsoEM, and
RSEM are freely available. A comparative study of these tools is presented in
(Chandramohan, Wu, Phan, & Wang, 2013).

Despite clear advantages over microarrays, there are still certain sources of
systematic variations that should be removed from RNA-seq data before per-
forming any downstream analysis. These variations include between sample dif-
ferences, such as sequencing depth and within sample differences e.g. gene length,
GC content etc. In order to circumvent these issues and exploit the advantages
offered by RNA-seq technology, the reads/ kilobase of transcript per million
mapped reads (RPKM) normalizes a transcript read count by both its length
and the total number of reads in the sample (Pepke, Wold, & Mortazavi, 2009).
For data that has originated from the paired-end sequencing, a similar normal-
ization metric called FPKM (fragments per kilobase of transcript per million
mapped reads) is used. Both RPKM and FPKM use similar operations for nor-
malizing single end and paired end reads (Conesa et al., 2016).

Counts per million (CPM) is another important metric provided by limma
package to normalize gene expression data. Once the normalized expression es-
timates are available, we can obtain a differential expression of gene lists across
the samples or conditions using limma voom (Ritchie et al., 2015) provided by
R bioconductor.
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Peak Calling Early pre-processing steps of ChIP-seq data resemble that of
RNA-seq. Beginning with the quality check of raw reads, read trimming and
adapter elimination, filtered high quality reads are then mapped to reference
genome using Bowtie2 as described above.

In order to identify the genomic locations where the protein of Interest (POI)
has attached itself to DNA sequences, the aligned reads are subjected to a pro-
cess known as Peak Calling. Software tools that predict the binding sites where
this protein has bound itself by identifying location within the genome with
significant number of mapped reads (peaks) are called Peak Callers. A detailed
description of various ChIP-seq peak callers is presented in (Pepke et al., 2009).
Although a number of tools are available, but for this study have used the
most efficient and open source tool called Model based Analysis of ChIP-seq
(MACS) from (Zhang et al., 2008). Nowadays an upgraded version of MACS
called MACS2 is commonly used for this purpose.A MACS2 algorithm does
process aligned ChIP-seq bam files both with control and without control sam-
ples. Mapped reads are modelled as sequence tags (an integer count of genomic
locations mappable under the chosen algorithm). Depending upon the type of

  a)  showing FOXA1 peaks for BRCA1 when visualised in IGV.

   b)  FOXA1  peaks for ESR1 gene in IGV.Peaks have been   

        called using MACS2.

Fig. 3: FOXA1 peaks for BRCA1 and ESR1

protein being ChIPed, different types of peaks are observed when viewing the
information in a genome browser, such as Integrated Genome Viewer (IGV).
Most of the TFs act as point-source factors and result in narrow peaks, factors
such as histone marks generate broader peaks, and proteins such as RNA Pol II
can give rise to mixed peaks (both narrow as well as broad). Fig. 3(a) & Fig.
3(b) show the FOXA1 peaks for BRCA1 and ESR1 as viewed in IGV.

4 Results

The proposed pipeline first generates a list of differentially expressed genes
(DEGs) from the normalized expression profiles, thereby identifying the gene
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activity for both factor-bound and factor-unbound conditions. These DEGs are
then integrated with the binding information from stage-III of the pipeline.Both
these intermediate data sets are passed as input to stage-IV that employs Bind-
ing and expression target analysis (BETA) for prediction process; it calculates
binding potential derived from the distance between transcription start site and
the TF binding site, thereby modeling the manner in which the expression of
genes is being influenced by TF binding sites. Using contributions from the in-
dividual TF binding sites, we obtain a cumulative score of overall regulatory
potential (probability of a gene being regulated by a factor) of a gene. The
percentage of up and down regulated genes is shown in Fig.(4)

Fig. 4: FOXA1 predicted genes activation & repression function

During the process of target prediction each gene receives two ranks, one
from the binding potential Rbp and other from differential expression Rde.Both
these ranks are multiplied to obtain rank product Rp = Rbp x Rde. Genes with
more regulatory potential and more differential expression are more likely to be
as real targets.Table 1 shows a list of up and down regulated genes.

Predicted targets from the inference pipeline results have been widely re-
ported in literature.e.g, FOXA1 up regulated BRCA1 and down regulated ESR1,
GATA3 and ZNF217 haven been reported in (Baran-Gale, Purvis, & Sethupathy,
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Chromosome RefSeqID Rankproduct Gene Symbol Regulation

chr17 NM 007298 2.19E-04 BRCA1 up

chr12 NM 004064s 2.96E-04 CDKN1B up

chr5 NM 001193376 6.16E-04 TERT up

chr7 NM 000492 9.59E-04 CFTR up

chr2 NM 001204109 9.77E-04 2 BCL2 up

chr10 NM 001002295 4.39E-04 GATA3 down

chr14 NM 138420 7.89E-04 AHNAK down

chr20 NM 006526 2.72E-03 ZNF217 down

chr6 NM 001122741 5.79E-03 ESR1 down

chr1 NM 001878 5.79E-03 CRABP2 down

Table 1: Target genes predicted by inference pipeline

2016).Similarly evidence regarding the role of multiple loci on TERT gene are
related to ER(-ve) breast cancer(Bojesen et al., 2013). Many of these predicted
targets are well known prognostic biomarkers whose role has been established
well in the scientific literature. Once we have a set of target genes, a further
downstream analysis of these genes can be done by using gene ontologybased
tools such as DAVID to map them with their corresponding biological functions.

5 Discussion & Conclusion

The availability and expansion of ChIP-seq and RNA-seq datasets is fuelling
an exponential rise in the number of studies being conducted in the area of in-
tegrated computational analysis. The motive behind these research endeavors
is to address basic questions about how multiple factor binding is related to
transcriptional output within in vivo DNA. The proposed inference pipeline is
used to decipher the regulatory relationship between TFs that bind to DNA and
their corresponding target genes that they influence resulting in their activa-
tion/repression.From RNA-seq and ChIP-seq reads, the pipeline generates one
file containing differential expression of genes and the other DNA-binding events
in the form of peaks. Both these files are integrated in the final stage to yield
targets for the TF/TFs whose peaks file was used.

The inference pipeline presented in this paper extracts target genes and hence
the regulatory network for a specific TF that has been ChIPred. In case we are
required to build a regulatory network for a set of TFs, we need to input new
peak files for every new TF in a loop and record the target genes of this TF and
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its regulatory influence in a separate file. In the current study, we considered
only TFs and their influence on gene expression. However, a wider study can
include multiple TFs, methylation data, histone marks and polymerase loading
to improve the efficiency of the proposed pipeline.

Deciphering the transcriptional regulatory relationships and understanding
the elements of regulatory mechanisms that control gene expression is a key
research area of regulatory biology. Therefore computational integration of factor
binding and other genome-wide data, such as gene expression will be sought after
to extract functionally important connections of a working regulatory code.
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