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Abstract15

Comparing models facilitates testing different hypotheses regarding the computational basis of percep-16

tion and action. Effective model comparison requires stimuli for which models make different predictions.17

Typically, experiments use a predetermined set of stimuli or sample stimuli randomly. Both methods18

have limitations; a predetermined set may not contain stimuli that dissociate the models whereas random19

sampling may be inefficient. To overcome these limitations, we expanded the psi-algorithm (Kontsevich20

& Tyler, 1999) from estimating the parameters of a psychometric curve to distinguishing models. To21

test our algorithm, we applied it to two distinct problems. First, we investigated dissociating sensory22

noise models. We simulated ideal observers with different noise models performing a 2-afc task. Stimuli23

were selected randomly or using our algorithm. We found using our algorithm improved the accuracy24

of model comparison. We also validated the algorithm in subjects by inferring which noise model un-25

derlies speed perception. Our algorithm converged quickly to the model previously proposed (Stocker26

& Simoncelli, 2006), whereas if stimuli were selected randomly model probabilities separated slower and27

sometimes supported alternative models. Second, we applied our algorithm to a different problem; com-28

paring models of target selection under body acceleration. Previous work found target choice preference29

is modulated by whole body acceleration (Rincon-Gonzalez et al., 2016). However, the effect is subtle30

making model comparison difficult. We show that selecting stimuli adaptively could have led to stronger31

conclusions in model comparison. We conclude that our technique is more efficient and more reliable32

than current methods of stimulus selection for dissociating models.33

Data Availability34

All data and code will be posted on our institutional repository system following acceptance. In the35

meantime feel free to contact the authors if you would like any of the code.36

Introduction37

Within neuroscience there is a clear interest in developing computational models to explain neural38

systems and behavior. This is seen in many disciplines, such as working memory (Keshvari, van den Berg,39

& Ma, 2012, 2013), speed perception (Stocker & Simoncelli, 2006), multisensory integration (Acerbi,40

Dokka, Angelaki, & Ma, 2017; Kording et al., 2007), effector selection (Bakker, Weijer, van Beers,41
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Selen, & Medendorp, 2017), contrast gain tuning (DiMattina, 2016), and temporal interval reproduction42

(Acerbi, Wolpert, & Vijayakumar, 2012).43

Inferring the best model out of several proposed models is important. Unfortunately, model com-44

parison is typically difficult. In addition to the computational problem of having to integrate over the45

parameter space of each model, it is also necessary to present stimuli which can dissociate the models.46

If different psychophysical models make similar predictions for many of the stimuli presented then it47

is difficult to dissociate these models. Despite the importance of appropriate stimuli selection many48

studies comparing models either select stimuli randomly (Keshvari et al., 2012, 2013) or use a set of49

constant stimuli (Acerbi et al., 2012, 2017; Bakker et al., 2017; Kording et al., 2007). Both of these50

approaches may select stimuli that are uninformative for model comparison, resulting in a large number51

of trials to accurately distinguish different models.52

A more efficient approach is to select stimuli that optimize some criterion (often referred to as a53

utility function). The idea of utility-based stimulus selection has been studied extensively in statistics54

and machine learning, typically called active learning (Gardner et al., 2015; Kulick, Lieck, & Toussaint,55

2014), adaptive design optimization (Cavagnaro, Myung, Pitt, & Kujala, 2010) and optimal experiment56

design (DiMattina & Zhang, 2011). These types of algorithms have been applied to a wide range57

of problems including neuronal tuning curve estimation (Pillow & Park, 2016), testing for deficits in58

auditory perception (Gardner et al., 2015), and machine classification (Houlsby, Huszár, Ghahramani,59

& Lengyel, 2011) but are not commonly employed in psychophysics. For a more comprehensive review60

on the application of adaptive stimulus selection in sensory systems neuroscience see DiMattina and61

Zhang (2013).62

Within psychophysics, selecting stimuli in an adaptive manner has been used extensively for estimat-63

ing the parameters of a specific psychophysical model. For example, Kontsevich and Tyler (1999) used64

an information theoretic approach to estimate the slope and threshold parameters of a one-dimensional65

psychometric function, selecting on each trial the stimulus which maximizes the information gain about66

these parameters. Additional work then improved on this by marginalizing out unwanted parameters67

in order to improve the estimates of desired parameters (Prins, 2013). However, many psychophysical68

models are not uni-dimensional and as such this approach was extended to multi-dimensional models69

(DiMattina, 2015; Kujala & Lukka, 2006; Lesmes, Lu, Baek, & Albright, 2010).70

What if instead of inferring the parameters of these multidimensional models, we wish to dissociate71

different models? Wang and Simoncelli (2008) developed an algorithm specifically designed for gener-72
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ating stimuli on a trial-to-trial basis to compare two psychophysical models. However, in many cases73

there are more than two candidate models. More recent work used an information theoretic approach to74

derive a method for optimal stimulus selection to compare an arbitrary number of models (DiMattina,75

2016). However, this approach does not determine the optimal stimulus on a trial-to-trial basis and76

therefore may be a suboptimal approach. Recently, a general approach for determining the optimal77

stimulus to compare multiple models has been proposed in the field of cognitive science (Cavagnaro et78

al., 2010; Cavagnaro, Pitt, & Myung, 2011; Cavagnaro, Gonzalez, Myung, & Pitt, 2013). This approach,79

named Adaptive Design Optimization (ADO), which simulates the utility distribution of possible stim-80

uli, can be done on a trial-to-trial basis (Cavagnaro et al., 2013) and could be used to distinguish more81

than two models. This makes it a potentially powerful tool to select stimuli for comparing models of82

psychophysical data. However, implementing this approach requires a detailed understanding of Monte83

Carlo based simulation approaches such as particle filtering and simulated annealing.84

This difficulty may prohibit widespread adoption of ADO. Therefore, we present an alternative and85

easier to implement algorithm for selecting stimuli on a trial-to-trial basis to dissociate multiple models of86

psychophysical data. The algorithm is a generalization of the classical psi-method (Kontsevich & Tyler,87

1999; Prins, 2013), shifting from estimating parameters of models to comparing models. In order to test88

our algorithm, we applied it to two very different psychophysical problems. First, we tested dissociating89

distinct models of sensory noise which affect speed perception. In order to do this we constructed three90

generative models, each with its own noise properties, that were probed by an ideal observer performing91

a 2-afc task. Stimuli were either selected randomly, using our adaptive algorithm or using a more92

classical approach of measuring psychometric curves around a variety of fixed references. We found that93

when stimuli are selected adaptively, the accuracy of model comparison improved. We also tested our94

algorithm in real subjects by inferring which of three sensory noise models best explains their behavior95

in a speed perception task. To do this, we used a psychophysical experiment in which stimuli were either96

selected randomly or adaptively. The adaptive procedure converged to the model proposed in earlier97

work (Stocker & Simoncelli, 2006) whereas the random sampling method was often inconclusive about98

the underlying noise model. Second, we tested the algorithm on dissociating two models of saccadic99

target selection under whole body acceleration (Rincon-Gonzalez et al., 2016). Based on the original100

experimental data it is hard to dissociate between an acceleration-dependent or acceleration-independent101

target selection model at the individual subject level. However, using simulations, we show that selecting102

the stimuli adaptively could have led to stronger conclusions during model comparison. We conclude103
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that our technique is more accurate and faster than the current methods to dissociate psychophysical104

models. In addition, we provide a python implementation of our algorithm, as well as the code and data105

to perform the simulations and analysis presented.106

Methods107

Our algorithm is based on an experimenter wishing to determine which of a set of m discrete psychophys-108

ical models best describes subject’s behavior, under the assumption that the model underlying subjects109

behavior is contained in the set of models. Under a traditional experimental approach an experimenter110

would present a number of stimuli x to a subject and obtain the corresponding responses to these stimuli111

r. Using Bayes’ rule, we can compute the probability of a particular psychophysical model m given the112

responses and stimuli as:113

p(m|r,x) =
p(r|x,m)p(m)∑
m p(r|x,m)p(m)

(1)

where p(m) is the prior probability of each model m, p(m|r,x) is the posterior distribution of each114

model and p(r|x,m) is referred to as the marginal likelihood. The marginal likelihood is obtained by115

marginalizing over the parameters θ of the particular model:116

p(r|x,m) =
∑
θ

p(r|x, θ,m)p(θ|m) (2)

Equation 1 makes it clear that our ability to dissociate models is dependent on the stimuli x that117

were presented to the subject. Different stimuli and responses produce different posterior distributions118

of models. We can characterize the quality of a possible posterior using a particular utility function.119

Following previous work in model comparison, we use the entropy of the posterior distribution to char-120

acterize its quality (Cavagnaro et al., 2010, 2011, 2013; DiMattina, 2016):121

H(x, r) = −
∑
m

p(m|x, r) log(p(m|x, r)) (3)

A posterior with lower entropy entails more certainty about which model underlies the subjects’122

behavior. A minimal entropy distribution across models would be a posterior mass of 1 at a single123

model and 0 at all others.124

How should we select stimuli to minimize the expected entropy of the model posterior? Here we125
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propose using a similar approach to that used previously for minimizing the entropy of a parameter pos-126

terior (Kontsevich & Tyler, 1999), by numerically calculating on each trial the stimulus that minimizes127

the expected entropy of the model posterior. For our algorithm, we represent the possible stimuli on128

each trial x and parameters θ on discrete grids, similar to Kontsevich and Tyler (1999). This requires129

three quantities: a prior distribution over models p(m), a prior distribution of parameters for each model130

p(θ|m), and a likelihood look-up table for each model p(r|x, θ,m) which represents the probability of a131

response given a model and parameter set. Using these quantities, we can design an iterative algorithm132

to select the optimal stimuli on a trial-to-trial basis, which is as follows:133

1. Calculate for each model and all possible stimuli the marginal likelihood of a response at trial t134

given stimulus x:135

pt(r|x,m) =
∑
θ

p(r|x, θ,m)pt(θ|m)

2. Compute the posterior distribution of models given response r in the next trial to stimulus x:136

pt(m|r, x) =
pt(r|x,m)pt(m)∑
m pt(r|x,m)pt(m)

Note,
∑
m pt(r|x,m)pt(m) can also be written pt(r|x) and should be stored as the term is also137

used in step 4.138

3. Compute the entropy of the posterior distribution over models given presented stimulus x and139

response r:140

Ht(x, r) = −
∑
m

pt(m|x, r) log(pt(m|x, r))

4. Because the response is unknown before the trial, we must marginalize over all possible responses141

to obtain the expected entropy:142

E[Ht(x)] =
∑
r

Ht(x, r)pt(r|x)

5. Find the stimulus that produces a posterior with the minimum expected entropy:

xt+1 = arg min
x

E[Ht(x)]
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6. Use xt+1 as the stimulus on the next trial to receive response rt+1.143

7. Because step 1 requires a prior on the parameters pt(θ|m), this prior must be recursively updated144

in addition to updating the model priors. As such we set the parameter and model priors to their145

posteriors:146

pt(θ|m, rt+1, xt+1) =
pt(θ|m)p(rt+1|xt+1, θ,m)∑
θ pt(θ|m)p(rt+1|xt+1, θ,m)

pt+1(θ|m) = pt(θ|m, rt+1, xt+1)

pt+1(m) = pt(m|rt+1, xt+1)

8. Return to the first step until the desired number of trials is completed or sufficent model evidence147

has been obtained.148

Experiment 1: Velocity judgment149

Introduction150

Most computational models of perception and action take one particular assumption about how the sen-151

sory uncertainty depends on the stimuli presented. For example, there are models that assume sensory152

noise is constant and independent of the stimuli presented (Kording et al., 2007; Weiss, Simoncelli, &153

Adelson, 2002), some assume a linear increase in the standard deviation of the noise with the stimulus154

magnitude (Battaglia, Kersten, & Schrater, 2011; Sanborn & Beierholm, 2016), others take a combina-155

tion of these two (Odegaard, Wozny, & Shams, 2015; Petzschner & Glasauer, 2011; Stocker & Simoncelli,156

2006). To our knowledge only a few papers made an explicit comparison between sensory noise models157

(Acerbi et al., 2012, 2017; Jazayeri & Shadlen, 2010). A striking finding in these comparison studies158

is that the sensory noise model can vary among subjects (Acerbi et al., 2012, 2017). Given that the159

predictions of complex models, for example, models of multisensory integration (Acerbi et al., 2017)160

are dependent on the assumed sensory noise model, it is important to have an accurate model of each161

subject’s sensory noise model. It is therefore essential to validate the assumed sensory noise model to162

ensure it is accurate.163

One way to validate these assumptions is by performing an additional experiment designed to es-164

timate the observer’s sensory noise model. However, performing an additional experiment requires165
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more time and resources. Being able to minimize the number of trials required to perform this type166

of comparison (as well as increasing the inference accuracy) is therefore beneficial. This presents a167

potential use of our algorithm, a method to validate sensory noise models and infer them for use in168

more complex models. Here, we use both simulation and a behavioral experiment to demonstrate that169

our algorithm can be used to facilitate inference of a subject’s sensory noise model. More specifically,170

as an illustrative example, we focus on inferring the sensory noise model underlying speed perception.171

We used this paradigm for two reasons. First, it is experimentally quick to test so we can compare our172

algorithm to other methods of stimuli selection. Second, previous work assumed a sensory noise model173

which consisted of both a constant component (the sensor is not perfect even when speed is zero) and174

a component that linearly increases with speed (Stocker & Simoncelli, 2006) and thus we can compare175

our inference to this model.176

Methods177

Models178

In order to test between different sensory noise models we need to specify a model of the subjects’179

responses. We derived a simple 2-afc model of subject responses using signal detection theory (see180

appendix A). This leads to the response probability given a probe s2 and a reference s1, described by:181

p(r|s2, s1, θ) = λ+ (1− 2λ)Φ(s2 − s1;α, σ2
2(m) + σ2

1(m)) (4)

in which Φ is the cumulative density function of a Gaussian distribution, evaluated at point s2 − s1182

with a mean α and variance σ2
2(m) + σ2

1(m), σ2
2(m) and σ2

1(m) are the variances of the sensory noise183

for the probe and reference stimuli respectively, λ is a lapse rate accounting for trials where an observer184

guesses randomly, and α is a bias parameter accounting for biases in subject’s responses. We assume the185

subject’s sensory noise changes with the stimulus in one of three ways. The first, and simplest model,186

assumes sensory variance is independent of the stimulus. We denote this the constant noise model. The187

second model assumes that the standard deviation of the sensory noise increases linearly with the signal188

intensity, and thus has zero standard deviation if the signal is absent. This model is referred to as the189

Weber model. Finally, we consider a model where the sensory noise is non-zero when the signal is absent190

and also has a linearly increasing part, which we will refer to as the generalized model.191

For the constant model, we assume the sensory variance is constant σ2 = (5β)2 (this parameterization192
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allows β to be kept in a similar range for each model), for the Weber model we assume σ2 = (βs)2,193

and for the generalized model we assume σ2 = γ2 + (βs)2. The above response model means we can194

parametrize a subject’s response behavior (regardless of model) using 4 parameters, θ = [α, β, γ, λ].195

Simulation experiment196

In order to investigate whether using our adaptive algorithm facilitates comparison of sensory noise197

models, we first performed a simulation experiment. To this end, we need to specify the grids to use for198

the stimuli and parameters as well as the priors. The lower bound, upper bound, and number of steps199

for all variables are shown in Table 1. For the prior over parameters p(θ|m), we assumed a uniform200

discrete distribution for each parameter and that the parameters are independent. Finally, for the prior201

over models p(m) we used a uniform distribution over the three models.202

As different subjects could have different parameters and noise models it is important to test our203

algorithm over a wide range of parameters and models. As such, we first generated 2000 possible param-204

eter combinations. The parameters were drawn independently from a continuous uniform distribution205

with the same upper and lower bounds as those specified in Table 1. Next, in order to assess how well206

we can infer the correct generative model, we simulated 750 trials from each model for each parameter207

combination. This entailed using the same parameter combination for each model (as the constant and208

Weber models are not dependent on γ, it was not used for these models). The stimuli for these trials209

were either selected adaptively using our algorithm, or randomly from the same stimulus grid. This led210

to a total of 12000 simulated datasets.211

We used uniform priors to match the uniform distribution we drew our parameters from. In practice212

any prior distribution could be used, but if it is continuous, the grid representation will create a discrete213

approximation. We also performed an additional simulation using a truncated Gaussian parameter214

distribution (Supplemental material) to better asses the performance of our algorithm.215

Variable Lower bound grid Upper bound grid Number of steps
s1 (deg/s) 0.6 9 10
s2 (deg/s) 0.3 9 20
α (deg/s) -0.6 0.6 17
β (-) 0.01 0.5 25
γ (deg/s) 0 2 20
λ (-) 0 0.1 10

Table 1. Parameter grids used for simulation experiment 1 and the adaptive and random conditions
in our subject experiment. s1 is the reference speed stimulus, s2 is the probe speed stimulus, α is a
bias parameter, β is a scaling parameter for the subject’s sensory uncertainty, γ is the base sensory
uncertainty of an observer (only used in the generalized model), and λ is the lapse rate of an observer.
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Real experiment216

We also tested whether our algorithm could facilitate model comparison in actual subjects. This was217

done using a 2-afc speed judgment task in which stimuli were selected in one of three ways, adaptively218

(using our algorithm), randomly (from the same stimulus grid as adaptive), or using the traditional219

approach of measuring separate psychometric curves for different reference values (Stocker & Simoncelli,220

2004, 2006) using the psi algorithm (Kontsevich & Tyler, 1999). We tested 6 naive subjects (4 female,221

aged 25-34). The experiment was approved by the local ethics committee of the Social Sciences Faculty222

of Radboud University. In accordance with the Declaration of Helsinki written informed consent was223

obtained from all subjects prior to the experiment.224

The stimuli consisted of two drifting Gabor patches and a black fixation dot, which were drawn using225

PsychoPy (Peirce, 2009). Both patches were 3 deg of visual angle in size, with a spatial frequency of226

1.5 cycle/deg, the contrast of each was set to 90%, and the stimuli were drawn at 6 deg on either side of227

fixation. The background was grey with a luminance of 91.17 cd/m2. The fixation dot was 0.2 deg in228

size and drawn in the center of the screen. The stimuli were displayed at a resolution of 1024 by 768 on229

a gamma corrected 17 inch Iiyama HM903DTB monitor viewed from a distance of approximately 43.5230

cm.231

On each trial, the subject saw both Gabors drift simultaneously and horizontally for 1 s. Both Gabors232

moved in the same direction on a given trial (direction was left or right and was selected randomly for233

each trial). One Gabor (the reference) drifted with speed s1 deg/s and the other (the probe) with speed234

s2 deg/s. The subject was asked to judge which of the two was faster and indicate this with a button235

press. The position of the reference stimulus (left or right of fixation) was randomized on each trial.236

The experiment was split into two sessions, the ordering of which was counterbalances across subjects.237

In one session (algorithm session) subjects performed 1500 trials, 750 of which were adaptive trials and238

750 were random trials. On an adaptive trial, the Gabor speeds were selected using our algorithm based239

on the previous stimuli (and responses) generated by this algorithm; on a random trial the speed of240

each Gabor was selected randomly from the stimulus grid. The stimuli and parameter grids used were241

the same as for the simulation experiment. In this session the screen was refreshed at 72 Hz.242

In another session (psi session), subjects performed 750 trials designed to measure their psychometric243

curve for five reference values (150 trials per reference, see Table 2 for the reference values used). On244

each trial, s1 was randomly selected from a set of 5 possible values, the value of s2 on this trial was245

then selected using the psi-marginal algorithm (Prins, 2013) (see Table 2 for the grids used). This was246
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done in order to maximize the information gain about µ (the point of subjective equality) and σ (the247

standard deviation) for this particular value of s1 under the assumption the probability of a subjects248

response follows:249

p(r|s2, s1) = λ+ (1− 2λ)Φ(s2;µ, σ2) (5)

in this equation σ2 is the variance of the normal distribution and µ is the mean of the distribution.250

Selecting stimuli in this manner, allows us to assess how effective the more traditional fixed reference251

approach is to separating sensory noise models compared to our algorithm. In this session, stimuli were252

refreshed at 144 Hz. Note that the probe s2 had a denser grid in this session (see Table 2 compared to253

Table 1); this allows us to better estimate the psychometric curve of each subject but may also give an254

advantage to this method in terms of model comparison. Prior to each session, subjects performed 20255

practice trials from the respective session.256

Variable Lower bound grid Upper bound grid Number of steps Prior s1 (deg/s)

µ (deg/s) 0.001 3 41 N(0.5, 2) 0.5
σ (deg/s ) 0.01 3 51 U 0.5
λ (-) 0 0.1 15 B(2, 20) 0.5
s2 (deg/s) 0.01 3 61 N/A 0.5
µ (deg/s) 0.001 4 41 N(1, 2) 1
σ (deg/s) 0.01 4 51 U 1
λ (-) 0 0.1 15 B(2, 20) 1
s2 (deg/s) 0.01 4 61 N/A 1
µ (deg/s) 0.1 6 41 N(2, 2) 2
σ (deg/s) 0.01 6 51 U 2
λ (-) 0 0.1 15 B(2, 20) 2
s2 (deg/s) 0.1 6 61 N/A 2
µ (deg/s) 1 9 41 N(4, 2) 4
σ (deg/s) 0.01 9 51 U 4
λ (-) 0 0.1 15 B(2, 20) 4
s2 (deg/s) 1 9 61 N/A 4
µ (deg/s) 0.001 14 41 N(4, 2) 8
σ (deg/s) 0.01 14 51 U 8
λ (-) 0 0.1 15 B(2, 20) 8
s2 (deg/s) 3 14 61 N/A 8

Table 2. Parameter grids used in our fixed reference condition. N(a, b) indicates the prior was
normally distributed with mean a and standard deviation σ, U indicates a discrete uniform
distribution and B(a, b) indicates a beta distribution with shape parameters a and b. The values for s1
were determined based on previous work on speed perception (Stocker & Simoncelli, 2004). The prior
for µ was selected based on the assumption that the psychometric curve for a 2-afc task will be close
to unbiased. The prior for λ was selected based on recommendations for the psignifit toolbox (Fründ,
Haenel, & Wichmann, 2011) (see http://psignifit.sourceforge.net).
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Analysis257

For our analysis, we used Python 2.7 (Python Software Foundation, https://www.python.org) and258

additional python based toolboxes, primarily SciPy (Jones, Oliphant, Peterson, & others, 2001), Numpy259

(Walt, Colbert, & Varoquaux, 2011), Matplotlib (Hunter, 2007), scikit-learn (Pedregosa et al., 2011)260

and Pandas (McKinney & others, 2010).261

In addition to computing the model probabilities for every subject for the different sampling methods,262

we also estimated each subject’s parameters for each model by maximizing the log-likelihood of the263

parameter values based on the subject’s responses (to increase accuracy we pooled the data from all264

sessions). This provides more sensitive parameter estimates than the grid we used for model comparison265

and also allows us to check the parameters are not close to the edges of the grids we used.266

We assumed the subject’s responses are independent across trials. The subject’s response probability267

on each trial can then be computed using equation 4. The log-likelihood of a parameter set given a268

subject’s entire data set, is given by269

log(L(θ)) =

2250∑
i

log(Bern(ri, p(ri|s2i, s1i, θ)) (6)

in which i is the trial index, r is a vector of subject response, s1 is a vector of the reference stimuli, s2270

is a vector of probe stimuli and Bern stands for a Bernoulli distribution.271

Parameter estimates θ̂ were then obtained by minimizing the negative log-likelihood:272

θ̂ = arg min
θ

(− log(L(θ))) (7)

This optimization was done numerically using the L-BFGS-B algorithm (Byrd, Lu, Nocedal, & Zhu,273

1995), implemented in SciPy (Jones et al., 2001) and applied in the scipy.optimize.minimize function.274

The L-BFGS-B is an iterative algorithm designed to optimize a nonlinear function subject to parameter275

boundaries (Byrd et al., 1995). The parameter bounds were set to those in Table 1. To ensure a global276

minimum was found we used 100 random initializations and selected the parameter set with the highest277

log-likelihood. The initial values were obtained by drawing each parameter value from a continuous278

uniform distribution with the same bound as those in Table 1.279

In order to validate the results of the grid-based model comparison we also computed the Akaike280

Information Criterion (AIC) for each of the models. This is a metric which summaries how well a model281

fits (higher likelihood) the data while correcting for the number of parameters (Akaike, 1974; Burnham,282
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Anderson, & Burnham, 2002),283

AIC = 2k − 2 log(L(θ̂)) (8)

in which k is the number of parameters of the model. It is important to note that computing model284

probabilities using equation 1 also implicitly corrects for the number of parameters (MacKay, 2003).285

Results286

Simulation experiment287

Figure 1 shows the model probabilities over trials averaged across the different parameter sets from288

our simulation experiment. As expected, the model probabilities trend towards 1 along the diagonal,289

indicating that both adaptive and random sampling converge towards the correct model. This demon-290

strates that our algorithm does not introduce any bias during model comparison, even when the number291

of parameters differs between models. It can also be observed that the probability of the correct model292

rises faster and is higher when we select stimuli adaptively (green curves) than when stimuli are selected293

randomly (orange curves). This indicates the strength of evidence towards the correct model is higher294

when we use adaptive sampling.295
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Figure 1. Evolution of model probabilities over trials for different generative models and algorithms.
Columns indicate the model used to generate the data, rows indicate the probability of each model.
The dark lines indicate the mean probability averaged over simulations, light lines indicate example
simulations. Green coloring indicates stimuli were selected adaptively, orange coloring indicates stimuli
were selected at random from the same stimulus grid.

Although Figure 1 provides evidence that adaptive sampling improves the strength of evidence296

towards the correct model, it does not quantify how this increase would affect the conclusions of an297

experiment. In order to quantify the practical benefit of adaptive sampling, we computed the ratio of298

the probability of the generative model against the other models (commonly referred to as the Bayes299

factor). This ratio represents how much more probable one model is than the other model (MacKay,300

2003). Because we consider three models, this yields two Bayes factors, which the experimenter can use301

to decide whether there is significant evidence in favor of a particular model. A commonly used criterion302

is a that a Bayes factor over 3 indicates positive evidence towards this model (Kass & Raftery, 1995).303

Figure 2 shows the proportion of simulations where the Bayes factors for the correct model against304

the other two models were both over 3. This represents the proportion of simulations in which we would305
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find evidence in favor of the correct model. We see that adaptive sampling has a higher proportion than306

random sampling, indicating an experimenter would conclude in favor of the correct model more often307

using adaptive sampling. For example, an experimenter would be twice as likely to find strong evidence308

in favor of the correct model using our approach if the underlying model was the generalized one.309

0 250 500 750
Trial

0.00

0.25

0.50

0.75

1.00

P(
B

F>
3)

Constant

0 250 500 750
Trial

Weber

0 250 500 750
Trial

Generalized
Adaptive
Random

Figure 2. Proportion of simulations where both Bayes factors of the generative model relative to an
alternative model is over 3, plotted as a function of the number of trials. Each column indicates the
model used to generate the data.

Subject Model α (deg/s) β (-) λ (-) γ (deg/s) ∆AIC
1 Weber -0.043 0.354 0 N/A -17.459
1 Constant 0.075 0.073 0.1 N/A -202.656
1 Generalized 0.006 0.314 0 0.187 0
2 Weber -0.009 0.223 0.005 N/A -16.031
2 Constant 0.043 0.061 0.054 N/A -220.883
2 Generalized 0.016 0.197 0.004 0.122 0
3 Weber -0.136 0.268 0.055 N/A -171.633
3 Constant 0.027 0.195 0.027 N/A -141.811
3 Generalized 0.049 0.222 0.002 0.584 0
4 Weber -0.034 0.308 0.003 N/A -14.415
4 Constant 0.026 0.052 0.1 N/A -180.728
4 Generalized 0.002 0.272 0.004 0.161 0
5 Weber 0.019 0.256 0.023 N/A -109.731
5 Constant 0.074 0.182 0.007 N/A -151.102
5 Generalized 0.041 0.18 0 0.447 0
6 Weber -0.028 0.424 0 N/A -85.408
6 Constant 0.19 0.188 0.06 N/A -175.483
6 Generalized 0.149 0.303 0 0.533 0

Table 3. Best fit parameters and AIC (∆AIC, generalized - other model) of each model and subject.

While Figure 2 shows that adaptive sampling increases the probability of concluding in favor of the310

true generative model, it is not apparent why the proportion of Bayes factors over 3 is lower when stimuli311

are selected randomly. One possibility is that random sampling still supports the true generative model312
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but the strength of this support is insufficient; another possibility is that random sampling supports the313

incorrect model.314

In order to explore these possibilities we plotted the probability of the correct model for each sampling315

method as a function of β and γ (see Figure 3). Figure 3 shows that the model probabilities are primarily316

green to yellow when the generative model is Weber or Constant. This indicates both methods mostly317

select the correct model. We can also see that in general adaptive sampling produces model probabilities318

which trend closer to 1 (i.e. yellow) indicating stronger evidence in favor of the correct model. When the319

generative model is the Generalized model, a substantial number of simulations produce probabilities320

supporting alternative models (indicated by the blue shading). At first this seems counter intuitive.321

However, for small values of γ and β, the generalized model becomes almost equivalent to the Weber322

and constant model. Because these have fewer parameters, they are favored in this situation.323
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Figure 3. Probability of the generative model as a function of parameter values for different
generative models and algorithms. Columns indicate the model used to generate the data, rows
indicate the sampling method used to determine stimuli. Each point indicates the probability of the
correct model as a function of the parameters γ and β for one simulation. Note, the Weber and
constant models are independent of γ and thus model probabilities do not change systematically as a
function of γ. The γ value plotted refers to the γ used in the generalized model for this simulation, all
other parameters are shared between the models. The red ellipse indicates the mean ± two standard
deviations of the subjects’ parameter estimates for γ and β obtained from the generalized model (see
Table 3)

Actual experiment324

The previous section suggests that, in simulation, adaptive sampling provides a large benefit to model325

comparison. We next tested whether this improvement also transfers to actual experiments. Figure326

4 shows the model probabilities of each subject obtained from our speed perception experiment and327

the average across subjects. As shown, on average adaptive sampling supports the generalized model,328

which is consistent with previous work (McKee, Silverman, & Nakayama, 1986; Stocker & Simoncelli,329
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2006). By contrast, both random sampling and sampling from the psi algorithm are indecisive as to the330

underlying noise model. The reason follows from inspecting the individual subject data. When stimuli331

are selected adaptively, the probability of the generalized model is high for all subjects. By contrast,332

random sampling supports the Weber model for 3 subjects and the generalized for the others (although333

the probability is lower than that found from adaptive sampling). The psi session provides similar334

results to the random session; 3 subjects are best described by a generalized model and the remaining335

by the Weber model. Given that the findings of the different sampling methods are disparate, we also336

computed AIC values on the data of all sessions grouped together, which allows us to assess which model337

is the best based on the entire data set (see Table 3). Shown by this table, the AIC results favor the338

generalized model for every subject, indicating that the results of the adaptive sampling method are339

comparable to the results of the grouped data. In addition, to asses the possibility that our adaptive340

technique was supporting the incorrect model, we performed additional simulations to verify that the341

observed differences between the sampling methods are as expected. Indeed, when the data is generated342

from the generalized model, the random sampling method often converges to the wrong, i.e Weber343

model (see Supplementary material). Together this suggests the conclusions drawn from the adaptive344

sampling method are more accurate than conclusion drawn from both random sampling or measuring345

independent psychometric curves.346
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Figure 4. Evolution of model probabilities over trials for each subject. Columns indicate the
probability of a particular model, rows indicate the subject. Green lines show the model probabilities
when the stimuli were selected adaptively using our algorithm, orange lines indicate the model
probabilities when stimulus were selected at random from the same stimuli grid, and blue lines
indicate stimuli were selected using the psi algorithm. The lines in the mean plot show the mean
model probabilities over subjects, the shaded area indicates ± 1 SEM over subjects.

Although the results of the model comparison match previous work, it is important to note that a347
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model being the most likely does not entail it fits the data well, just that it fits better than the other348

models. It is important to check the predictions of the models against the data.349

Figure 5 illustrates the data of each subject obtained from the psi session as well as the predicted350

psychometric curves obtained from fitting the models to the data obtained from the adaptive algorithm351

only (therefore the models were not fit to the data shown). As shown, the constant model is in general352

a poor predictor of the data. By contrast, both the predictions of the Weber and generalized model are353

close to the data. This matches the results of AIC comparison (see Table 3) which indicated that the354

Weber and generalized model produce better fits to the data than the constant model. This also means355

that the assumptions with regards to our models (see Appendix A) are reasonable.356
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Figure 5. Data and model predictions for psychometric curves measured in the psi session. Each row
indicates the psychometric curves of a particular subject, each column indicates the reference value
(s1) for this psychometric curve. Grey dots indicate proportion of trials where observers report
s2 > s1, proportions were obtained by binning responses in 10 bins from the minimum to maximum
probe value (s2) for this subject and reference (s1) value. Curves indicate the predicted proportion
from each of the models. Note, the parameters used for the predictions were obtained from fitting only
to stimuli selected using our algorithm and thus were not fit to the data shown.

Another important property of adaptive algorithms is that they do not sample uniformly across the357

entire stimulus space. Instead, the stimuli selected are those that are most informative to compare the358
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models. In order to visualize which stimuli these are in this experiment we plotted the stimuli selected359

using the adaptive method for a representative subject (see Figure 6). The adaptive sampling method360

alternates between high and low speeds for the reference and probe stimuli. This sampling strategy is361

sensible as the noise models make distinct predictions for high and low speeds and thus sampling at362

high and low speeds allows for effective dissociation of the models.363
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Figure 6. Stimuli adaptively selected for subject 2. The left plot shows the probe (blue dots) and
reference (red dots) selected on each trial in experiment 1. The right plot shows a scatter plot of the
combination of probe and reference. Radius of the data points is proportional to

√
N where N is the

number of times this combination was selected.

Experiment 2 : Target selection364

Introduction365

The previous section illustrates the use of our algorithm as a method to dissociate different sensory noise366

models. However, this is only one example comparison. To ensure our algorithm is broadly applicable, it367

is important to validate it in multiple settings. Here, as an additional application, we consider comparing368

models of saccadic target selection during self-motion (Rincon-Gonzalez et al., 2016), a study recently369

performed in our lab. This example allows us to investigate how much benefit our algorithm provides370

when the models being compared are highly non-linear and the signal-to-noise ratio in the data is low.371

In this experiment, subjects were passively translated from left to right in a sinusoidal motion profile372

and at 8 pre-defined phases of the oscillation two targets were presented. The subjects were instructed to373
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make a saccade to one of the two targets, which were presented asynchronously with a particular stimulus374

onset asynchrony (SOA). This produces a single psychometric curve of subject’s choice as a function of375

SOA for each phase. This curve can then be used to determine the SOA at which the probability of376

selecting each target is equal, referred to as the balanced time delay (BTD). The experiment showed377

that, on the group level, BTD changes sinusoidally as a function of the motion phase suggesting that378

subject’s target selection behavior, and thus preference, is influenced by current body motion. However,379

the amplitude of the modulation was small and the signal-to-noise ratio was low, which made comparing380

a sinusoidal modulation to alternative models difficult at the individual subject level. Our algorithm381

may provide a solution to this difficulty, as adaptive sampling selects the most informative stimuli to382

dissociate the selected models.383

Here, we first reanalyze data from this experiment and show that the data of approximately half of384

the subjects are best described by a sinusoidal modulation rather than a constant choice bias. In other385

subjects the results of the model comparison are inconclusive. We next demonstrate with simulations386

that using our algorithm for stimulus selection would have improved model comparison accuracy. This387

suggests our algorithm is also useful to help dissociate models in circumstances where the signal-to-noise388

ratio is limited.389

Methods390

Models391

In order to test whether self-motion has any effect on psychophysical choice behavior we consider two392

models of choice behavior, a constant bias model and a sinusoidal bias model (Bakker et al., 2017). We393

model choice behavior as:394

p(r|φ, SOA) = Φ(SOA;µ, σ) (9)

in which r is the subject’s response, φ is the phase at which the targets are presented, Φ is a395

cumulative Gaussian with mean µ and standard deviation σ evaluated at the SOA. For the constant396

model, µ is a fixed value across phases: µ = α. In this model choices are independent of the phase397

of the motion. The sinusoidal model entails µ changes sinusoidally as a function of phase, and is thus398

written µ = α + β sin(φ + φo), in which α, β and φo are free parameters representing a subject’s fixed399

bias, amplitude of the modulation and phase offset, respectively. Regardless of the model, we can400
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parameterize the subject response probability using θ = [α, β, φo, σ].401

Reanalysis402

In order to test whether the individual subject’s choice behavior is modulated sinusoidally and to obtain403

reasonable parameters to utilize in our simulations we reanalyzed the data of 17 subjects from Rincon-404

Gonzalez et al. (2016). We fit both the sinusoidal and constant bias models to each subject’s choice405

data. We assumed the responses are independent across trials. The response probability on each trial406

can be computed using equation 9. The log-likelihood of a subjects’ data set is then,407

log(L(θ)) =
N∑
i

log(Bern(ri, p(ri|SOAi,φφφi, θ)) (10)

in which i is the trial index, N is the number of trials, r is a vector of subject responses, SOA is a vector408

of the SOA’s the subject was presented, φφφ is a vector containing the phase the targets were presented409

at and Bern stands for a Bernoulli distribution.410

Parameter estimates θ̂ were then obtained using equation 7. As before this optimization was done411

numerically using the L-BFGS-B algorithm (Byrd et al., 1995). The parameter bounds were set to those412

in Table 4. To ensure a global minimum was found we used 100 random initializations and selected413

the parameter set with the highest log-likelihood. The initial values were obtained by drawing each414

parameter value from a continuous uniform distribution with the same bound as those in Table 4.415

In order to validate the results of the grid-based model comparison we also computed the Akaike416

Information Criterion (AIC) for each of the models using equation 8. As an additional analysis we fit417

a cumulative Gaussian (see equation 5) to the data from each phase (using the same bounds as for the418

constant model and λ set to 0) to provide us with a semi-parametric estimate of BTD for each phase.419

Simulation experiment420

In order to investigate whether using our adaptive algorithm could help to dissociate these different421

models of target selection, we performed a simulation experiment. The required grids are specified in422

Table 4. As priors we used a uniform discrete distribution for each parameter and a uniform distribution423

over the two models.424

We first generated 2000 possible parameter combinations. Parameters were drawn independently425

from a continuous uniform distribution with the same upper and lower bound as those specified in426

Table 4. Next, in order to assess how well we can infer the correct generative model for each param-427
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eter combination we simulated a synthetic subject performing 1000 trials for each generative model428

and parameter combination. Note, the constant model is independent of β and φ0 and thus they were429

removed from the parameter set when simulating this model. The stimuli for these trials were selected430

either randomly from the stimulus grid shown in Table 4 or using our adaptive algorithm. This led to431

a total of 8000 simulated datasets. Additional simulations were performed based on a truncated Gaus-432

sian parameter distribution, reflecting the estimated behavioral parameter range (see Supplementary433

material).434

Variable Lower bound grid Upper bound grid Number of steps
φ (rad) 0 5.5 8
SOA (ms) -250 250 25
α (ms) -70 70 15
β (ms) 0 60 15
φo (rad) -3 3 15
σ (ms) 50 190 15

Table 4. Parameter grids used for simulation experiment 2.

Results435

The AIC scores and parameter estimates for both models are shown in Table 5. In order to interpret the436

AIC scores it is useful to note that an AIC difference of over 4 is considered positive evidence towards437

the model with the lower score (Burnham et al., 2002). This suggests the model comparison in 8 of438

the subjects is ambiguous (AIC difference under 4), no subjects are best described by the constant bias439

model and 9 subjects are best described the sinusoidal bias model. Interestingly, it can be seen that440

even in the ambiguous cases the amplitude parameter β is not at zero. This implies the modulation of441

BTD is sinusoidal but the effect on the log-likelihood is insufficient to overcome the penalization for the442

additional parameters. This is also supported by the model predictions shown in Figure 7, illustrating443

that the sinusoidal model is a closer fit than the constant model to the independent estimate of BTD444

for each phase.445
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Subject Model α (ms) β (ms) φo (rad) σ (ms) ∆AIC
1 Sinusoidal Bias 67.478 15.895 -0.002 74.505 0.000
1 Constant Bias 67.467 N/A N/A 76.780 -8.469
2 Sinusoidal Bias -69.792 19.323 -1.653 158.262 0.000
2 Constant Bias -69.589 N/A N/A 160.475 -2.810
3 Sinusoidal Bias -14.556 8.692 1.436 65.669 0.000
3 Constant Bias -14.492 N/A N/A 66.621 -1.480
4 Sinusoidal Bias 42.007 47.468 -1.161 176.735 0.000
4 Constant Bias 42.793 N/A N/A 190.810 -23.854
5 Sinusoidal Bias -25.052 1.283 0.607 61.613 0.000
5 Constant Bias -25.050 N/A N/A 61.623 3.871
6 Sinusoidal Bias -54.271 15.12 -0.481 65.382 0.000
6 Constant Bias -54.346 N/A N/A 67.457 -11.753
7 Sinusoidal Bias 21.550 24.817 -1.21 68.076 0.000
7 Constant Bias 21.652 N/A N/A 73.418 -30.514
8 Sinusoidal Bias 12.830 14.322 1.012 95.736 0.000
8 Constant Bias 12.836 N/A N/A 97.677 -3.968
9 Sinusoidal Bias 0.216 16.564 -0.529 97.097 0.000
9 Constant Bias 0.318 N/A N/A 99.491 -4.859
10 Sinusoidal Bias 3.735 15.64 -0.956 127.027 0.000
10 Constant Bias 3.783 N/A N/A 129.383 -1.729
11 Sinusoidal Bias 60.449 13.294 -0.295 116.987 0.000
11 Constant Bias 60.467 N/A N/A 118.368 -0.652
12 Sinusoidal Bias 7.974 16.892 0.394 117.834 0.000
12 Constant Bias 8.233 N/A N/A 119.763 -3.079
13 Sinusoidal Bias -1.041 19.071 -0.359 74.627 0.000
13 Constant Bias -1.056 N/A N/A 77.387 -16.147
14 Sinusoidal Bias -27.310 17.567 -0.847 151.860 0.000
14 Constant Bias -27.203 N/A N/A 154.390 -0.969
15 Sinusoidal Bias -13.869 10.955 -0.759 68.580 0.000
15 Constant Bias -13.752 N/A N/A 69.499 -5.662
16 Sinusoidal Bias -4.454 48.497 1.085 122.325 0.000
16 Constant Bias -4.918 N/A N/A 141.447 -56.525
17 Sinusoidal Bias 39.354 14.658 0.227 68.175 0.000
17 Constant Bias 39.470 N/A N/A 70.346 -12.939

Table 5. Best fit parameters and AIC differences (∆AIC, sinusoidal - other model) for each model for
all subjects.
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Figure 7. Sinusoidal and constant model predictions for an example subject and across subjects. For
the group the dashed line indicates the mean predicted BTD across subjects, for the example subject
it indicates the predicted BTD. The shaded regions indicates ± 1 SEM across subjects. Data points
are the BTD obtained by fitting a psychometric curve to each phase. The error bars indicate ± 1 SEM
across subjects.

In order to explore if our algorithm can facilitate model comparison, we plotted the average model446

probabilities across trials for both models and sampling methods used in our simulation experiment (see447

Figure 8). The model probabilities trend to 1 along the diagonal, indicating both adaptive and random448

sampling converge towards the correct model. As before, the probabilities are higher for the adaptive449

sampling method compared to random sampling suggesting that our algorithm increases the strength of450

evidence towards the correct model. The magnitude of this increase is lower than observed in simulation451

experiment 1.452
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Figure 8. Evolution of model probabilities over trials for different generative models and algorithms.
Columns indicate the model used to generate the data, rows indicate the probability of each model.
The dark lines indicate the mean probability averaged over simulations, light lines indicate example
simulations. Green coloring indicates stimuli were selected adaptively, orange coloring indicates stimuli
were selected at random from the same stimulus grid.

We also quantified how each sampling method affects the conclusions drawn by computing the Bayes453

factor of the generative model against the other model. These Bayes factors are plotted in Figure 9.454

Interestingly, if stimuli are selected randomly and the correct model is sinusoidal we only conclude in455

favor of it in 60% of the simulations. This matches with the mixed results from the reanalysis. Adaptive456

sampling increases the proportion of simulations in which we find strong evidence in favor of the correct457

model. For the sinusoidal model, we obtained a benefit of about 15%, which is a smaller benefit than458

observed in the noise model simulation.459
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Figure 9. Proportion of simulations where the Bayes factors with respect to the generative model is
over 3. Each column indicates the model used to generate the data.

In order to explore why the models cannot be strongly dissociated in each simulation, we plotted the460

probability of the correct model as a function of σ and β (see Figure 10). If the generative model is the461

constant bias model, both adaptive and random sampling method lead to model probabilities favoring the462

correct model but the adaptive method produces only slightly higher probabilities. Adaptive sampling463

leads to the probability of the correct model being slightly higher (indicated by a more yellow hue),464

which leads to a larger proportion of Bayes factors being over 3. By contrast, when the generative model465

is the sinusoidal model, the model probabilities range from strongly in favor of the sinusoidal model to466

strongly in favor of the constant model for both sampling methods. This is understandable because the467

smaller the amplitude of the sinusoid, the closer the sinusoidal model becomes to the constant model and468

thus penalizing for the additional parameters leads to favoring the simpler constant model. Interestingly,469

the shift in model probabilities from sinusoidal to constant is dependent on the variability of a subjects470

decisions; the smaller σ is, the lower β can be, while still inferring in favor of the sinusoidal model.471
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Figure 10. Probability of the generative model as a function of parameter values for different
generative models and algorithms. Columns indicate the model used to generate the data, rows
indicate the sampling method used to determine stimuli. Each point indicates the probability of the
correct model as a function of amplitude β and standard deviation of a subject’s choices σ. Note,
constant bias model is independent of amplitude β, thus model probabilities do not change
systematically as a function of β. The β value plotted refers to the value used in the sinusoidal model.
The red ellipse indicates the mean ± one standard deviation of the subject’s parameters obtained from
the sinusoidal model (see Table 5).

To determine why adaptive sampling improves the chance of inferring in favor of the correct gen-472

erative model, Figure 11 illustrates the phase and SOA selected using the adaptive algorithm for an473

example simulation. In the initial trials, the algorithm samples broadly over the phase and SOA, but474

then converges to a few combinations of SOA and phase. Specifically, adaptive sampling selects the475

phases where the BTD is maximal or minimal and SOA values close to the current α estimate.476
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Figure 11. Stimuli selected adaptively for an example simulation. The upper two plots indicate the
phase and SOA sampled across trials. In both plots the blue dots indicate the sampled stimuli for a
particular trial. For the phase plot the dashed lines indicate the phases (from our stimulus set) for
which the BTD is maximal or minimal. For the SOA plot the dashed line indicates the baseline BTD
(the BTD independent of phase modulations). The lower plot indicates a scatter plot of the
combination of phase and SOA. The radius of the data point is proportional to

√
N where N is the

number of times this combination was selected.

Discussion477

Using a series of simulations in which the correct generative model is known, we show that selecting478

stimuli adaptively increases the probability of inferring the correct generative model. We further show479

this increase affects the conclusions an experimenter could draw. When stimuli are selected adaptively480

an experimenter is more likely to conclude strongly in favor of the correct generative model and it481

requires fewer trials to reach this conclusion. For example, in Figure 2 when the generative model is the482

generalized model, our adaptive algorithm yields in only 250 trials strong evidence towards the correct483
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model in 60% of the simulations. By contrast almost none of the simulations using random sampling484

showed strong evidence.485

We illustrate this model comparison benefit in two distinct settings, firstly, dissociating different486

sensory noise models and secondly, dissociating models of target selection. As an additional step towards487

practical application, we also used our algorithm to test between sensory noise models of human speed488

perception. We found that selecting stimuli adaptively increases the strength of evidence towards the489

model previously proposed (Stocker & Simoncelli, 2004, 2006).490

Our findings match with previous work in cognitive science which illustrate that models of memory491

retention can be better dissociated by selecting stimuli adaptively (Cavagnaro et al., 2010, 2011). We492

also illustrate that the magnitude of improvement provided by adaptive sampling is highly specific to493

the models being compared. Specifically, we found a dramatic improvement in dissociating sensory noise494

models but only a small improvement in dissociating models of saccadic target selection.495

Being able to compare models in an efficient manner encourages comparison of different models496

which may otherwise not be compared. For example, in many cases the sensory noise model is a497

single component of a more complex model (Acerbi et al., 2012, 2017; Jazayeri & Shadlen, 2010). In498

the aforementioned work, the possibility of different sensory noise models is dealt with through model499

comparison. However, incorporating multiple sensory noise models adds an additional degree of freedom,500

to the space of possible models, which can introduce difficulties in model comparison (Acerbi, Ma, &501

Vijayakumar, 2014). Specifically, multiple models with different components (for instance, sensory noise,502

priors, loss functions) can fit the same data equally well which makes inferring the correct components503

difficult (Acerbi et al., 2014). This study also indicated a possible solution to this problem; fixing504

certain model components and parameters based on previous work or additional experiments. As such505

an experimenter could perform an additional experiment to test the sensory noise model (and also506

obtain parameter estimates) for each subject, which could then be fixed in the model comparison. Our507

algorithm presents an efficient way to test between the noise models in a small number of trials and508

therefore could be used as a method for efficient model selection.509

Although we illustrate, in two distinct practical examples, the benefits of using our algorithm, there510

are limitations to our approach. One major limitation is the grid-based approach we use in our algorithm.511

While this approach is reasonable for the relatively simple models we tested here. It is unfeasible for more512

complex models (models with either more parameters or more stimuli dimensions). This is because if we513

use the same sized grid for each parameter the number of points increases exponentially with the number514

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/220590doi: bioRxiv preprint 

https://doi.org/10.1101/220590
http://creativecommons.org/licenses/by-nc-nd/4.0/


of parameter dimensions or stimuli dimensions (DiMattina, 2015). For more complex models, these grids515

could exceed the RAM memory available in certain computers, preventing our algorithm from being516

applicable. In addition, more complex models will require more time to compute the optimal stimulus.517

For example, it takes approximately 100 ms with our current models, the additional time increase518

may render the current implementation unfeasible for more complex models. Fortunately, there are519

a number of different approaches which can compensate for these problem. One method is to use an520

adaptive approach to selecting the number of grid points and their positions (Kim, Pitt, Lu, Steyvers, &521

Myung, 2014; Pflüger, Peherstorfer, & Bungartz, 2010). The notion is that the contribution of each point522

in the parameter space is not equal and thus more points should be used for more informative regions523

of the parameter space. This approach, previously suggested in the context of parameter estimation524

(DiMattina, 2015) could allow our algorithm to scale to higher dimensional models, or to more than three525

models. Another alternative solution is to use an analytic approximation to the parameter posterior,526

for example by using a Laplace approximation (DiMattina, 2015) or by a sum-of-Gaussians (DiMattina527

& Zhang, 2011) and compute the optimal stimuli based on the approximated posterior. With such an528

approximation it is only necessary to maintain the parameters for the approximation rather than large529

grids. Again allowing our algorithm to scale up to higher dimensions and more models. However, this530

comes at the computational cost of having to refit each of these approximations to every model on each531

trial. As the time required to evaluate the likelihood typically increases approximately linearly with532

the number of datapoints, this means the time required to refit these approximation increases with the533

duration of the experiment (DiMattina, 2015). Additionally, if the shapes of the posteriors are a poor534

match to these approximations (for example, highly skewed distributions are poorly approximated using535

a Laplace approximation) then this approach may perform poorly compared to grid approximations536

which present a non-parametric method of representing the posterior (DiMattina, 2015). Given that537

these different approaches have distinct costs and benefits, it is important to quantitatively test them538

to see how each performs in terms of accuracy, computation time and memory usage. A detailed539

comparison of this type has been performed in terms of adaptive stimulus selection for parameter540

estimation (DiMattina, 2015), but to our knowledge, no such analysis has been performed for model541

comparison. An important avenue for further work would be to explicitly compare our algorithm to542

other existing algorithms (DiMattina, 2016; Cavagnaro et al., 2010) to identify the relative costs and543

benefits of each approach.544

In addition to the practical limitations of our approach, it is important to consider the theoretical545
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implications of using adaptive sampling on model comparison. For example, adaptive sampling could546

significantly change the distribution of stimuli presented to the subjects (see Figure 6) and therefore547

could violate assumptions used in certain model comparisons. For example, it is assumed the subject’s548

underlying model is independent of the stimuli presented and typically Bayesian observer models assume549

that the subject’s priors matches the stimulus distribution (Keshvari et al., 2012, 2013). The adaptive550

approach may cause violations of these assumptions. To illustrate this, consider the change detection551

experiments referenced above (Keshvari et al., 2012, 2013). In these experiments subjects are first shown552

a number of oriented ellipses which the subject has to memorize. Subsequently the ellipses are displayed553

again either with the same orientation or a changed orientation and the observer must report whether554

a change is perceived or not. All the models compared for this task assumed the subject used a circular555

uniform prior over the size of the change (the same used to generate the stimuli). If we were to generate556

the change magnitude adaptively instead, this could create a non-uniform distribution. Presenting a557

non-uniform distribution of change magnitude may cause subjects to alter their response strategy. For558

example, if a subject is only being presented trials with large changes he/she may shift from encoding559

the stimuli precisely to a more coarse encoding of the stimuli as precise encoding is no longer needed for560

the task. This biased distribution could also create a mismatch between the assumed (uniform circular)561

prior in the model and the actual experiment, which could cause biases in model comparison.562

Although these issues may seem severe, the risk can be mitigated. Our suggestion is to not rely only563

on adaptive techniques as definitive evidence towards a model. It is important that multiple experiments564

and sampling methods support the same model. In some cases discrepancies may be found between565

sampling methods (e.g. in our noise model comparison experiment). In these cases it is important566

to perform simulations to see if these results are to be expected (see Supplemental material for the567

simulation we performed) or if the adaptive technique could be biasing the comparison.568

A final theoretical point is that our algorithm assumes the true model used by the subject is part569

of the included set of models being considered (an assumption in all parametric model comparisons). If570

the true model is not part of this set then the stimuli are not optimized to find evidence for this model.571

Obviously, in real subjects, it is impossible to know what the ’true’ model is, rather we are searching572

for realistic models that best explain the subject data. It is important to be aware that when using any573

adaptive approach the stimuli are only optimized for dissociating the assumed model set.574

An additional area for further work is the importance of priors in dissociating models. For simplicity,575

we used uniform priors for both models and parameters. However, this neglects prior information which576
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may reduce the number of trials necessary to estimate which model is the best. How should we determine577

these priors? Within statistics itself there is little consensus on how this should be done, ranging from578

the prior being a subjective choice of the experimenter (de Finetti, 2017) to the prior being objectively579

estimated from data (Jaynes, 2003). Recent work has embraced the latter approach and used hierarchical580

Bayesian modeling to estimate the prior based on previous subjects (Kim et al., 2014). For example, this581

approach has been successful in determining parameter priors to use for observer’s contrast sensitivity582

functions, both in simulations and in actual experiments (Gu et al., 2016; Kim et al., 2014). A similar583

approach could be taken for estimating both parameter and model priors by creating a hierarchical584

model which incorporates the different models to be compared and fitting this to data from previous585

subjects. An important step for further work would be to formalize this generalization and investigate586

how these priors affect model inference.587
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Appendix A593

In order to model a subject’s 2-afc behavior as a function of different sensory noise models we assume594

a subject receives two sensory measurements x1 and x2, one for the reference and one for the probe.595

We model these as normally distributed random variables, with a mean centered on the true reference596

and probe values and a variance which is a function of the underlying sensory noise model. As such we597

can write x1 and x2 as x1 ∼ N (s1, σ
2
1(m)), x2 ∼ N (s2, σ

2
2(m)). We assume an observer responds 1 if598

x2 > x1 and 0 otherwise. In order to derive the distribution of an observer’s response it is useful to note599

this is equivalent to x2 − x1 > 0. As x2 and x1 are normal distributed random variables, subtracting600

them produces another normally distributed variable ∆x. Therefore the subject’s response probability601

can be written as:602

p(∆x|s1, s2) = N (s2 − s1, σ2
2(m) + σ2

1(m))
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The likelihood of an observer responding 1 is obtained by integrating over positive values of ∆x,603

p(r = 1|s1, s2) =

∫ ∞

0

p(∆x|s1, s2)d∆x

p(r = 1|s1, s2) = Φ(s2 − s1; 0, σ2
2 + σ2

1)

Because the responses are mutually exclusive, it follows that the likelihood of a subject responding 0 is,604

p(r = 0|s1, s2) = 1− p(r = 1|s1, s2, θ)

in which Φ is the cumulative normal distribution, evaluated at point s2 − s1, with a mean of 0 and605

variance σ2
2 + σ2

1 . This entails that a subject’s 2-afc behavior is unbiased and also that subjects do not606

lapse during the experiment. To make the model more realistic, we augment it with a small bias term607

α to account for small deviations from unbiased behavior and a lapse term λ to account for lapses in608

the task. Therefore the final response probability can be written,609

p(r = 1|s1, s2) = λ+ (1− 2λ)Φ(s2 − s1;α, σ2
2 + σ2

1)

It is important to note that subjects do not estimate the underlying speed (using Bayes rule) as they610

are using sensory observations rather than posterior estimates. This was done for two reasons. Firstly,611

there is not a consensus on how additional information is incorporated in speed perception; some models612

propose that observers incorporate assumptions about motion dynamics to create priors (Kwon, Tadin,613

& Knill, 2015), others propose statistics of natural stimuli are used to form priors (Stocker & Simoncelli,614

2004, 2006). Secondly, unless a uniform prior (across the real line) or conjugate prior is used, computing615

the response probability in closed form is difficult (recent work has analytically derived the effect of616

Gaussian priors in 2-afc tasks (Acuna, Berniker, Fernandes, & Kording, 2015)).617

Because our main focus is the sensory noise model, not the incorporation of priors, our experiment618

was designed such that the influence of priors should be negligible and hence our derived response619

probability should be a reasonable approximation. Specifically, it has been shown that the bias in speed620

estimation decreases when stimuli are close to fixation (Kwon et al., 2015) and biases decrease when621

contrast is high (Stocker & Simoncelli, 2004, 2006). Our stimuli were centered relatively close to fixation622

(6 deg eccentricity) compared to other speed perception experiments (Kwon et al., 2015) and also had623

a much higher contrast than is typical (Stocker & Simoncelli, 2004, 2006). This means most of subject624

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/220590doi: bioRxiv preprint 

https://doi.org/10.1101/220590
http://creativecommons.org/licenses/by-nc-nd/4.0/


behavior should be governed by the sensory noise and not the prior.625
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