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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by
binding to partially complementary regions within the 3’UTR of their target genes.
Computational methods play an important role in target prediction and assume that
the miRNA ”seed region” (nt 2 to 8) is required for functional targeting, but typically
only identify 80% of known bindings. Recent studies have highlighted a role for the
entire miRNA, suggesting that a more flexible methodology is needed.

We present a novel approach for miRNA target prediction based on Deep Learning
(DL) which, rather than incorporating any knowledge (such as seed regions),
investigates the entire miRNA and 3’UTR mRNA nucleotides to learn a uninhibited set
of feature descriptors related to the targeting process.

We collected more than 150,000 experimentally validated homo sapiens miRNA:gene
targets and cross referenced them with different CLIP-Seq, CLASH and iPAR-CLIP
datasets to obtain 20,000 validated miRNA:gene exact target sites. Using this data, we
implemented and trained a deep neural network - composed of autoencoders and a
feed-forward network - able to automatically learn features describing miRNA-mRNA
interactions and assess functionality. Predictions were then refined using information
such as site location or site accessibility energy.

In a comparison using independent datasets, our DL approach consistently
outperformed existing prediction methods, recognizing the seed region as a common
feature in the targeting process, but also identifying the role of pairings outside this
region. Thermodynamic analysis also suggests that site accessibility plays a role in
targeting but that it cannot be used as a sole indicator for functionality.

Data and source code available at:
https://bitbucket.org/account/user/bipous/projects/MIRAW

Author summary

microRNAs are small RNA molecules that regulate biological processes by binding to
the 3’UTR of a gene and their dysregulation is associated with several diseases.
Computationally predicting these targets remains a challenge as they only partially
match their target and so there can be hundreds of targets for a single microRNA.

Current tools assume that most of the knowledge defining a microRNA-gene
interaction can be captured by analysing the binding produced in the seed region (≈ the
first 8nt in the miRNA). However, recent studies show that the whole microRNA can be
important and form non-canonical targets. Here, we use a target prediction methodology

miRAW: deep learning for miRNA target prediction - Pla et al. 1/29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220483doi: bioRxiv preprint 

https://bitbucket.org/account/user/bipous/projects/MIRAW
https://doi.org/10.1101/220483
http://creativecommons.org/licenses/by-nc-nd/4.0/


that relies on deep neural networks to automatically learn the relevant features
describing microRNA-gene interactions for predicting microRNA targets. This means
we make no assumptions about what is important, leaving the task to the deep neural
network. A key part of the work is obtaining a suitable dataset. Thus, we collected and
curated more than 150,000 experimentally verified microRNA targets and used them to
train the network. Using this approach, we are able to gain a better understanding of
non-canonical targets and to improve the accuracy of state-of-the-art prediction tools.

1 Introduction 1

MicroRNAs (miRNAs) are a family of 22-nucleotide (nt) small RNAs that regulate 2

gene expression at the post-transcriptional level. They act by binding to partially 3

complementary sites on target genes to induce cleavage or repression of productive 4

translation, preventing the target gene from producing functional peptides and proteins. 5

Despite advances in understanding miRNA:mRNA interactions, the rules that govern 6

their targeting process are not fully understood [1–4]. 7

While many miRNA targets have been computationally predicted only a limited 8

number have been experimentally validated. Moreover, although a variety of miRNA 9

target prediction algorithms are implemented, results amongst them are generally 10

inconsistent and correctly identifying functional miRNA targets remains a challenging 11

task. The majority of prediction tools are based on the assumption that it is the 12

miRNA seed region – generally defined as a 6 to 8 nucleotide sequence starting at the 13

first or second nucleotide – that contains almost all the important interactions between 14

a miRNA and its target and their focus is on these canonical sites. This seed-centric 15

view has been supported by structural studies [5] and a widely cited report [6] that 16

investigated the importance of other (non-canonical) regions within a miRNA and 17

concluded their contributions had relatively low relevance compared to the (canonical) 18

seed region. However, more recent studies have revealed that many relevant targets are 19

implemented via non-canonical binding and involve nucleotides outside the seed region, 20

indicating that the entire miRNA should be considered in target prediction 21

algorithms [3, 7, 8]. This is also supported by the performance of target prediction tools 22

which typically identify approximately 80% of known miRNA targets, indicating the 23

mechanisms associated with the remaining 20% of non-canonical targets remain poorly 24

understood. Thus, there is an opportunity for novel approaches to improve knowledge of 25

miRNA-regulated processes. In turn, this can lead to better understanding the effects of 26

mutations in the non-coding region of the genome in terms of function and disease. To 27

this end, in this work, we apply deep learning techniques to investigate the role of 28

non-canonical sites and pairing beyond the canonical seed region in microRNA targets. 29

Almost all target prediction methods are rule-based or adopt machine learning (ML) 30

methodology with varying success. Rule-based systems incorporate various 31

human-crafted descriptors to represent miRNA:gene target binding (e.g. type of pairs in 32

the site, binding stability, or conservation of the target site among species). Machine 33

learning techniques use human crafted descriptors, but as input features to machine 34

learning models. The limitation of both these approaches is the process of feature 35

selection and representation, which is constrained by the use of handcrafted descriptors 36

to model a process that is not fully understood. 37

Recent increases in computational power have permitted the rise of methods that 38

can directly deal with raw data and autonomously learn and identify patterns to 39

appropriately represent data. In particular, deep learning (DL) [9] has been shown to be 40

an effective method for classification tasks in domains with complex feature 41

representation. Generally, DL methods represent raw data by incorporating multiple 42

hierarchical levels of abstraction. While this approach is typically applied to standard 43
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ML problems such as image classification [10], natural language processing [11] or 44

speech recognition [12], it is now finding use in the life sciences for applications such as 45

RNA splicing prediction [13] and gene expression inference [14,15]. DL has also been 46

applied to the miRNA target prediction problem. Cheng et al. [16] used convolutional 47

neural networks to analyze matrices of miRNA:site features, but the selected features 48

were still human-crafted descriptors and thus the method faces similar problems as 49

rule-based and ML approaches. A more recent work, DeepTarget [17], relied on 50

recurrent neural networks to identify potential binding sites and assess their 51

functionality. However this work is still oriented to the identification of canonical sites 52

and relies on a limited small data set for the training phase. 53

In this paper we present miRAW, a novel miRNA target prediction tool that works 54

with raw input data and which makes no assumptions about suitable input descriptors. 55

miRAW uses DL to identify relevant descriptors by analyzing the whole mature miRNA 56

transcript, rather than focusing on the seed region, and is trained and tested against 57

experimentally verified positive and negative datasets. When compared to other 58

state-of-the-art miRNA target prediction tools, miRAW demonstrates a significant 59

improvement in performance, highlighting the importance of considering pairing beyond 60

the seed region. In order to gain a deeper understanding of the characteristics of 61

non-canonical targets, we also investigated the prediction results in terms of model 62

design (i.e., how different configurations affect the type of predictions obtained) and 63

from a biological perspective (i.e., how different classes of predicted target sites varied 64

in terms thermodynamic stability and binding structures). In particular, results reveal 65

(i) many potential functional non-canonical binding structures that are supported by 66

experimentally verified miRNA:mRNA target data and (ii) commonly prioritized 67

features such as site accessibility energy and seed region structure are relevant but not 68

sufficient for discerning between functional and non-functional target sites. 69

2 Materials and methods 70

In our approach, we sought to minimize the introduction of potential biases in the data 71

representation by working directly with the raw data – i.e., the miRNA and mRNA 72

transcripts – rather than incorporating any human selected feature descriptors. To this 73

end we applied deep artificial neural networks (ANN) theory, taking advantage of two of 74

their fundamental properties: (i) with sufficient data-samples and an adequate number 75

of nodes and hidden layers, an ANN can approximate any mathematical function [18]; 76

and (ii) an ANN has the capacity to automatically learn the relevant features of 77

complex data structures by means of its hidden layers [19]. In the following text, we 78

refer to a target site within the 3’UTR of a gene as a miRNA binding site (MBS), 79

comprising the set of nucleotide sites where partially complementary nucleotides 80

individually form bonds between the miRNA and the target mRNA. 81

The miRAW pipeline (Fig. 1) for investigating the target potential of a miRNA and 82

the 3’UTR of a query gene can be summarized as follows: A 30nt sliding window with a 83

5nt step is used to scan the 3’UTR of a gene. For each 30nt fragment, miRAW predicts 84

the stability of the binding between the miRNA and the fragment. If the structure is 85

sufficiently stable, miRAW examines the secondary structure to see whether the 86

extended seed region meets the criteria defined in the candidate site selection method 87

(CSSM). If the criteria are met, the sequence of the entire mature miRNA and the 30nt 88

fragment are binarized and fed into miRAW’s neural network to generate a 89

classification. The prediction can be further refined by including one or more filtering 90

steps that apply additional information that is external to the miRNA:site duplex. 91
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Fig 1. Schematic of the process used by miRAW to evaluate a miRNA Binding Site. (i)
A 30nt sliding window is used to scan the 3’UTR of a gene; (ii) The RNAFold software
package is used to estimate whether the microRNA and the 30nt transcript can form a
stable bond; (iii) If a stable bond is predicted, miRAW checks if the extended seed
region meets the criteria defined in the candidate site selection method (CSSM); (iv) If
the criteria are met, the full mature microRNA transcript and 30nt corresponding to
the candidate site are fed into miRAW’s neural network to generate a classification; (v)
The prediction can be refined by a filtering step that applies additional information that
is external to the miRNA:site duplex.

2.1 Dataset Preparation 92

A key factor for successful application of any ML classification technique is access to a 93

sufficiently variable and representative dataset that will generalize a trained model to 94

new and unseen data. For the miRNA target prediction problem, this requires a 95

comprehensive dataset of verified positive and negative targets that encompass both 96

canonical and non-canonical examples. While there are multiple data repositories 97

providing information regarding experimentally validated positive miRNA 98

targets [20–22], there are significantly fewer experimentally verified negative targets. 99

This is not an issue for methods that use rule-based approaches to describe positive 100

matches [6], but it represents a major concern for ML-based approaches that require 101

similar numbers of labeled examples for both classes. 102
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Here, we focused on human data and used (i) Diana TarBase [21] – the most 103

comprehensive publicly available dataset, which contains information for both positive 104

(121,090) and negative (2,940) experimentally verified human miRNA:mRNA 105

interactions – and (ii) MirTarBase [20] – containing 410,000 experimentally verified 106

positive targets – as the knowledge core for our study. Annotation related to transcripts 107

and miRNA binding site locations were obtained by cross-referencing Diana TarBase 108

identifiers with miRBase release 21 [23] and Ensembl release 87 [24] entries. As a 109

preliminary step, the Diana and MirTarBase data were parsed to (i) remove inconsistent 110

entries that were marked both as positive and negative targets – due to contradictory 111

results in different experimental validations – and (ii) combine entries that were 112

validated more than once by different verification methods. This produced a final 113

dataset of 33,912 positive (+) and 1,096 negative (-) interactions. The data was then 114

split into two parts (each consisting of 16,496+ and 548- interactions) for the training 115

and testing stages. 116

2.1.1 Training Dataset 117

The training dataset serves the purpose of training and validating the ANN responsible 118

for classifying miRNA target sites between functional (positive targets) and 119

non-functional (negative targets). Thus, the training dataset is composed of 120

miRNA:MBS pairs rather than miRNA:mRNA pairs. 121

• Positive Training Dataset To build the positive training dataset we used the 122

reference transcripts of the mature miRNAs and the target mRNAs and, where 123

possible, the binding sites of the experimentally verified targets. However, binding 124

site information is only available and/or parsable for a limited number of Diana 125

Tarbase’s targets. Thus, in order to obtain specific information regarding binding 126

site locations for the remaining target entries, we cross-referenced Diana Tarbase 127

and TarBase with publicly available datasets containing miRNA:MBS locations 128

obtained through PAR-Clip [2] and CLASH [25] experiments. While CLIP and 129

CLASH data provides information regarding experimentally identified miRNA 130

binding site locations, these sites are not necessarily functional. In order to reduce 131

the probability of including non-functional sites in the positive training dataset we 132

considered MBSs that (i) formed stable duplexes –negative free energy in the 133

predicted secondary structure– according to Vienna RNACofold [26] and (ii) 134

corresponded to a miRNA:gene pair marked as functional in mirTarBase or Diana 135

TarBase. 136

Additionally, we complemented our positive training dataset by including the 137

most probable broadly conserved putative sites predicted by TargetScanHuman 138

7.1 [6] that matched experimentally validated functional data from Diana Tarbase 139

or mirTarBase. The resulting dataset was composed of both canonical and 140

non-canonical MBSs and comprised a total of 22,278 positive target sites for 141

training and validating the miRAW deep learning network. 142

• Negative Training Dataset The smaller number of negative experimentally 143

validated targets poses a challenge when constructing a representative negative 144

dataset. Some ML-based target prediction tools address this problem by using 145

”mock” miRNA targets which are artificially generated miRNA:MBS sequences 146

that resemble true positive targets but which do not appear in positive miRNA 147

target repositories [17, 27]. However, in our case, this type of strategy can lead to 148

the ANN learning the function used to generate the ”mock” data and being 149

trained to discriminate between real data and artificial data rather than 150

discriminating functional and non-functional targets. In addition, there is no 151
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guarantee that the generated sequences do not belong to miRNA:gene functional 152

pairs yet to be discovered or validated. Thus, we opted for building a negative 153

dataset based upon experimentally verified data. 154

Any sequence of approximately 22 nt within a mRNA of a negatively validated 155

miRNA:mRNA pair represents a possible negative MBS. However, in practice, 156

most of these sequences are irrelevant as they cannot form a stable bond with a 157

miRNA and including them in the training set would merely introduce noise, 158

unnecessarily increasing the complexity of the problem. To obviate this issue, we 159

only considered negative sites within the 3’ UTR of a mRNA that (i) comprise a 160

region with a maximum length of 30 nucleotides and (ii) where a miRNA has the 161

potential to form a stable bond (The choice of a binding site length greater than 162

the average length of an mRNA allows the presence of of bulges within the MBS). 163

For each experimentally verified negative miRNA:mRNA pair, we used a sliding 164

window of 30 nt along the entire 3’UTR region with a 5nt step. The secondary 165

structure of the miRNA:MBS duplex was then predicted using the RNACoFold 166

tool from the ViennaRNA package [26] using default settings for all parameters 167

and was considered to be a potential MBS if it had a negative binding energy. 168

This process resulted in a total of 34,918 negatively validated target sites. 169

For training and validating the neural network, we followed a 10 fold 170

random-subsampling cross-validation approach using the positive and negative training 171

datasets. We stratified the sampling process to ensure the presence of both positive and 172

negative samples for each miRNA family (miRNAs sharing a common ancestor and 173

which have similar similar sequence and structure [23, 28]) present in the training data. 174

80% percent of data was used for training, 10% reserved for validation and 10% for 175

testing. For each fold we used the same proportion of positive and negative class 176

instances. 177

2.1.2 Test Dataset 178

To evaluate the developed method with independent data we generated a dataset using 179

the ∼17000 experimentally verified miRNA:gene targets excluded from the training 180

data. Note that, in contrast to the training stage, the goal of the test dataset is to 181

evaluate the whole miRAW methodology and, therefore, the testing data consist of pairs 182

containing the miRNA and the whole gene 3’UTR transcripts, rather than the specific 183

MBSs. Again, these 17000 data points were highly biased towards positive entries in a 184

ratio of 97:3 and this imbalance will impede true evaluation of the trained model – a 185

tool that exclusively predicts positive targets against the full test data would achieve an 186

accuracy of 97%. Thus, a testing dataset was generated with equal numbers of positive 187

and negative targets (548+, 548-) where positive entries were randomly selected. To 188

avoid bias attributable to positive target selection, 10 different randomly sampled 189

datasets were generated and compared. Given the strong sequence similarity between 190

miRNAs of the same miRNA family [29,30], we excluded miRNA:gene pairs that had 191

equivalent pairs (i.e. a pair consisting of a miRNA of the same family that is targeting 192

the same gene) in the training dataset. In this way, we prevent almost identical data 193

pairs from being present both at the training and testing stages. 194

2.2 Candidate Site Selection 195

Selection of candidate MBSs in a mRNA is another key step for a miRNA target 196

prediction algorithm as it identifies which regions within the mRNA have the potential 197

to be a target binding site. Most target prediction methods follow a similar approach 198

for candidate selection: they scan the 3’UTR of the gene looking for sites that are 199
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b)	Compensatory	site	(TS,	miRAW):	

c)	Centered	site	(TS,	miRAW):

a)	Canonical	site	(PITA,	TS,	miRAW): d)	Non	canonical	sites	(miRAW):

Watson-Crick	base	pair Wobble	base	pair

Seed	region

Seed	region

Seed	region

Extended Seed	region

Extended Seed	region

Extended Seed	region

Fig 2. Examples of the types of miRNA binding sites considered by different candidate
site selection methods (CSSMs). (a) Potential canonical binding site accepted by the
PITA, TargetScan (TS), and miRAW CSSMs. Here, the seed region contains a perfect
7mer. (b) Potential non-canonical compensatory binding site accepted by TS and
miRAW CSSMs. The missing nucleotide pair in the seed region is compensated by a
4mer at positions 10 to 14. (c) Potential non-canonical centered target site accepted by
TS and miRAW CSSMs. The lack of perfect seed matching is compensated by
additional consecutive pairs in nucleotides 9 to 12. (d) Potential non-canonical sites
accepted only by the miRAW CSSMs. The extended seed region (10 nucleotides) and
the inclusion of wobbles allows these scenarios to be considered as potential target sites.

partially complementary to the miRNA transcript; if a site fulfills certain criteria, it is 200

considered to be a candidate site and is subjected to further analysis. Candidate site 201

selection methods (CSSMs) that focus on the retrieval of canonical targets only consider 202

those sites that have perfect complementary within the miRNA seed region (nucleotides 203

2 to 8, see Fig. 2a) and will return the smallest number of predicted targets. Methods 204

willing to accept non-canonical sites have looser restrictions: some accept a limited 205

number of bulges, mismatches or wobble pairs in the seed region whilst others accept 206

such mismatches only if there are compensatory nucleotide pairs outside the seed region 207

(Fig. 2b and c). 208

In an ideal scenario where the training dataset contained sufficient examples of all 209

the possible forms of positive and negative targets, the CSSM would not be required as, 210

theoretically, an ANN would be able to estimate the function acting as CSSM. In reality, 211

there are limited numbers of reliable experimentally verified miRNA:targets (especially 212

for negatively validated sites) and the CSSM step effectively narrows the search space to 213

simplify the ANN classification task. 214

The CSSM used by miRAW (CSS miRAW) for searching the 3’UTR follows a 215

similar approach to other prediction tools –investigating successive 30-mer segments– 216

but employs a more relaxed set of restrictions that reflect recent experimental studies 217

that relax the requirement of perfect pairing in the seed region and acknowledge a 218

possible role for the other nucleotides. For example, Kim et al [8] report the role of 219

nucleotide 9 in several miRNA binding sites and Grosswendt et al [2] found that a 220

significant number of miRNAs do not require perfect complementarity within the seed 221

region and compensate for this in non-seed nucleotides. Finally, a recent structural 222

study by Klum et al [31] clarify a role for the 3’ end of the miRNA in the targeting 223

process. Based on the findings from these and other related studies, we investigated 224

three different approaches that expand the analysis beyond the typical 7mer seed region 225

and relax the broadly adopted requirement for perfect pairing within the seed region. 226

In particular, we consider a site to be a candidate MBS if there is a minimum 227
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number of base pairs – considering both Watson-Crick (WC) pairing and wobbles – 228

within an extended seed region and investigated three different configurations: 229

• CSS miRAW-6-1:10: a candidate MBS contains at least 6 base pairs between 230

nucleotides 1 and 10. 231

• CSS miRAW-7-1:10: a candidate MBS contains at least 7 base pairs between 232

nucleotides 1 and 10. 233

• CSS miRAW-7-2:10: a candidate MBS contains at least 7 base pairs between 234

nucleotides 2 and 10. 235

In each case, base pairs do not need to be consecutive in order to accommodate the 236

presence of gaps and bulges. 237

Thus, these models can accommodate both standard canonical MBSs as well as a 238

broader range of non-canonical target site structures (see Fig. 2), including the vast 239

majority (up to 97.63%) of experimentally validated sites from Diana TarBase and 240

CLIP/CLASH binding site datasets. Moreover, while these relaxed conditions for the 241

seed region generate a much larger number of candidate sites, the decision of whether a 242

site represents a functional target is delegated to the ANN ( which considers the entire 243

miRNA & mRNA sequence). In this way, we ensure that minimal assumptions, and 244

hence bias, are incorporated into the analysis. 245

To further evaluate the impact of choice of CSSM, we also implemented the CSSMs 246

used in two of the most commonly used miRNA target prediction tools: 247

• TargetScan (CSS miRAW-TS) considers three types of sites: (i) perfect 248

canonical matches (perfect complementarity in nt 2 to 8, Fig. 2a), (ii) 3’ 249

compensatory sites (a minimum of 3 consecutive WC pairs between nt 13 and 16 250

compensates an imperfect seed match –one wobble, bulge or mismatch–, Fig. 2b) 251

and (iii) centered sites (imperfect seed match but 11 contiguous WC pairs between 252

nt 4 and 15, Fig. 2c). 253

• PITA (CSS miRAW-Pita) considers (i) 7mers starting at nt 1 or 2 ( Fig. 2a) 254

and (ii) sites containing a gap, wobble or mismatch in the seed region (starting at 255

nt 1) if it contains at least 7 WC pairs. 256

Both these CSSMs are subsets of CSSM-miRAW-6-1:10 and CSSM-miRAW-7-1:10 257

(Fig. 2). 258

Implementation of different CSSMs served a primary purpose of fine-tuning miRAW 259

but also allowed us to investigate the targeting process from a biological perspective. 260

The 5 proposed methods encapsulate different target ranges. At one extreme, 261

CSS-miRAW-TS and CSS-miRAW-P adopt conservative approaches oriented towards 262

canonical sites but they also consider a limited number of non-canonical sites with small 263

irregularities in the seed region; at the other extreme, the other non-canonical CSSMs 264

follow a greedier approach that allows the consideration of several non-canonical sites 265

with broader irregularities in the seed region. These differences produce variations in 266

both the canonical and non-canonical predicted targets. 267

2.3 Transcript Binarization 268

As an ANN requires numerical data for input, we transformed the miRNA and 269

candidate mRNA site transcripts to binary values using one hot encoding. Each of the 270

mRNA and miRNA nucleotides was translated to a binary vector of dimension 4, 271

corresponding to the four possible nucleotide values (see Table 1). Thus, each miRNA 272

target is represented by two concatenated binary vectors: one composed of 120 (4x25nt) 273
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dimensions corresponding to the mature miRNA transcript, and a second composed of 274

160 (4x40nt) dimensions corresponding to the mRNA site (30 nt) and 5 additional 275

upstream and downstream nucleotides. 276

Table 1. Binarized nucleotide encoding

Nucleotide Binarization
A 0 0 0 1
C 0 0 1 0
G 0 1 0 0
U 1 0 0 0
Empty 0 0 0 0

2.4 Neural Network Design 277

Classification of candidate miRNA:MBSs was performed using a feed forward deep 278

ANN. As we rely on the network to identify the relevant relationships between a 279

sequence and the features that describe the miRNA:mRNA interaction, the input of the 280

network consisted of the binarized transcripts of the miRNA and the MBS. The network 281

was configured so that the number of inputs in the input layer was equal to the 282

dimensionality of the binarized representation of the miRNA:mRNA transcripts, and 283

the output layer consisted of two outputs (positive and negative class classification). In 284

addition, transcripts were aligned so the starting of the seed region corresponded always 285

to the same input node. 286

The deep ANN was composed of eight dense hidden layers (comprising rectifier 287

activation function –RelU– nodes) whilst the output layer comprised two softmax output 288

nodes. The number of nodes per layer was chosen experimentally using the guidelines 289

in [32] as a starting point and resulted in the structure shown in Supplementary Fig. 1. 290

The first eight hidden layers followed the structure of a stacked autoencoder network 291

and were pre-trained as an autoencoder in order to learn the features that are most 292

representative of miRNA:MBS duplexes (Supplementary Fig. 2). The last three hidden 293

layers and the output layer followed the typical shape of a feedforward classification 294

network. This design was consistent with the functionality of the network: (i) the first 295

hidden layer aims to map the data representation to a higher feature space (ii) the 296

following layers seek relevant features corresponding to the interactions of the inputs 297

(iii) the last two layers are responsible for classifying these features. 298

To ensure the network’s capacity to deal with newly observed data and to avoid 299

overfitting, training was performed with a dropout rate of 0.2. The maximum number 300

of epochs was set to 500 in order to prevent excessive training time and overfitting. We 301

tested two different loss functions for the network: negative log likelihood (NLL) and 302

cross entropy (XENT). After performing cross-validation, the trained network that 303

obtained the best performance with its test dataset (XENT Fold 7, see Results) was 304

selected as miRAW’s neural network model. 305

The two neurons of the output layer correspond to the negative (output 0, o0) and 306

positive (output 1, o1) classes. Therefore, the class of the site is determined by the 307

values of the two output neurons: 308

class =

{
1 if o1 − o0 > 0

−1 if o1 − o0 6 0
(1)

This method will assign a positive or negative classification even if there is only a 309

small difference between the positive and negative output neurons. This scenario 310

corresponds to situations where the network is not confident about the classification of 311
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the input data. To deal with such uncertainty a constant parameter K was used to 312

define a ’grey area’ in which the network is not able to provide a reliable prediction: 313

class =


1 if o1 − o0 ≥ K
−1 if o1 − o0 6 −K
unknown if −K < o1 − o0 < K

(2)

2.5 Gene Prediction and Filtering 314

According to [33], we consider that a miRNA targets an mRNA if any of the potential 315

MBSs of the mRNA are functional. In the representation of the targeting process 316

implemented within miRAW, we require the neural network classify at least one of 317

candidate sites as positive to consider a miRNA:mRNA pair as a positive targeting 318

event. 319

In our model, given a miRNA m and a gene g, a candidate site selection method 320

sm(m, g) determines a set of potential MBSs for that pair, i.e. 321

sm(m, g) = CS (3)
322

CS = {cs0 . . . csi} (4)

To determine if the miRNA is targeting the gene, each candidate site within the 323

miRNA:mRNA segment is binarized and input to miRAW’s deep ANN. The result of 324

the targeting prediction T (m, g) corresponds to the disjunction of the neural network 325

outputs (ann(m, csi)) for all the candidate sites csi ∈ CS in the gene g. 326

T (m, g) =

|CS|∨
i=0

ann(m, csi) (5)

Given that it only requires a single candidate site to be classified as positive for the 327

miRNA:mRNA prediction to be positive means that miRAW is particularly sensitive to 328

false positives. A false negative for a single candidate site can be abrogated by a positive 329

classification for any of the remaining candidate sites but a single false positive cannot 330

be corrected by any number of negative candidate sites. Hence, the more potential sites 331

a CSSM identifies, the higher the probability of obtaining a false-positive prediction. 332

P (FPCSSM ) = 1− P (!FPCSSM ) = 1− (1− FPR)|CS| (6)

where FPR corresponds to the false positive rate of the neural network. This also 333

implies that CSSMs that adopt a greedier approach will end up obtaining more false 334

positives by chance. 335

The presence of false positives in miRAW’s ANN can be partially attributed to the 336

fact that not all the information concerning miRNA targets can be obtained from the 337

miRNA:MBS duplex and, therefore, cannot be inferred by the neural network. For 338

instance, aspects such as site accessibility [34] require accessing additional external data 339

sources. This external information can be used to refine ANN outcomes by removing 340

sites unlikely to be functional. In an attempt to reduce the likelihood of false positives, 341

we included an a posteriori filtering step based on accessibility energy. It is known that 342

miRNA binding sites that are more easily accessible tend to have higher chances of 343

being functional targets [34]; for this reason, several tools usch as PITA, miRMAP [35] 344

or PACMIT [36] combine this information with the binding site minimum free energy 345

(∆Gduplex) to produce a refined target prediction. The site accessibility energy (∆Gopen) 346

of a MBS can be defined as the energy required to unfold the secondary structure of the 347

mRNA in order to accommodate the miRNA [34,36]. As the calculation of ∆Gopen 348
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requires information that extends beyond the MBS and which involves the whole mRNA 349

sequence, it is particularly well suited for use as a posteriori filter in miRAW. Following 350

the site accessibility energy definition of [36], we implemented an ∆Gopen filter that 351

removed all predicted sites presenting a ∆Gopen higher than a threshold thsa. Based on 352

results from previous studies [34,36], we set thsa = −10kcal/mol. For accuracy and 353

robustness, we computed local site accessibility following the guidelines defined in [37] 354

and [36]. Specifically, we used the ViennaRNA package [26] and considered the 200nt 355

surrounding the target rather than folding the whole mRNA sequence as this may result 356

in less accurate and more complex secondary structures [36]. 357

2.6 Comparison with other miRNA target prediction tools 358

To assess miRAW’s performance, we compared it against the following commonly used 359

target prediction tools: TargetScan release 7.1 [6], Diana microT-CDS v.4 [38], PITA 360

v.6 [34], miRanda (built upon the mirSVR predictor) [39] and mirDB [40]. These 361

represent the current gold standards (i.e., most commonly referenced) for microRNA 362

target prediction software. These software periodically release datasets containing all 363

predicted miRNA targets using the latest version of the respective tools. In order to 364

evaluate their performance, we cross referenced their latest1 available predicted target 365

databases with the unbalanced and balanced datasets defined in Section 2.1. 366

TargetScan offers two different databases in each release, one providing target sites 367

highly conserved among species (TS Conserved) and one providing sites not-necessarily 368

conserved among species (TS NonConserved) and both databases were considered. To 369

assess the significance of the results, we performed a Wilcoxon signed rank test for each 370

of the evaluated metrics; Results were considered significant for p < 0.05 unless 371

otherwise stated (see Supplementary Table 4 for specific p-values). 372

2.7 Implementation 373

miRAW was implemented using Java. RNACoFold from the ViennaPackage [26] was 374

used for computing the candidate sites. Implementation of the deep neural network was 375

done using the DeepLearning4Java (DL4J) library [41]. DL4J allows the use of both 376

CPU and GPUs for neural network training and classification. All the analyses 377

presented in this paper were performed using GPUs due to its improved performance; 378

however, a CPU based version of miRAW is also available. 379

3 Results 380

The two key components of miRAW’s design are (i) the ANN that analyzes candidate 381

target sites and (ii) the CSSM used during the target prediction step. To assess these 382

two aspects of the model we first evaluated the outputs of the ANN training process 383

through cross-validation and then investigated performance using the different 384

candidate site selection methods outlined in the methodology. These comprised the 385

novel (non-canonical) models implemented for miRAW – miRAW-6-1:10, 386

miRAW-7-1:10 and miRAW-7-2:10 – and the existing (canonical) models already used 387

in TargetScan and PITA – miRAW-TS and miRAW-Pita. In addition, we explored how 388

a posteriori filtering can improve the reliability of the predictions by evaluating miRAW 389

results for the predicted canonical and non-canonical targets in the presence and 390

absence of filtering. Finally, we tested miRAW’s performance by comparing it against 391

TargetScan, Diana microT-CDS, PITA, miRanda and mirDB, which represent the most 392

commonly used target site predictors based on citations. 393

1January 2017
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Fig 3. Comparison of miRAW’s neural network performance with the positive and
negative training datasets when using a negative log likelihood (NLL) loss function and
a cross entropy loss function (XENT) with 10 fold cross validation. XENT provides
significantly better accuracy, precision, sensitivity, specificity, F1-scores and area under
the curve (AUC) compared to NLL (* p-value< 0.05, ** p-value< 0.01).

3.1 Neural Network Evaluation 394

Cross validation of miRAW’s ANN presented good results in terms of predicting both 395

positive and negative sites. This was independent of the loss function used during 396

training, with all evaluated metrics result in scores higher than 0.90 (Fig. 3 and 397

Supplementary Tables 1 and 2). Nonetheless, accuracy and area under the curve (AUC) 398

metrics show that the XENT (accuracy = 0.92, AUC = 0.96) loss function resulted in 399

a statistically significant (Wilcoxon signed sank test) better network compared to the 400

NLL function (accuracy = 0.91, AUC = 0.93). This was reflected in both prediction of 401

positive targets, where the XENT network achieved higher precision, sensitivity and 402

F1-score compared to the NLL network. For negative target prediction, the XENT 403

network returned a larger number of predictions than the NLL but nevertheless 404

achieved a similar negative precision. It is worth noting that, across the different folds, 405

the XENT network was less consistent in terms of negative precision than in positive 406

precision and that for most of the folders it presented more FN than FP. This, combined 407

with the difference in sensitivity and specificity values (0.92 vs 0.94), suggests that the 408

XENT network is slightly biased towards negative predictions as it predicted more 409

negative than positive sites for each fold. Despite this fact, the statistically significant 410

higher accuracy, AUC and F1-scores (both positive and negative) indicate that the 411

XENT network is more appropriate than the NLL network for miRNA target prediction. 412

Fig. 4 shows the receiver operating characteristic (ROC) curves for the NLL and 413

XENT networks. The XENT network has a larger AUC, indicating superior 414

performance. Moreover, there is a clear difference in shape of the curves and 415

distribution of data points. The XENT network exhibits a smooth curve with relativity 416

evenly spaced points, the NLL curve is more discontinuous and the data points are 417

concentrated within a smaller region. This indicates a stronger polarization of the NLL 418
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Fig 4. Average ROC Curves for cross validation of miRAW’s neural network using the
Positive and Negative training datasets. The dashed line corresponds to the aggregated
ROC obtained with the XENT loss function (AUC = 0.96), the solid line corresponds to
the NLL loss function (AUC=0.93). The XENT loss function presents a smoother ROC
curve with a higher area under the curve, indicating better performance.

network, where all the predictions are strongly classified as a positive or a negative 419

target (i.e. class value is very close to 1 or -1). Conversely, the smoothness of the XENT 420

network represents a more progressive classification, allowing the presence of less 421

polarized predictions, resulting in a more generalized predictive ability. The shape of the 422

NLL curve also suggests that the NLL network might be overfitted and that it might 423

struggle to classify new observations that significantly differ from the training data - 424

this is also supported by the average epoch numbers used by each network to reach its 425

optimal set of weights, 7.32 for the XENT network versus 11.21 for the NLL network. 426

The general consistency of calculated parameters and ROC curves across the 427

different folds in the two networks (Supplementary Tables 1 and 2) indicates that the 428

model performance is not dependent on the training and test datasets used. Fold 7 of 429

the XENT network achieved the highest performance in terms of all the considered 430

evaluation metrics and so this ANN model was selected for testing in the gene 431

prediction stage. 432

3.2 miRNA Target Prediction with miRAW: The Role of the 433

Site Selection Method 434

To investigate the impact of the site selection method, we compared the performance of 435

five different CSSMs (miRAW-6-1:10, miRAW-7-1:10, miRAW-7-2:10, miRAW-TS and 436

miRAW-Pita) in the presence and absence of a site-accessibility energy (AE) filter of 437

-10kcal/mol. The results are summarized in Fig. 5 and Supplementary Table 3. All the 438

methods achieve accuracies between 0.63 and 0.74 with significant differences depending 439

on if the site-accessibility filtering is present (AE) or absent (NF). This effect can be 440

seen when the different CSSMs are ordered by accuracy. miRAW-Pita-NF, 441

miRAW-TS-NF, miRAW-7-2:10-AE and miRAW-7-1:10-AE obtain similar accuracies 442
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(≈ 0.72) with no statistically significant differences in the metric, although 443

miRAW-6-1:10-AE has a slightly poorer performance (0.71). However, 444

miRAW-7-2:10-NF, miRAW-7-1:10-NF, miRAW-Pita-AE and miRAW-TS-NF ranked in 445

the bottom of the table in terms of accuracy. Thus, while the non-canonical CSSMs 446

specifically derived for miRAW obtain better results in the presence of filtering, the 447

canonical derived CSSMs (miRAW-Pita and miRAW-TS) exhibit improved performance 448

in the absence of filtering. 449

The F1-scores summarize how well a particular class is classified by a particular 450

CSSM, an optimal CSSM will perform well for both positive and negative targets. 451

Fig. 5 and Supplementary Table 3 show that CSSMs with reported low accuracy 452

underperform in at least one of the F1-scores: miRAW-7-2:10-NF, miRAW-7-1:10-NF 453

and miRAW-6-1:10 have high positive F1-scores but a low negative F1-score caused by 454

an excess of false positives (causing a low specificity) whilst miRAW-Pita-AE and 455

Neg.F1Score
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Fig 5. Evaluation of miRAW using different CSSMs and in the presence (AE) and
absence (NF) of ∆Gopen filtering (threshold = -10Kcal/mol). Results are evaluated in
terms of accuracy, precision, sensitivity, negative precision, specificity, positive F1-score
and negative F1-score. The best results in terms of accuracy and negative F1-Score
were obtained when using Pita’s CSSM and when no filtering was applied. The highest
positive F1-Score was obtained by miRAW-7-2:10. Canonical CSSMs (TS and Pita)
obtain better results when no filter is applied, the application of ∆Gopen filtering
introduces false negatives resulting in low sensitivity and negative precision. Conversely,
non-canonical CSSMs (miRAW-6-1:10, miRAW-7-1:10 and miRAW-7-2:10) present
better results when filtering is applied as this reduces the number of false positives,
thereby increasing precision and specificity; when no filtering was applied miRAW was
biased towards the prediction of positive sites, which resulted in high sensitivity but low
precision.
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Fig 6. Composition of site types identified by the different CSSMs implemented in
miRAW. (a) Average number of miRNA binding sites (MBS) identified by the different
CSSMs in a miRNA:mRNA pair. Blue color refer to MBS following a canonical
structure, green refer to non-canonical sites; darker colors correspond to positive sites
predicted in experimentally verified functional miRNA:mRNA pairs (true positives),
lighter colors refer to positive sites identified in non-functional pairs (false positives). (b)
Proportion of canonical, non-canonical, true positive and false negative sites identified
by each of the candidate site selection methods. Figures illustrate that miRAW-Pita
and miRAW-TS CSSMs are strongly biased towards detection of canonical sites whereas
miRAW specific CSSMs detect a higher proportion of non-canonical sites.

miRAW-TS-AE have a low positive F1-score cause by the excess of false negatives 456

(causing a low sensitivity). However, miRAW-Pita-NF, miRAW-TS-NF, 457

miRAW-7-2:10-AE and miRAW-7-1:10-AE all obtain balanced F1-scores ranging 458

between 0.71 and 0.74, indicating an ability to effectively predict both positive and 459

negative targets. 460

Fig. 6 summarizes the composition of site types by each CSSM. Fig. 6a shows the 461

average number of canonical (blue) and non-canonical (green) sites identified for each 462

miRNA:gene pair in the test dataset whilst Fig. 6b shows the relative proportions of 463

each identified type. As expected, CSSMs methods following conservative approaches 464

(miRAW-Pita and miRAW-TS) identified more canonical than non-canonical potential 465

sites, whereas the miRAW CSSMs identified larger total numbers of potential sites, of 466

which many more were non-canonical. The figure also shows that the number of 467

predicted canonical sites varies according to the selected CSSM, with the conservative 468

approaches obtaining more canonical sites than the greedy approaches. While this 469

seems to contradict the expectation that all the CSSMs should identify similar canonical 470

sites, the difference can be understood when the higher number of accepted binding 471

structures recognized by the non-canonical oriented CSSMs are taken into account. 472

Several of the sites identified by miRAW-Pita or miRAW-TS overlap with non-canonical 473

binding sites predicted by the miRAW specific CSSMs that present greater stability and 474

are therefore preferentially selected (Fig. 7). Figure 6b also shows that the application 475

of the site accessibility filter does not significantly alter the ratio of canonical and 476

non-canonical sites for any CSSM, suggesting that site accessibility filters do not act as 477

a discriminator between canonical and non-canonical sites. 478
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Fig 7. Example of a miRNA binding site that can accommodate a miRNA
(hsa-miR-21) with different binding patterns and different site stabilities. The left figure
shows a canonical binding (perfect 7mer) with ∆Gduplex = −10.30kcal/mol while the
right figure shows a non-canonical binding (containing wobbles in the seed region)
∆Gduplex = −11.70kcal/mol. While the left structure can be identified by both
canonical and non-canonical CSSMs, a non-canonical CSSM will preferentially select the
right hand structure as a potential MBS since it reports a more stable predicted binding
energy.

3.3 Site accessibility filtering 479

Fig. 5 shows that site accessibility filtering has very different effects in the canonical 480

and non-canonical CSSMs . This difference can be understood by considering the 481

different approaches taken by the canonical (conservative) and non-canonical (greedy) 482

models. The conservative models only consider canonical sites containing close to 483

perfect complementarity (≥7mers) in the seed region and a restricted number of 484

non-canonical sites, resulting in a limited amount of candidate sites. Conversely, the 485

greedy models not only recognize canonical sites but also screen a wide range of 486

non-canonical sites that follow unconventional target structures, obtaining a much 487

higher number of potential target sites. This is illustrated in Fig. 8a which shows the 488

average and median number of potential MBSs identified for a miRNA:mRNA pair for 489

each CSSM. The boxplot shows that, in the absence of filtering, more potential MBSs 490

are identified for the more relaxed non-canonical CSSMs. For example, 491

miRAW-Pita NF and miRAW-TS NF identify between 3 and 4 sites respectively per 492

miRNA:mRNA pair, whereas miRAW-7-1:10 NF and miRAW-6-1:10 NF identify 22 493

and 13 sites respectively. However, as more potential MBSs are identified, the chance 494

of incorrectly obtaining a false positive increases. 495

From the training results for the XENT network (Supplementary Table 1), we can 496

estimate the overall probability of the network obtaining a false positive prediction as 497

0.068 (P (FP ) = 1− precision). However, there is greater variation when we 498

independently consider the various CSSMs. In this case, we can define the probability of 499

obtaining a false positive for a miRNA:mRNA pair using a specific CSSM as: 500

P (FPCSSM ) = 1− P (TPCSSM ) = 1− precision|sites| (7)

Fig. 8b shows the relationship between the probability of obtaining a false positive and 501

the average number of sites obtained by each CSSM. The non-canonical CSSMs with 502

filtering are at the bottom left of the curve, indicating the efficacy of the filtering step 503

–a-posteriori filtering for these CSSMs reduces the number of identified potential MBSs 504

which, in turn, lowers the probability of returning a false-positive error in the network 505

and obtaining a false positive miRNA:mRNA classification–. Conversely, application of 506
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Fig 8. (a)Number of MBSs identified by each CSSM in the presence (AE) and absence
(NF) of ∆Gopen filtering. Values > 40 are excluded from the plot for comparative
purposes. Red (upper) numbers and green (lower) numbers show the mean and the
median respectively of the number of MBSs identified by each CSSM. miRAW-Pita AE
and miRAW-TS AE have the lowest number of MBSs while miRAW 6-1:10 AE has the
highest. The number of sites discarded by accessibility energy filtering (AE) is higher in
non-canonical oriented CSSMs than in canonical-oriented ones. (b) Relationship
between the probability of miRAW obtaining a false positive prediction and the number
of sites identified by each CSSM. The fact that miRAW classifies a miRNA:mRNA
duplex as positive if a single miRNA:MBSs is predicted as positive by the neural
network increases the chances of obtaining a false-positive prediction as the number of
potential MBSs increases. As non-canonical oriented CSSMs tend to detect higher
numbers of potential MBSs they are more sensitive to a false positive. The application
of ∆Gopen filtering reduces the number of potential MBSs and therefore reduces the
probability of a false positive.

a posteriori filtering in conservative CSSMs significantly reduces the number of 507

candidate sites, leading to the exclusion of true binding sites and increasing the 508

probability of classifying a miRNA:mRNA pair as a false negative. 509

We next investigated the relationship between the ∆Gopen threshold applied in 510

miRAW and the accuracy and the negative and positive F1-score metrics. The results 511

are summarized in Figs. 9a-c. Again, the canonical and non-canonical CSSMs curves 512

exhibit distinct characteristics. All the metrics for the canonical CSSMs improve with 513

increasing ∆Gopen, i.e., these CSSMs are most effective in the absence of any threshold 514

filtering. Conversely, the non-canonical CSSMs improve with low ∆Gopen thresholds. 515

While the positive F1-score progressively increases with high ∆Gopen thresholds, the 516

negative F1-score achieves a peak value between -8 and -10kcal/mol. This reflects the 517

fact that, as the ∆Gopen threshold is increased, more sites are considered by miRAW: 518

increasing sensitivity (more true positives) but in turn reducing specificity (less true 519

negatives and more false positives). The observation that site accessibility filtering 520

increased the performance of non-canonical CSSMs but decreased performance in 521

canonical CSSMs suggests a potential bias towards low site-accessibility energy in 522

non-canonical sites. To explore this possibility, we examined the site accessibility energy 523

distribution of the sites predicted by the different CSSMs and separated them into 524

canonical and non-canonical sites found in true positive (TP) and false positive (FP) 525
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miRNA:mRNA pairs. The results are shown in Fig. 10a-d. 526

Fig. 10a groups data according to type of site and classification outcome (canonical 527

TP, canonical FP, non-canonical TP and non-canonical FP). For the canonical TP sites, 528

the different CSSM energy distributions do not present statistically significant 529

differences (Kolgomorov-Smirnov test; p < 0.05)(Fig. 10b); this is explained by the fact 530

that all the site selection methods identify similar canonical sites. For the FP canonical 531

sites there are no significant differences among the three non-canonical CSSMs, however 532

the miRAW-Pita CSSM does have significant differences with these CSSMs. From the 533

corresponding graph in Fig. 10a (top right) the peak in the miRAW-Pita distribution 534

occurs around a threshold of -10kcal/mol whereas for the non-canonical CSSMs the 535
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Fig 9. Performance of miRAW in relation to ∆Gopen filtering threshold. (a) Variation
in accuracy with respect to ∆Gopen filtering threshold. (b) Variation in positive
F1-score with respect to ∆Gopen filtering threshold. (c) Variation in negative F1-score
with respect ∆Gopen filter threshold. Graphs show that for non-canonical oriented
CSSMs, the application of a ∆Gopen improves accuracy and negative F1-score values as
better scores are obtained when sites with higher ∆Gopen values are removed. The peak
in the accuracy curve and the fact that the positive F1-score reaches a plateau around
∆Gopen = 10, indicates this is an optimal cutoff value. For the canonical-oriented
CSSMs, accuracy and positive F1-score metrics reach a plateau around ∆Gopen ≥ 23
whereas the negative F1-score curve slightly decreases from ∆Gopen ≥ 18. However, the
decrease is small compared to the changes in the positive F1-score chart, suggesting that
∆Gopen filtering has limited relevance for these models.
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Fig 10. Energy distributions of the site accessibility energy ∆Gopen for target sites
predicted by miRAW using different CSSMs (a) ∆Gopen distributions grouped by the
type of site identified by each CSSM (with extreme values removed for comparative
purposes). Blue curves correspond to non-canonical CSSMs, red and yellow curves
correspond to canonical CSSMs. In general, ∆Gopen distributions are smoother for true
positive sites (for both canonical and non-canonical CSSMs) than for false positive sites.
(b) Pairwise comparison for statistical significance among CSSMs (Kolgomorov-Smirnov
test (p < 0.05)). The most striking differences are between the ∆Gopen distributions of
non-canonical false positive sites, with differences identified between all CSSMs. For
non-canonical true positive sites, statistical significance is only identified between
canonical (miRAW-TS, miRAW-Pita) and the non-canonical (miRAW specific) CSSMs.
For canonical sites, there are fewer significant differences; this can be explained by the
fact that all the CSSMs identify similar MBSs. (c) Same energy distribution data in (a),
but grouped by the CSSMs used for identifying the sites. The smoother distribution of
the true positives is also apparent in these plots. (d) Pairwise comparisons of the
different site types identified by each CSSM (TP/FP and canonical/non-canonical) -
(Kolgomorov-Smirnov test (p < 0.05)).
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peaks occur between -14 and -15 kcal/mol. The reason for this difference is unclear as 536

we would anticipate a similar set of false positive canonical sites for all the CSSMs –as 537

all consider sites with perfect seed region complementarity–. However, one possibly for 538

this divergence may be a consequence of the fact that, in contrast to the other CSSMs, 539

miRAW-Pita is the most conservative and does not consider pairing beyond the seed 540

region as a factor for determining the binding site. This is also consistent with the 541

situation shown in Fig. 7 where some canonical sites identified by miRAW-Pita can 542

accommodate more stable non-canonical bindings. This explanation is also consistent 543

with the lower peak in the miRAW-TS CSSM curve, miRAW-TS only considers 544

orthodox non-canonical sites (involving several consecutive WC pairs outside the seed 545

region) compared to miRAW CSSMs. For the non-canonical TPs, there are significant 546

differences between the canonical and non-canonical CSSMs. Although the profiles of 547

the curves for the miRAW-Pita and non-canonical distributions appear similar, there 548

are significantly more sites predicted at the peak energy (≈-12kcal/mol) for 549

miRAW-Pita than for the non-canonical CSSMs, although it is unclear whether this is 550

the only feature responsible for the estimated the significant differences between these 551

distributions. Finally, for the non-canonical FP sites, there are significant differences 552

between all the CSSMs, with the non-canonical CSSMs generally presenting distinct 553

distributions compared to the TS and Pita CSSMs. As the exact differences between 554

normalized energy distribution curves were unclear even between statistically 555

significantly different situations, we also performed pairwise comparisons between the 556

mean (Mann-Whitney U test; p = 0.05) and median values (Mood’s median test; 557

p = 0.05) for each of the distributions. We found that the miRAW-Pita CSSM tended 558

to have higher ∆Gopen in non-canonical sites (both TP and FP), which can be 559

attributed to the fact that miRAW-Pita only considers non-canonical sites based on the 560

seed region whereas both TS and CSSM-miRAW accommodate sites beyond this. 561

Therefore MBSs in Pita non-canonical sites have less dependency on accessibility as 562

they only need to accommodate a (smaller) seed region compared to the broader 563

accessibility by the non-canonical sites in the other CSSMs. This is also observed to 564

some degree between miRAW-TS and the miRAW specific CSSMS; miRAW-TS requires 565

several consecutive binding sites outside of the seed region but the miRAW-CSSMs 566

accommodate even more flexible structures. 567

Fig. 10c shows the same site energy distribution information, but with each plot 568

grouped by CSSM. In all cases, the TP curves have smoother distributions than the FP 569

curves and Kolgomorov-Smirnov tests Figure 10d) report statistically significant 570

differences (p < 0.05), between the energy distributions of the predicted canonical and 571

non-canonical sites for almost all the CSSMs. False positives present more irregular 572

distributions in all the CSSMs. Despite these observed differences, there is no clear 573

explanation for either the distinction between canonical or non-canonical sites or true 574

and false positives. 575

In summary, the results in Fig. 10 indicate that: there are differences in the energy 576

distributions of the sites obtained using different CSSMs; there are differences between 577

canonical and non-canonical sites; and there are differences between the true and false 578

positives energies. Nevertheless, these differences are not sufficient to identify any clear 579

discriminatory features between MBSs, i.e., ∆Gopen application of a ∆Gopen filter 580

improved performance of CSSMs by reducing the amount of potential MBS (thus 581

reducing the probability of a false positive), rather than by identifying a relationship 582

between ∆Gopen and true or false positives. 583

3.4 Comparison with other miRNA Target Predictors 584

To assess miRAW’s performance, we compared the best configuration of each of the 585

CSSMs – miRAW-Pita-NF, miRAW-TS-NF, miRAW-6-1:10-AE, miRAW-7-1:10-AE and 586
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Fig 11. Comparison of miRAW with different CSSMs and six other commonly used
target prediction tools (TargetScan C & NC, Diana microT-CDS v4, PITA v6 ,
miRanda and mirDB). Colouring for miRAW results are consistent with the color
scheme in Fig. 5; other prediction tools follow a light to dark blue color schema.
Evaluation was determined in terms of accuracy, precision, sensitivity, negative
precision, specificity and F1-score (an ideal predictor would obtain a score of 1 for each
metric). All miRAW configurations outperformed other methods in terms of accuracy
and F-scores, which are good representations of general measures of performance.
mirDB and Target-Scan (highly conserved targets) obtained high specificity scores but a
low negative precision as a consequence of their conservative approach, which classified
almost all the miRNA:mRNA pairs as negative. After miRAW, microT was the method
which presented better and more balanced results.

miRAW-7-2:10-AE– against several other target prediction software tools – TargetScan 587

release 7.1 [6], Diana microT-CDS v.4 [38], PITA v.6 [34], miRanda (built upon the 588

mirSVR predictor) [39] and mirDB [40] using the dataset defined in Section 2.1 589

The results are summarized in Fig. 11 and Supplementary Table 3. All the miRAW 590

implementations generally obtained (statistically significant2) better results than each 591

of the other prediction tools for all the evaluated metrics, except for specificity, where 592

most of the methods obtain a similar score, and for precision where mirDB also 593

obtained similar results. Generally, the other methods presented low accuracies: 594

TargetScan, PITA, miRanda and mirDB values were around 0.50; Micro-TDS achieved 595

a value of 0.61, but this was still much less than that reported for miRAW (0.78). For 596

mirDB, miRanda, TS Conserved and TS NonConserved, the low accuracies seem a 597

consequence of their tendency to misclassify true targets as negative; i.e., despite 598

reporting high specificities (> 0.70), their negative precision, and hence their F1-score, 599

was low. Conversely, PITA reported better sensitivity than specificity, but obtained 600

2See Supplementary Table 4
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similar positive and negative precision. Finally, microT-CDS did not show a particular 601

bias towards any of the classes. It presented balanced specificity (0.63) and sensitivity 602

(0.59) and similar precision (0.62) and negative precision (0.61). Nevertheless, it was 603

still outperformed by all the tested miRAW configurations. 604

These results also highlight how the consideration of interspecies site preservation 605

influences the prediction results. This is particularly apparent in the performance of the 606

two different TargetScan releases. TargetScan achieved low accuracy for both conserved 607

(0.53) and non-conserved datasets (0.56); in both cases the reason for such low accuracy 608

are a consequence of the high number of false negatives. The TS Conserved model 609

presented a high specificity (0.94), meaning that it classified almost all negative targets 610

correctly, but a large number of positive sites were also misclassified as negative, which 611

caused the negative precision to drop to 0.52. Despite filtering positive targets using 612

interspecies conservation information, the TS Conserved precision (0.68) was still lower 613

than the values achieved with any miRAW configuration. For the non-conserved sites 614

dataset (TS NonConserved) the increase in the number of positive predicted sites 615

augmented the number of true positives and sensitivity (0.40) but this, in turn, 616

increased the number of false positives, which reduced precision to 0.59 and specificity 617

to 0.72. Comparison of TargetScan performance with miRAW reveals that both 618

TargetScan releases obtained lower performances than any miRAW configuration in all 619

the evaluated metrics with the exception of specificity, which is a consequence of the 620

conservative approach used by TargetScan regarding positive classification. 621

Two of the tested methods (PITA an mirSVR) rely on thermodynamic features such 622

as site accessibility ∆Gopen or duplex stability ∆Gduplex for target refinement. However, 623

neither method achieved good performance. PITA obtained a relatively high sensitivity 624

compared to other methods (0.62) meaning that it retrieved most of the positive sites, 625

however it has a low precision (0.48) meaning that several negative targets were 626

misclassified. Considering that PITA identifies mostly canonical sites and that it bases 627

its classification on the combination of ∆Gduplex and ∆Gopen, this indicates that 628

thermodynamic features are not sufficient for differentiating a positive and a negative 629

target, consistent with our results in (Fig. 8 - Fig. 10 ). As a consequence several 630

negative targets with low accessibility energy are wrongly classified as positive. 631

Conversely, the miRAW-Pita-NF results, which share the same site selection method, 632

presents better scores in all the evaluated metrics. Considering that miRAW-Pita-NF 633

uses the same canonical target-oriented CSSM as PITA but does not use ∆Gopen for 634

determining the functionality of the miRNA:mRNA pair, this also indicates that 635

∆Gopen does not appear to be the most important (i.e. most effective) feature for 636

evaluating canonical sites. This is consistent with the fact that miRAW-Pita-NF and 637

miRAW-TS-NF outperformed miRAW-Pita-AE and miRAW-TS-AE, which only 638

considered sites with low ∆Gopen. However, our observation that the methods based on 639

the non-canonical CSSMS had improved performance in the presence of a ∆Gopen filter, 640

suggests that this feature does have a role in target functionality. This apparent 641

contradiction can be understood by recognizing that such a role is primarily linked to 642

the broader set of non-canonical sites which correspondingly have a larger range of 643

∆Gopen values, many of which possess higher secondary structure stability, therefore 644

making binding site access difficult. 645

4 Discussion 646

The imprecise nature of miRNA targeting allows the generation of complex regulatory 647

networks and understanding the mechanisms and functions of these networks requires 648

systematic experimental investigation. In the ideal world it would be possible to 649

experimentally verify the target set of all miRNAs, but both the cost and limited 650
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throughput of current methods means that miRNA studies depend on computational 651

predictions to complement experimental data. 652

The requirement for complimentary base pairing within the seed region for miRNA 653

targeting has been established through numerous experimental studies and forms the 654

basis of all current prediction tools. Initially, it was assumed that seed region binding 655

was a core requirement for all targets but, as more non-canonical targets were 656

experimentally identified, prediction tools evolved to try to accommodate this 657

divergence. The differences in how the various prediction tools recognize the relevance 658

of specific deviations from canonical binding highlights the complexity surrounding the 659

targeting process. The most conservative tools only consider targets that achieve full 660

complementary pairing in the seed regions, whereas other tools allow compensatory 661

binding to accommodate seed mismatches. Moreover, to accommodate non-canonical 662

binding sites, current target prediction tools rely on the use of human crafted descriptors 663

in an attempt to summarize current knowledge regarding miRNA:mRNA interactions, 664

maintaining a bias towards properties associated with the miRNA seed region. Also, as 665

knowledge has increased, so has the complexity of feature descriptors and consequently 666

there is limited consistency amongst the different tools. Thus, researchers tend to adopt 667

a “carpet bombing” approach of target space using multiple prediction tools retaining 668

only those targets that are common among a certain fraction of tools. This further 669

biases predictions back towards the most conservative (i.e. canonical) targets. 670

In this study, we adopted a neutral approach towards the prediction process, 671

avoiding incorporating any knowledge related to the targeting process. The performance 672

gap between miRAW and the descriptor-based approaches suggests that current 673

knowledge is still not sufficient to accurately capture all aspects of the miRNA targeting 674

process. This is consistent with recent studies, e.g., [3], [7] and [31], which 675

demonstrate that the whole miRNA can play a relevant role in many functional miRNA 676

targets. Based on these findings, we took advantage of deep learning methodology to 677

incorporate the whole miRNA sequence for target prediction. As deep learning has the 678

capacity to automatically extract its own data feature descriptors, miRAW is not 679

limited by the assumptions incorporated into current target prediction tools. Our 680

experiments showed that miRAW consistently outperforms current techniques, 681

suggesting that the descriptors learned by the deep neural network are able to encode 682

current knowledge and include additional yet to be understood information. 683

Moreover, we attempted to removed any preconceptions from the learning stage by 684

including all miRNA and mRNA nucleotides as input to our model. The only 685

knowledge we apply is during the selection of candidate targets where we implement a 686

selection step to retain miRNA:mRNA pairs that have established binding within a 687

relaxed seed region that spans nucleotides 1 through 10. Despite the application of this 688

selection step, the entire miRNA:mRNA sequence is used as input to the deep learning 689

model. This has the benefit of narrowing the search space while retaining a larger 690

number of candidate targets including includes non-canonical target types. In an ideal 691

scenario, with enough representative positive and negative data samples, the selection 692

step could be skipped as a deep enough neural network should be able to map such 693

information into its weights. 694

Relaxation of the seed region allows the consideration of both canonical and 695

non-canonical targets, including the ones defined in recent studies that stated the 696

importance of considering nucleotides beyond the 7th position [3, 8]. This also aligns 697

with recent studies which investigated potential binding sites based on microarray 698

expression data that indicate a significant role for miRNA nucleotide 9 [8] and 699

structure studies [31] that demonstrate off-site targeting in the 3’ region of the miRNA 700

is achieved by a pivoting structural element α helix-7 within the Ago2 protein that 701

permits rapid making and breaking of miRNA:target base pairs in the 3’ end of the seed 702

miRAW: deep learning for miRNA target prediction - Pla et al. 23/29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220483doi: bioRxiv preprint 

https://doi.org/10.1101/220483
http://creativecommons.org/licenses/by-nc-nd/4.0/


region. This allows Ago2 to rapidly screen potential targets to dynamically search for 703

non-canonical sites. 704

The impact of the candidate site selection model can be seen from the results for 705

different CSSMs within the miRAW model. Conservative approaches (miRAW-Pita and 706

miRAW-TS) presented slightly better accuracies than more relaxed approaches 707

(miRAW-6-1:10,miRAW-7-1:10 and miRAW-7-2:10) but their predictions were heavily 708

biased towards canonical sites. On the other hand, more relaxed models identified a 709

higher number of potential MBSs following both canonical and non-canonical structures. 710

For the latter, the higher number of identified sites generated higher numbers of false 711

positives that decreased precision and specificity. This problem was addressed by post 712

filtering sites with high ∆Gopen, increasing accuracy, precision and specificity to levels 713

analogous to the ones obtained by miRAW-Pita and miRAW-TS but with a broader 714

spectrum of binding structures. The contrasting performance between miRAW-Pita, 715

miRAW-TS and the different miRAW specific CSSMs can be understood by the way in 716

which the methods filter the candidate targets. miRAW-Pita has a conservative 717

approach that discards any site containing more than one mismatch within the seed 718

region without considering further the remainder of the mature miRNA transcript. This 719

enhances the reliability of the positive prediction, but at the cost of increasing the 720

number of false negatives as non-canonical sites are discarded. At the other extreme, 721

miRAW adopts a more open strategy to maximize the types of sites (both canonical and 722

non-canonical) that are considered. This more accommodating approach allows the 723

detection of more non-canonical sites, but with the consequence of an increased number 724

of false positives. This argument is also consistent with the results observed for 725

miRAW-TS, which has the most restrictive CSSM - small irregularities are permitted in 726

the seed region but this requires compensatory pairing in the 3’ end of the miRNA. The 727

extended seed region permitted by miRAW leads to selection of positive sites with 728

irregular bindings in the canonical seed region, supporting the argument that pairing 729

beyond the seed region has a more important role. This is observed even with the 730

miRAW-TS and miRAW-Pita CSSMs (which still feed the whole transcript sequences 731

into the machine learning model) which obtain better results than their Pita and 732

TargetScan counterparts. 733

As deep learning has the capacity to automatically extract its own data feature 734

descriptors, by incorporating the entire miRNA and 3’ UTR target region, miRAW is 735

not limited by the assumptions incorporated into current target prediction tools. Our 736

experiments showed that miRAW consistently outperforms current techniques, 737

suggesting that the descriptors learned by the deep neural network are able to encode 738

current knowledge and include additional yet to be understood information. . 739

Furthermore, as the amount of available target data increases, CSSM constraints can be 740

relaxed which, in turn, will facilitate the discovery or disposal of additional 741

non-canonical miRNA binding structures. 742

Another important task within this work was the processing of different data sources 743

to transform them into suitable training, testing and evaluation datasets. For a ML 744

classifier to learn the patterns needed to distinguish different classes it is necessary not 745

only to have good quality training data but also to have a balanced number of instances 746

for each class. We selected Diana TarBase and mirTarBase as our core data sources as 747

they represented the most comprehensive set of evidence for miRNA:mRNA functional 748

interactions, spanning a range of different experimental methods and providing multiple 749

evidence for many interactions. However, for most of the validated experiments the 750

databases do not provide exact details of the target site for the supported interactions. 751

To obtain reliable binding site information we processed and integrated PAR-CLIP and 752

CLASH datasets -which reveal information regarding binding sites and binding 753

structures but not regarding functionality- and cross-referenced them with TarBase and 754
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mirTarBase. Generally, there are many resources for experimentally verified positive 755

data but access to experimentally verified negative data is more scarce. Some 756

approaches solve this problem by generating synthetic negative examples, but these may 757

not accurately represent real negative targets and are particularly inappropriate for the 758

DL approach we implemented here. Thus, we generated our negative data by carefully 759

selecting sites that had both the potential of providing stable miRNA binding and were 760

associated with an experimentally verified negative target. 761

Despite the enhanced performance demonstrated by miRAW, it is prudent to 762

consider some of the potential limitations of automatic feature learning approaches such 763

as DL. Features learned by a neural network can be difficult to interpret and cannot 764

always be easily mapped into useful knowledge. To address this, studies on neural 765

networks knowledge transferability [42] may aid the interpretation process and is the 766

next logical step in our work. Another issue is incorporating knowledge that is external 767

to the miRNA:MBS duplex transcripts. For example, some of the broadly incorporated 768

features in current prediction tools, such as interspecies conservation or site accessibility 769

energy, cannot be inferred by deep learning as these features are built upon external 770

information not contained in the miRNA:MBS duplex transcript. In miRAW this is 771

addressed by applying a posteriori filtering that refines the outcomes of the neural 772

network using external information. As a first test of such a posteriori filtering, the 773

∆Gopen filter proved to be effective at narrowing the search space in CSSMs possessing 774

an elevated false positive probability (caused by the high number of identified MBSs). 775

An analysis of the ∆Gopen energy distribution showed significant differences between 776

canonical and non-canonical sites, and between true positive and false positive 777

predictions. Nevertheless these differences were not enough to discriminate between 778

these categories, indicating that ∆Gopen energy is relevant in the targeting process but 779

is not a sufficient indicator to identify target classes. Regarding interspecies 780

conservation, the fact that miRAW, regardless of the CSSM, outperformed current 781

methods without considering interspecies conservation information suggests that this 782

has limited applicability as a descriptor for miRNA sites. This is also supported by the 783

accuracy and F1-Score results obtained by TargetScan NC, which outperformed the 784

ones obtained by TargetScan C. This is also consistent with research from a recent 785

study which found that interspecies preservation filtering can be disregarded for 786

functionally important non-canonical target sites [2]. 787

Another consideration is the combinatory effect of multiple but weak binding sites 788

which, acting in concert, can have significant functional roles [43]. Consistent with other 789

target prediction tools, miRAW’s binding site centric approach cannot evaluate the joint 790

regulatory effect of multiple potential weak target sites in a mRNA as sites are analyzed 791

independently. Nevertheless, we observe that many miRNA:mRNA duplexes where the 792

CSSM detected a high number of potential MBSs tended to be classified as functional. 793

Although in many cases the classification might simply be a reflection of the increased 794

probability of the ANN producing a false positive, it could also be a consequence of the 795

ANN recognizing features associated with cumulatively strong targeting as proposed by 796

[43]. Similarly, some of the false positive predictions obtained by the non-canonical 797

CSSMs without ∆open filtering might correspond to weak targets without clear 798

regulatory effects. This hypothesis could be explored in miRAW by updating the ANN 799

in order to add a third class (negative, positive and weak) and by transforming the 800

prediction aggregation equation (5) into a cumulative function. Nevertheless, this 801

approach would require the construction of a training dataset containing enough weak 802

target examples, a challenging task considering that most existing miRNA target 803

resources address the targeting from a binary perspective. 804

The work presented in this paper focused on the prediction of human miRNA 805

targets, nonetheless the methodology can be readily applied to build target prediction 806
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models in other species. Bearing in mind that data availability is crucial for building 807

reliable machine learning classifiers, a logical next step is to implement a target 808

prediction model for mouse. Beyond this, the presented approach will benefit from 809

further experimental studies that will serve to validate new predictions obtained by 810

miRAW but also to generate new experimental data to reliably expand the training of 811

the model. Additionally, considering the a posteri filtering step can be applied in 812

retrospective way, it can be used to re-investigate the relevance of some miRNA target 813

descriptors, such as interspecies conservation. Finally, as miRAW considers the whole 814

miRNA:mRNA transcript for its predictions, this also allows the use of miRAW to 815

assess the impact of target site mutations and miRNA isoform variations on the 816

targeting process, which have been shown to have functional roles and characteristic 817

populations that can vary amongst different conditions. 818

5 Acknowledgements 819

The research leading to these results has received funding from the European Union 820

Seventh Framework Program (FP7-PEOPLE-2013-COFUND) under grant agreement 821

n.o 609020 - Scientia Fellows; and from the Helse Sør Øst project ”Integrated 822

Methylation/isomiR/gene Expression (MIG) bio-profiles for prediction of treatment 823

response in rheumatoid arthritis” (Prosjektnummer 2016122). We gratefully 824

acknowledge the support of NVIDIA Corporation with the donation of the GeForce 825

Titan X GPU used for this research. 826

References

1. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA–target
recognition. PLoS biol. 2005;3(3):e85.

2. Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M,
et al. Unambiguous identification of miRNA: target site interactions by different
types of ligation reactions. Molecular cell. 2014;54(6):1042–1054.

3. Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ, Nishiuchi E, et al.
miRNA-target chimeras reveal miRNA 3 [prime]-end pairing as a major
determinant of Argonaute target specificity. Nature communications. 2015;6.

4. Seok H, Ham J, Jang ES, Chi SW. MicroRNA Target Recognition: Insights from
Transcriptome-Wide Non-Canonical Interactions. Molecules and cells.
2016;39(5):375.

5. Schirle NT, Sheu-Gruttadauria J, MacRae IJ. Structural basis for microRNA
targeting. Science. 2014;346(6209):608–613.

6. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target
sites in mammalian mRNAs. Elife. 2015;4:e05005.

7. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond
the seed supports microRNA targeting specificity. Molecular Cell.
2016;64(2):320–333.

8. Kim D, Sung YM, Park J, Kim S, Kim J, Park J, et al. General rules for
functional microRNA targeting. Nature Genetics. 2016;.

9. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.

miRAW: deep learning for miRNA target prediction - Pla et al. 26/29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220483doi: bioRxiv preprint 

https://doi.org/10.1101/220483
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems; 2012. p. 1097–1105.

11. Collobert R, Weston J. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th
international conference on Machine learning. ACM; 2008. p. 160–167.

12. Graves A, Mohamed Ar, Hinton G. Speech recognition with deep recurrent
neural networks. In: 2013 IEEE international conference on acoustics, speech and
signal processing. IEEE; 2013. p. 6645–6649.

13. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence
specificities of DNA-and RNA-binding proteins by deep learning. Nature
biotechnology. 2015;.

14. Chen Y, Li Y, Narayan R, Subramanian A, Xie X. Gene expression inference
with deep learning. Bioinformatics. 2016; p. btw074.

15. Singh R, Lanchantin J, Robins G, Qi Y. DeepChrome: deep-learning for
predicting gene expression from histone modifications. Bioinformatics.
2016;32(17):i639–i648.

16. Cheng S, Guo M, Wang C, Liu X, Liu Y, Wu X. MiRTDL: a deep learning
approach for miRNA target prediction. IEEE/ACM Transactions on
Computational Biology and Bioinformatics. 2015; p. 1–1.
doi:10.1109/TCBB.2015.2510002.

17. Lee B, Baek J, Park S, Yoon S. deepTarget: end-to-end learning framework for
microRNA target prediction using deep recurrent neural networks. arXiv preprint
arXiv:160309123. 2016;.

18. Nielsen M. A visual Proof that neural nets can compute any function. In:
Artificial Neural Networks and Deep Learning. Determination Press; 2016.

19. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural
networks. Science. 2006;313(5786):504–507.

20. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, et al. miRTarBase
2016: updates to the experimentally validated miRNA-target interactions
database. Nucleic acids research. 2016;44(D1):D239–D247.

21. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T,
Kanellos I, et al. DIANA-TarBase v7. 0: indexing more than half a million
experimentally supported miRNA: mRNA interactions. Nucleic acids research.
2015;43(D1):D153–D159.

22. Dweep H, Gretz N. miRWalk2. 0: a comprehensive atlas of microRNA-target
interactions. Nature methods. 2015;12(8):697–697.

23. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs
using deep sequencing data. Nucleic acids research. 2014;42(D1):D68–D73.

24. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The Ensembl
gene annotation system. Database. 2016;2016:baw093.

25. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA
interactome by CLASH reveals frequent noncanonical binding. Cell.
2013;153(3):654–665.

miRAW: deep learning for miRNA target prediction - Pla et al. 27/29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220483doi: bioRxiv preprint 

https://doi.org/10.1101/220483
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF,
et al. ViennaRNA Package 2.0. Algorithms for Molecular Biology. 2011;6(1):1.

27. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T,
Giannopoulos G, et al. Accurate microRNA target prediction correlates with
protein repression levels. BMC bioinformatics. 2009;10(1):295.

28. Zou Q, Mao Y, Hu L, Wu Y, Ji Z. miRClassify: an advanced web server for
miRNA family classification and annotation. Computers in biology and medicine.
2014;45:157–160.

29. Zou Q, Mao Y, Hu L, Wu Y, Ji Z. miRClassify: an advanced web server for
miRNA family classification and annotation. Computers in biology and medicine.
2014;45:157–160.

30. Kamanu TK, Radovanovic A, Archer JA, Bajic VB. Exploration of miRNA
families for hypotheses generation. Scientific reports. 2013;3.

31. Klum SM, Chandradoss SD, Schirle NT, Joo C, MacRae IJ. Helix-7 in
Argonaute2 shapes the microRNA seed region for rapid target recognition. The
EMBO Journal. 2017; p. e201796474.

32. Karsoliya S. Approximating number of hidden layer neurons in multiple hidden
layer BPNN architecture. International Journal of Engineering Trends and
Technology. 2012;3(6):713–717.

33. Lai EC. Predicting and validating microRNA targets. Genome biology.
2004;5(9):1.

34. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility
in microRNA target recognition. Nature genetics. 2007;39(10):1278–1284.

35. Vejnar CE, Blum M, Zdobnov EM. miRmap web: comprehensive microRNA
target prediction online. Nucleic acids research. 2013;41(W1):W165–W168.
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