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12

Abstract One of the major transitions in evolution is the step from unicellularity into the brave13

new world of multicellularity. To understand this feat, one has to fathom two main characteristics14

of multicellular organisms: differentiation and self-organization. Any explanation concerning this15

major transition should involve mechanisms that can simultaneously explain the marvelous16

intricacies manifest in the aforementioned characteristics, and an account of the evolution of17

such traits. Here we propose a noise-driven differentiation (NDD) model. The reliance on noise,18

in place of a more mechanistic approach, makes the NDD model a more suitable approach to19

explain differentiation and self-organization. Furthermore, our model sheds some light on the20

possible evolutionary origins of these biological innovations. To test the NDD model, we utilize a21

model of cell aggregation. The behavior of this model of cell aggregation is in concert with the22

NDD model.23

24

Introduction25

The traditional idea of a living cell where every organelle, every reaction, and every interaction is26

part of a clock-like order has long been shattered by the understanding that biological systems27

usually struggle to function in noisy environments. One might consider life to be an uphill battle28

against pandemonium, where disarray is the norm and spheres of order – i.e., biological systems –29

are rarities that are unlikely to appear in the first place. In this view, noise is a nuisance that natural30

selection always attempts to eliminate. It is for the same reason that selection cannot increase the31

fidelity of replication beyond a certain threshold; the biological cost of increasing fidelity simply32

becomes too high at that point (Kimura, 1967).33

34

A different view has recently gained some grounds (Balázsi et al., 2011; Chalancon et al., 2012;35

Huang, 2009; Losick and Desplan, 2008). In this view, biological systems that regulate and utilize36

the noise can have higher fitness under certain circumstances. Had biological systems been utterly37

deterministic, adaptation – i.e., the emergence of a new phenotype or a change in the gene expres-38

sion pattern to utilize a new food source – would have been impossible without the emergence39

of new mutations. In reality, noise in the cell can result in beneficial non-genetic diversity in oth-40
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erwise genetically homogenous populations – e.g., cyanobacteria (Wolk, 1996) and yeast (Paliwal41

et al., 2007). But what mechanism can account for the presence of phenotypic diversity amongst42

daughter cells that are genetic clones of each other? Is it possible for a stochastic mechanism to43

explain the non-genetic diversity? Even if such stochastic explanation were offered, how could this44

explanation possibly account for the ordered spatiotemporal patterns in spatially-extended cell45

population?46

47

The model of cell differentiation proposed in this work, henceforth referred to as the noise-48

driven differentiation (NDD) model, accounts for the peculiarities of this biological phenomenon49

by weaving noise into an explanation of cellular behaviors at the time of differentiation. While on50

the surface, this approach might seem lofty and even radical, the model discussed in this paper is51

parsimonious when it comes to the mechanisms requisite for its operation. The NDD model rests52

on 8 components (Table 1). Some can be regarded as facts, based on reliable empirical evidence53

from biological systems (components #1 and #2), while others are more accurately described as54

assumptions (components #3 − 8).55

56

There is a plethora of phenomena within a cell that can contribute to its intrinsic noise – e.g.,57

transcription regulation, transcription factor binding to the DNA, RNA processing in eukaryotes,58

translation, post-translational modifications, protein complex formation, protein and RNA degra-59

dation, etc. Single-cell level measurements of gene expression further cements the notion that60

cells are intrinsically noisy when it comes translating its genotype into phenotype (Sanchez and61

Golding, 2013). The displacement of the division plane relative to the middle of the cell can result62

in an unequal distribution of cell content between the daughter cells, even if molecules are ho-63

mogeneously distributed within the cell. In fact, the central role of asymmetric cell division in the64

diversification of cells, from Drosophila to mammals has been known for many years (Jan and Jan,65

1998; Betschinger and Knoblich, 2017).The components #1 − 2 is an acknowledgement of the role66

stochasticity in living systems based on these observation.67

68

Thus far, two types of solutions to the problem of cell differentiation have been proposed: the69

first category consists of models that rely on cell-cell communication (reviewed in Wolpert (2011))70

and the second category relies on asymmetric cell division (reviewed in (Rudel and Sommer, 2003)).71

The research project within the confines of the former category is mainly a quest to find the build-72

ing blocks of the apparatus that makes the specific kind of cell-cell communication needed for cell73

differentiation. The latter category, on the other hand, presumes the asymmetric cell division to re-74

sult in differentiation. Hitherto unknown and often complicatedmechanisms have been proposed75

to explain the asymmetric distribution of fate-determining factors during cell division (Morrison76

and Kimble, 2006; Clevers, 2005). Both categories are quintessentially mechanistic in nature, since77

they rely on mechanical interactions at the cellular level. While we agree with the importance of78

the asymmetric cell division, it seems to us that a stochastic model of differentiation, like the NDD79

model, negates the need for new mechanisms. In this model, we adopt the view that stochas-80

tic processes result in differentiated cells due to the distribution of key proteins, instead of cells81

differentiating by receiving signals after they are born (component #3).82

83

The component #4 is based on the idea that characteristics of a cell can be changed by a switch84

(Not a very recent idea, e.g., Novick and Weiner (1957)). The notion that cell fate is determined85

by a switch is best illustrated by the now famous case of the 𝜆 phage. The process by which the86

phage decides to integrate into the host’s genome – i.e., lysogenic – or to replicate copies of itself87

in the cell until it bursts open – i.e., lytic – can be explained by a stochastic switch which makes that88

portentous decision in a probabilistic fashion, while taking into account the presence of certain89

key factors (Ptashne, 2004). One can assume that the bias of this switch is determined by the inter-90

actions of its building blocks (component #5). For example, upon infecting bacterial cells, 𝜆 phage91
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Figure 1. The phase-portrait diagram for the NDD model (based on Eq 1). In a bistable switch, two attractors
(red semicircles) and, consequently, two phenotypes are available: 𝐴 and 𝐵. The likelihood of a switch
choosing state 𝐴 over 𝐵 depends on the number of the transcription factor associated with state 𝐴 (TF𝑋 )
relative to the number of the transcription factor associated with state 𝐵 (TF𝑌 ), as well as the noise in its
environment. The parameters used to generate this and the following figure are as follows: 𝑛 = 2, 𝛽 = 0.1,
protein half-life = 10min, and protein dissociation constant = 10. Unless noted otherwise, these parameters
are used in all the subsequent figures.
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Table 1. The components of the NDD model.

# Component Justification

1 Noise, resulting from a plentitude of
sources, is an inseparable part of a liv-
ing cell.

Basedon the observed effect of noise on the pro-
cesses in living cells, frommicrobes tomice (e.g.,
see (Kepler and Elston, 2001; Ozbudak et al.,
2002; Elowitz et al., 2002; Maamar et al., 2007;
Chang et al., 2008)).

2 Stochastic partitioning of cytoplasm
during cell division and the random
distribution of molecules in the cyto-
plasm determine the cytoplasmic con-
tents of the daughter cells.

Variation in the position of cell-division plane is a
biological fact (reviewed inMargolin (2000);Mon-
ahan et al. (2014); Pickett-Heaps et al. (1999);
Wuand Tzanakakis (2012);Bradshawand Losick
(2015)), and its effect on the diversification of
cells is well-known (e.g., see Jan and Jan (1998);
Betschinger and Knoblich (2017)).

3 The fate of a cell is determined when
it is born.

Based on the assumption that cell-fate-
determining factors are in small numbers
in a cell and the stochastic distribution of these
factors during cell division determines the fate
of the newly-born daughter cells.

4 Cell fate is determined by a switch. Genetic switches have been observed in a va-
riety of taxa (reviewed in Balázsi et al. (2011)),
and has been proposed as a model to account
for cell differentiation (e.g., see Perez-Carrasco
et al. (2016)).

5 The interaction between the building
blocks of the switch determines its
bias.

Our assumption based on our knowledge of
well-known genetic switches, such as 𝜆 phage
(see Cortes et al. (2018)).

6 All the information needed to con-
struct the switch is genetic.

We assume that, while stochasticity is what
drives the decision made by the switch, the in-
formation necessary to construct the switch is
encoded in the genetic content of a cell.

7 The robustness of the switch is the re-
sult of a complex network of interac-
tions.

Our assumption based on Sharifi-Zarchi et al.
(2015).

8 Cell fate is influenced by its location
and its environment.∗

We assume the the switch determining cell fate
should, in addition to being swayed by the intrin-
sic factors, be influenced by its neighbors.

∗ This component is necessary for the ordered spatiotemporal patterns in cell population.

proceeds to lyse the host, but as the concentration of CII protein increases, so does the likelihood92

of the reactions suppressing the activation of pR and pL promoters, relevant to the onset of the93

lytic trajectory, which in turn, tilts the scale away from lysis towards lysogeny (Cortes et al., 2018).94

We propose that phenotypic diversity arises from the effect of the noise on a genetic circuit that95

exhibits a switch-like behavior (component #6). The notion that different phenotypes are produced96

from the same genotype as a consequence of noise is widely observed in nature (reviewed in (Vogt,97
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2015))98

99

How robust can a fate-determining toggle switch in the face of new mutations? Sharifi-Zarchi100

et al. (2015) took advantage of the gene expression profiles of 442 mouse embryonic cells to con-101

struct a network of key transcription factors (TFs). While a regulatory circuit with two TFs could102

explain differentiation, They reasoned that such a simple switch is susceptible to mutations. To103

construct a robust switch, they built a circuit with two clusters of TFs with correlated expressions.104

Expectedly, the alternative switch, which involved more interactions, was much more robust. We105

would expect different levels of robustness for a switch, given its biological importance in evolution106

(component #7).107

108

The components #1-7 are sufficient to generate a population of cells with different proportions109

of two phenotypes (Fig 1). While this kind of fate determination is adequate vis-à-vis primitive cells110

with no organization, it does not allow the emergence of multicellularity. An additional compo-111

nent is necessary to explain this major transition frommere phenotypic differentiation to ordered112

spatiotemporal patterns in the body of a multicellular organism. For self-organization to occur,113

we assume that the toggle switch determining cell fate should, in addition to being swayed by the114

intrinsic factors, be influenced by its neighbors (component #8).115

116

To test the general veracity of the NDD model, we used a simple model of cell aggregation. In117

this model, a simple switch is defined that can switch between phenotypes, 𝐴 and 𝐵.118

Results119

The overall behavior of the cell aggregationmodel demonstrates the principles of our framework –120

that is, the stochasticity results in phenotypic heterogeneity as the population grows in size (movie121

S1). To further illustrate how each source of noise affects the cell differentiation, we focused on122

each source separately in the simulations.123

The stochastic positioning of division plane and the stochastic distribution of key124

proteins affect differentiation125

One source of intrinsic stochasticity stems from the random positioning of the division plane. This126

factor would disproportionately influence the number of molecules that exist in low numbers127

within cytoplasm. In this work, it has been postulated that the determinants of cell fate are low128

in numbers and thus, greatly affected by stochasticity.129

130

To demonstrate this phenomenon, the position of the division plane was allowed to vary with131

respect to the mid plane of the cell. Starting from a cell with phenotype 𝐴, in which the protein132

𝑋 is dominant, the population heterogeneity –i.e.,emergence of phenotype 𝐵– was traced over 12133

generations. The results are shown in Fig 2. When the division plane is situated in the middle of134

the cell, and the TFs are relatively abundant, very few cells differentiate. As the variance in the cell-135

division plane increases, so does the proportion of 𝐵 cells. This phenomenon is dependent on the136

number of proteins, since such bias is more pronounced when the number of proteins is relatively137

low. In fact, with large numbers of TFs in a cell, it will bemore likely for its daughters to have almost138

the same density of TFs as their mother. Thus, they will be in the same domain as themother in the139

phase space, and their fates will be identical to hers. This can be seen clearly in the lower curves in140

Fig 2. However, for low copy numbers of TFs, the difference between TF numbers in two daughter141

cells becomes more prominent and can even lead to different cell fates. Therefore, it is possible142

to have heterogeneity in the population in the absence of any other noise, i.e., cells with low TF143

numbers are heterogeneous even with no variance in division-plane displacement (Fig 2a). Adding144

spatial fluctuation to the distribution of TFs within a cell increases the chance of differentiation,145
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since in this case, in addition to the noise from the positioning of division plane, the key proteins146

are stochastically distributed as well (Fig 2b).147

Signaling can create spatial order148

In the cell aggregation model, 𝐵 cell can release signals in the environment. These signals diffuse149

at a slow rate and, consequently, have a very short radius of influence. The absorption of these150

signals by other cells in the population affects the number of proteins involved in the switch –151

that is, switching to the phenotype 𝐵 during cell division becomes more likely (Fig 3). When this152

environmental signaling is added to the population, the cells organize in a non-random fashion, a153

stark contrast to the random heterogeneity observed before (Movie S2).154

155

Fig 4 represents a visual understanding of the results from the NDD model. It shows the bac-156

terial community in a 2-dimensional simulation area after more than 8 generations. In Fig 4a, the157

variance in the stochastic positioning of the division plane increases from left to right. It can be158

seen that the heterogeneity in the population increases as well by the presence of new pheno-159

types (cells in orange). In Fig 4b, development of an organized community as a result of signaling160

molecules is apparent (group of orange cells). The organization observed will increase over time161

and the community of orange cells will develop (Movie S3).162

Discussion163

Molecular processes in the cell are noisy events that result in varying degrees of heterogeneity.164

Taming this inherent noise is vital for the emergence and the continuation of life. In fact, life can165

be characterized as a system with the capacity to control noise. The phenotype of a cell is gener-166

ally stable, but during cell division, this cell can produce daughter cells with different phenotypes167

via symmetric or asymmetric cell division. The resulting non-genetic phenotypic diversity is a way168

to achieve adaptation in a fluctuating environment by producing phenotypically diverse offspring169

without any need for genetic change. Given the variety of sources of noise, the cell fate determina-170

tion can be a stochastic process. One can imagine a few genes involved in cell fate determination,171

where the noise in the cell affects the proportion of daughter cells born with a certain pheno-172

type. The ability to change the phenotypic proportion of daughter cells via a stochastic mechanism,173

which is also tunable, is a superb strategy to outcompete rivals bereft of such gift.174

175

Given the prominence of noise in living cell, we argue that the NDD model can provide a satis-176

factory explanation of how organization can emerge from noise. Proposing a stochastic model of177

cell differentiation is not an entirely novel concept, e.g., see Suzuki et al. (2011); Yamagishi et al.178

(2016) as examples of an impressive body of work produced by Kunihiko Kaneko and his colleagues179

on this subject and Kupiec (1997); Paldi (2003) as similar proposals regarding the possible role of180

stochasticity in generating phenotypic diversity. We argue that our approach differs from theirs181

and similar ideas in certain important aspects: firstly, our model assumes that cell fate is deter-182

mined when the cell is born, and secondly, that stochastic fluctuations in the cell, and the effect183

of signals from neighboring cells in the multicellular case, drive the phenotype of the cell towards184

one attractor rather than another during cell division. This approach is in keeping with the recent185

emphasis on the importance and the prevalence of noise in biological functions, specifically cell186

fate (Balázsi et al., 2011; Huang, 2009; Kittisopikul and Süel, 2010). The model of cell aggregation187

used in this study allowed us to test all the components of the NDDmodel, barring components #6188

and #7, which demand through investigations of their own. This model of cell aggregation provides189

us with a relatively realistic depiction of the process that results in phenotypic differentiation in a190

population. We believe that, with few changes, the NDD model can be applied to other biological191

systems as well.192

193
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Figure 2. The stochastic positioning of the division plane and the random distribution of TFs in the cytoplasm,
as intrinsic sources of noise, affect the none-genetic phenotypic diversity (component #2). The phenotypic
diversity is represented by the proportion of cells with the phenotype 𝐵 relative to the total number of cells in
the population. In panel (a), the only source of noise is the stochastic positioning of the division plane, while
panel (b) shows the phenotypic diversity as a result of both sources of noise. In each panel, the curves
indicate different amounts of protein 𝑋 in the mother cell; from top to bottom, respectively,
𝑋 = 10, 15, 20, 25, 35, 45, 55, 100. The results are average over 100 replications. Error bars are 95%CI.
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Figure 3. Adding signaling to the cell aggregation model results in higher none-genetic phenotypic diversity,
compared to populations without signaling (as shown in Fig 4). The phenotypic diversity is represented by the
proportion of cells with the phenotype 𝐵 relative to the total number of cells in the population. The curves
indicate different amounts of protein 𝑋 in the mother cell; from top to bottom, respectively, 𝑋 = 10, 35, 55, 100.
It fascinating to notice how the lowest number of TFs (𝑋 = 10) results in total differentiation. The efficacy of
signaling is defined as follows: if in the position of a cell with phenotype 𝐴, the signal concentration exceeds
the mean signal concentration, then this cell would have more chance of becoming a 𝐵 cell. The results are
average over 100 replications. Error bars are 95%CI.
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Figure 4. Population heterogeneity as a result of the noise in: (a) the number of TFs in the daughter cells or
(b) the secretion of signals from the 𝐵 cells. Both the number of TFs in (a) and the efficacy of singling in (b)
increases from left to right in this figure. The blue circles represent the 𝐴 cells and the orange ones represent
the 𝐵 cells. Each aggregation is the final state of a single run of the stochastic model with the given
parameters. The amount of protein 𝑋 in the initial cell in each simulation was 35. The radius of the area of
aggregation is 100𝜇𝑚.
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The ability of the cells to differentiate into different types was the crucial step that enabled the194

ancient solitary cells to leave the primordial soup behind and evolve into the vast array of special-195

ized cells we see today. As Queller and Strassmann (2009) point out, there are different shades196

of organismality –i.e., the ability for components to work together with little conflict among them–,197

each shade resulting from the affinity of themembers of the system to cooperate versus the temp-198

tation to cheat. We can sidestep the problem of conflict since in prokaryotic multicellularity, e.g.,199

biofilm, and in most truly multicellular eukaryotes, the cells are highly related, thus lowering the200

probability of cheating (Ostrowski and Shaulsky, 2009). Without tangible levels of conflict, multi-201

cellularity as a trait becomes patently advantageous. In their seminal work, Maynard Smith and202

Szathmáry (Maynard Smith and Szathmáry, 1995) considered two possiblemechanisms to account203

for the emergence of cell differentiation: one relies on the presence of determinants that prohibit204

the stem cell to differentiate, and the other postulates the cell-cell contact as a mechanism that205

determines cell fate. While these suggestions account for how the multicellularity might be sus-206

tained, they do not explain how this major evolutionary transition could have occurred in the first207

place.208

209

It is easier for cell differentiation to evolve via the emergence of a switch, rather than the less210

plausible path that involves the evolution of a clockworkmechanism. According to the NDDmodel,211

the emergence of early stages of multicellularity only requires the evolution of a suitable switch –212

the rest of the necessary ingredients needed for the transition into self-organization is provided213

by the stochastic elements affecting the switch. The major transition from unicellularity to mul-214

ticellularity –i.e., from phenotypic diversity in a population to from an ordered and stable spatial215

heterogeneity– only requires one more step: the evolved switch should be simply affected by the216

signal(s) released by its neighbors (components #8). The spatial information received in this way217

would bias the switch such that the population-level organization is retained. It is tempting to pos-218

tulate a connection between the cell-differentiation switch, postulated in the NDD model, and the219

toggle switch used in quorum sensing in bacteria (Hooshangi and Bentley, 2011). Quorum sensing220

enables bacteria to regulate their phenotypes apropos of their neighbors and is more robust in a221

dense community (Schluter et al., 2016). It seems plausible to consider this type community-based222

phenotypic regulation as a precursor to similar switch-based mechanisms for cell differentiation223

in multicellular organisms.224

225

In their criticism of a noise-driven alternative to their model, Suzuki et al. (2011) considered it226

unlikely for a noise-driven model to maintain the exact levels of stochasticity needed to produce227

the desired proportion of differentiated cells to stem cells. In our view, this conclusion follows228

from a non-evolutionary perspective, since it is easy to imagine negative selection keeping a ge-229

netic switch just sensitive enough to result in a correct differentiation pattern vis-à-vis the biologi-230

cal fitness. Furthermore, if a switch is robust (component #7), then it will be able maintain its bias231

in the face of new mutations. Suzuki et al. (2011) also point out that a noise-driven model can232

only produce reversible differentiation. While the NDD model as described here only explains the233

phenotypic differentiation in prokaryotes, which is indeed reversible, it seems that changing the234

bi-stable switch to a tri-stable one could remedy this issue and explain the irreversibility of differ-235

entiation observed in eukaryotes, as it should increase the strength of attractors (Ghaffarizadeh236

et al., 2014).237

238

One of the quintessential aspects of the discussed model is its population-level perspective.239

Population-level thinking is one of the main points of the evolutionary theory, and bringing it to240

explain a cellular phenomenon can lead us to reap valuable insights. While a population of cells has,241

on average, certain properties relevant to differentiation, e.g., the mean number of key proteins,242

the average position of cell division plane, and etc., these average values do not tell the whole story.243

Instead, the variance in these values, i.e., the non-genetic variation present amongst individuals, is244
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the key to understand differentiation (as observed in studies such as in Chang et al. (2008);Moussy245

et al. (2017)). This noise in the population is essentially the fuel that propels cellular differentiation,246

be it in the reversible differentiation in prokaryotes or the more complicated irreversible ones247

in higher organisms. We believe that this population-level vintage point is the necessary tool to248

understand this otherwise mind-boggling biological process. Without this perspective, the task of249

explaining such a seemingly fine-tuned process devolves into an attempt to come up with complex250

cellular interactions that would make climbing this improbable biological mountain feasible.251

252

The NDD model can be used wherever there is cell division and differentiation. The differenti-253

ating cell can be a prokaryotic one, able to divide into daughter cells with dissimilar, and reversible,254

phenotypes or a eukaryotic cell undergoing irreversible differentiation, without the need for one or255

a few complicated mechanisms. The transition from single cells into the brave new world of multi-256

cellular entities could have been the result of amechanism verymuch akin to theNDDmodel. Such257

transition is possible because the bias of the switch can be affected by the neighboring cells. The258

NDD model paints a simple and elegant picture of differentiation and organization, from prokary-259

otes to eukaryotes. Ourmodel is the logical extension of earlier ideas describing the role of stochas-260

ticity in phenotypic variation and the switch-like behavior of genetic circuits vis-à-vis differentiation261

and multicellularity (e.g., see Nanjundiah (2016)).262

Materials and methods263

In the cell aggregation model, the population is made up of cells, where each cell is a circular264

particle defined by its state variables – e.g., spatial position, size, and phenotype. The simulation265

geometry is a 𝐿 × 𝐿 square and no flux boundaries. It is assumed that the relative amount of two266

key transcription factors, 𝑋 and 𝑌 , controls the cell types; hence, in this model, a cell can have two267

phenotypes, 𝐴 and 𝐵, as shown in Fig 1. The dominance of protein 𝑋 leads to phenotype 𝐴 and268

the dominance of protein 𝑌 results in phenotype 𝐵. In fact, a positive feedback loop influences269

the decision-making process. Two negatively coupled repressors mutually inhibit the expression270

of the gene that encodes the other repressor- i.e., a toggle switch (component #4). The rate of this271

mutual repression is represented in the form of a Hill function (Gardner et al., 2000). This positive272

feedback loop results in two stable steady states, hence implies non-linear approaches. Nonlinear273

differential equations govern the changes in the number of the repressor proteins, 𝑋 and 𝑌 (Fig274

1);275

𝑑𝑋
𝑑𝑡 = 𝛽

1 + 𝑌 𝑛 − 𝑋 ,

𝑑𝑌
𝑑𝑡 = 𝛽

1 + 𝑋𝑛 − 𝑌 . (1)

Here, 𝛽 is the effective rate of protein synthesis and 𝑛 is the Hill coefficient, which represents the276

degree of competence. The number of repressors are represented in the unit of their dissociation277

constants and time is rescaled by degradation rate of proteins (Gardner et al., 2000; Carson and278

Cobelli, 2000; Elowitz and Stanislas, 2000). Biologically-reasonable values were chosen for the pa-279

rameters used in our simulation such that Eq 1 would be bi-stable (following (Gardner et al., 2000)).280

This bistable regulatory network has two attractors corresponding to its stable steady states. Based281

on the amount of proteins at the cell division time, the cell can be in the domain of each attrac-282

tors, which determines its fate. Depending on the intensity of inhibitory effects of TFs (through the283

values of constants in the Hill function (Gardner et al., 2000)), the two domains of attractors could284

be equal or not (component #5). Fig 5 shows an example of such behavior in our cell aggregation285

model. Movie S1 shows the changes in the distribution of TFs in cells around their attractors during286

the emergence of generation 12.287
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Figure 5. As cells grow, they stochastically explore the phase-plane around their attractor (as depicted in Fig
1) – i.e., over time the values for transcription factors 𝑋 (a) and 𝑌 (b) for each cell fluctuate around the
attractor that was determined when the cell was born. These fluctuations can result in a cell moving away
from its original attractor towards the other attractor, such that it will be more likely for its daughters to have
phenotypes different from their parent (the blue and orange trajectories). Results are based on 512 cells that
descended from a single cell in the cell aggregation model. The trajectories follow the TFs counts during their
lifespan.
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Population growth algorithm288

Simulation starts with a single cell with phenotype A. Each iteration in the simulation can be divided289

into four steps:290

1. Cell growth: In this step, cells grow linearly in size. Simultaneously, the cytoplasmic content291

of each cell fluctuates in a stochastic fashion (component #1). The repressor proteins inside292

the cytoplasm interact with each other and their numbers, 𝑋 and 𝑌 , are updated; however,293

because of their low copy numbers, instead of deterministic equations (Eq 1), their fluctua-294

tions are captured by the Gillespie algorithm (Gillespie, 1977) as a stochastic dynamics for295

discrete values. According to this algorithm, a probability of occurrence will be assigned to296

every biochemical reaction in the system. Every protein (𝑋 or 𝑌 ) is produced with a probabil-297

ity according to the first term on the right hand sides of the Eq 1. As the number of protein298

𝑋 increases, it further represses the production of protein 𝑌 and vice versa. Every protein299

degrades according to its number. In every step of the Gillespie algorithm, one of the above300

reactions occurs and the time will be updated. The process continues until the number of301

proteins reaches a steady state.302

2. Cell division: Even after the number of proteins in a cell reaches the steady state, the cell con-303

tinues to grow. The growth stops only after the cell reaches a critical size. At this point the304

cell divides into two daughter cells. The content of the mother cell is distributed among her305

daughters according to a uniform distribution. In reality and in the presence of active trans-306

portation, one can still expect a uniform distribution of molecules in the cytoplasm (Huh and307

Paulsson, 2011), making this assumption biologically reasonable. The position at which cell308

division occurs is randomly chosen based on a normal distribution (component #2). At the309

time of birth, the phenotype of each newborn cell is determined based on the cytoplasmic310

contents (number of key proteins, 𝑋, and 𝑌 at the time of birth) inherited from the mother311

cell (component #3). During the cell growth, the number of each protein has a stochastic tra-312

jectory in the domain of its attractor and finally it will reach its steady state. In this model,313

phenotypic change is reversible, meaning that the phenotype can change between the two314

possible states over generations. Since in our simulations, daughter cells have similar vol-315

umes, we consider the number of proteins distributed between them, and not their concen-316

trations.317

3. Relaxation: After a cell divides, the cells push each other outwards to make room for the new318

daughter cells (Kreft et al., 2001). Simulation proceeds by repeating the steps #1-3. It is worth319

noting that, without considering self-organization, the process described above would result320

in a disordered blob of cells.321

4. Self-organization: To involve the self-organization phenomenon in the process of cell matura-322

tion (component #8), cells secrete some signaling molecules, with concentration 𝐶𝑠, which af-323

fects the propensities in theGillespie algorithmand, consequently, the production of proteins.324

The signaling molecules diffuse in the medium according to the following reaction-diffusion325

equation:326
𝜕𝐶𝑠
𝜕𝑡 = 𝐷𝑠∇2𝐶𝑠 + 𝑘𝑠𝑝𝐶𝐵 − 𝑘𝑠𝑐

𝐶𝑠
𝐾𝑠 + 𝐶𝑠

(𝐶𝐴 + 𝐶𝐵) − 𝑘𝑠𝑑𝐶𝑠 . (2)

Here, 𝑘𝑠𝑝, 𝑘𝑠𝑐 and 𝑘𝑠𝑑 represent, respectively, the rate of production, consumption and decay327

of the signaling molecules and 𝐷𝑠 is the diffusion coefficient of the signaling molecules. 𝐶𝐴328

and 𝐶𝐵 respectively show the number of cells with phenotype 𝐴 and 𝐵 at each point of the329

medium. In our simulations, we used 𝐷𝑠 = 10−11𝑚2/𝑠, 𝑘𝑠𝑝 = 0.01𝑘𝑔−1𝑠−1, 𝑘𝑠𝑐 = 0.0001𝑘𝑔−1𝑠−1,330

𝑘𝑠𝑑 = 0.01𝑠−1, and 𝐾𝑠 = 0.01𝑚−3.331

In these simulations, the secreting cells are those with phenotype 𝐵; hence, the production of332

signalingmolecules is proportional to the amount of B cells. Since both phenotypes consume333

these molecules, the consumption depends on the number of both A and B cells. When334

𝐵 cells emerge, they secret signaling molecules, which diffuse in their environment. The335

13 of 19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/220525doi: bioRxiv preprint 

https://doi.org/10.1101/220525
http://creativecommons.org/licenses/by-nc-nd/4.0/


minimum effective concentration of the signaling molecules at any location determines if a336

cell at that location is affected by the signal, which would decrease the production of protein337

𝑋 and augment the production of protein 𝑌 . Consequently, their surrounding cells would338

have less chance of producing protein 𝑋 and their offspring is less likely to be in the domain339

of attraction of protein 𝑋.340

Code availability341

The software used to run all simulations was Matlab 2016 and the scripts are available at https://342

github.com/hasafdari/Noise_Driven_Cell_Differentiation (doi: https://doi.org/10.5281/zenodo.1227287).343
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Movies505

Movie S1: The change in the distribution of TFs within cells just before they they divide.
Parameters used are the same as Fig 1.

506

507

508

Movie S2 and Movie S3 show 3-dimensional simulations of a community of cells in a layer.
Simulation performed in a 𝐿 × 𝐿 × ℎ cube and starts with one cell at the centre. The cells
grow in volume; after reaching a critical volume they divide and the same as two dimen-
sional case, their cytoplasmic content distributes between the two daughter cells.

509

510

511

512

513

Movie S2: The emergence of heterogeneity in the population of cells as a result of the pres-
ence of noise in the process of cell growth and division. The average amount of TFs in each
cell at steady state is 25. The simulation started by one cell and continues over 13 genera-
tions, 𝐿 = 130𝜇𝑚 and ℎ = 1.33𝜇𝑚. Since there is a single layer of cells, ℎ corresponds to the
diameter of a single cell.

514

515

516

517

518

519

Movie S3: The formation of a spatial organization as a result of the secretion of signaling
molecules, which diffuse in their environment and affect the differentiation of the cells. The
average amount of TFs in each cell at steady state = 25. The simulation started by one cell
and continues over 13 generations, 𝐿 = 130𝜇𝑚 and ℎ = 1.33𝜇𝑚.

520

521

522

523

524

525

526

Appendix 1 Figure 1. The final frame of Movie S1527528
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531

Appendix 1 Figure 2. The final frame of Movie S2532533

534

535

536

Appendix 1 Figure 3. The final frame of Movie S3537538
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