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ABSTRACT 23 

 24 

Target selection is the first and pivotal step in drug discovery. An incorrect choice may not 25 

manifest itself for many years after hundreds of millions of research dollars have been spent. We 26 

collected a set of 332 targets that succeeded or failed in phase III clinical trials, and explored 27 

whether Omic features describing the target genes could predict clinical success. We obtained 28 

features from the recently published comprehensive resource: Harmonizome. Nineteen features 29 

appeared to be significantly correlated with phase III clinical trial outcomes, but only 4 passed 30 

validation schemes that used bootstrapping or modified permutation tests to assess feature 31 

robustness and generalizability while accounting for target class selection bias. We also used 32 

classifiers to perform multivariate feature selection and found that classifiers with a single 33 

feature performed as well in cross-validation as classifiers with more features (AUROC=0.57 34 

and AUPR=0.81). The two predominantly selected features were mean mRNA expression across 35 

tissues and standard deviation of expression across tissues, where successful targets tended to 36 

have lower mean expression and higher expression variance than failed targets. This finding 37 

supports the conventional wisdom that it is favorable for a target to be present in the tissue(s) 38 

affected by a disease and absent from other tissues. Overall, our results suggest that it is feasible 39 

to construct a model integrating interpretable target features to inform target selection. We 40 

anticipate deeper insights and better models in the future, as researchers can reuse the data we 41 

have provided to improve methods for handling sample biases and learn more informative 42 

features. Code, documentation, and data for this study have been deposited on GitHub at 43 

https://github.com/arouillard/omic-features-successful-targets. 44 
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AUTHOR SUMMARY 46 

 47 

Drug discovery often begins with a hypothesis that changing the abundance or activity of a 48 

target—a biological molecule, usually a protein—will cure a disease or ameliorate its symptoms. 49 

Whether a target hypothesis translates into a successful therapy depends in part on the 50 

characteristics of the target, but it is not completely understood which target characteristics are 51 

important for success. We sought to answer this question with a supervised machine learning 52 

approach. We obtained outcomes of target hypotheses tested in clinical trials, scoring targets as 53 

successful or failed, and then obtained thousands of features (i.e. properties or characteristics) of 54 

targets from dozens of biological datasets. We statistically tested which features differed 55 

between successful and failed targets, and built a computational model that used these features to 56 

predict success or failure of targets in clinical trials. We found that successful targets tended to 57 

have more variable mRNA abundance from tissue to tissue and lower average abundance across 58 

tissues than failed targets. Thus, it is probably favorable for a target to be present in the tissue(s) 59 

affected by a disease and absent from other tissues. Our work demonstrates the feasibility of 60 

predicting clinical trial outcomes from target features. 61 
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INTRODUCTION 63 

 64 

More than half of drug candidates that advance beyond phase I clinical trials fail due to lack of 65 

efficacy (1, 2). One possible explanation for these failures is sub-optimal target selection (3). 66 

Many factors must be considered when selecting a target for drug discovery (4, 5). Intrinsic 67 

factors include the likelihood of the target to be tractable (can the target’s activity be altered by a 68 

compound, antibody, or other drug modality?), safe (will altering the target’s activity cause 69 

serious adverse events?), and efficacious (will altering the target’s activity provide significant 70 

benefit to patients?). Extrinsic factors include the availability of investigational reagents and 71 

disease models for preclinical target validation, whether biomarkers are known for measuring 72 

target engagement or therapeutic effect, the duration and complexity of clinical trials required to 73 

prove safety and efficacy, and the unmet need of patients with diseases that might be treated by 74 

modulating the target. 75 

 76 

Over the past decade, technologies have matured enabling high-throughput genome-, 77 

transcriptome-, and proteome-wide profiling of cells and tissues in normal, disease, and 78 

experimentally perturbed states. In parallel, researchers have made substantial progress curating 79 

or text-mining biomedical literature to extract and organize information about genes and 80 

proteins, such as molecular functions and signaling pathways, into structured datasets. Taken 81 

together, both efforts have given rise to a vast amount of primary, curated, and text-mined data 82 

about genes and proteins, which are stored in online repositories and amenable to computational 83 

analysis (6, 7). 84 

 85 
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To improve the success rate of drug discovery projects, researchers have investigated whether 86 

any features of genes or proteins are useful for target selection. These computational studies can 87 

be categorized according to whether the researchers were trying to predict tractability (8, 9), 88 

safety (10-13), efficacy (no publications to our knowledge), or overall success (alternatively 89 

termed “drug target likeness”) (8, 13-26). Closely related efforts include disease gene prediction, 90 

where the goal is to predict genes mechanistically involved in a given disease (27-32), and 91 

disease target prediction, where the goal is to predict genes that would make successful drug 92 

targets for a given disease (33-35). 93 

 94 

To our knowledge, we report the first screen for features of genes or proteins that distinguish 95 

targets of approved drugs from targets of drug candidates that failed in clinical trials. In contrast, 96 

related prior studies have searched for features that distinguish targets of approved drugs from 97 

the rest of the genome (or a representative subset) (13, 15-25). Using the remainder of the 98 

genome for comparison has been useful for finding features enriched among successful targets, 99 

but it is uncertain whether these features are specific to successful targets or are enriched among 100 

targets of failed drug candidates as well. Our study aims to fill this knowledge gap by directly 101 

testing for features that separate targets by clinical outcome, expanding the scope of prior studies 102 

that have investigated how genetic disease associations (36) and publication trends (37) of 103 

targets correlate with clinical outcome. 104 

 105 

Our work has five additional innovative characteristics. First, we included only targets of drugs 106 

that are presumed to be selective (no documented polypharmacology) to reduce ambiguity in 107 

assigning clinical trial outcomes to targets. Second, we included only phase III failures to enrich 108 
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for target efficacy failures, as opposed to safety and target engagement failures, which are more 109 

common in phase I and phase II (2). Third, we excluded targets of assets only indicated for 110 

cancer, as studies have observed that features of successful targets for cancer differ from features 111 

of successful targets for other indications (22, 23), moreover, cancer trials fail more frequently 112 

than trials for other indications (2). Fourth, we interrogated a diverse and comprehensive set of 113 

features, over 150,000 features from 67 datasets covering 16 feature types, whereas prior studies 114 

have examined only features derived from protein sequence (16-18, 24, 25), protein-protein 115 

interactions (13, 15, 18-23), Gene Ontology terms (13, 15, 16), and gene expression profiles (15, 116 

19, 21, 25). Fifth, because targets of drugs and drug candidates do not constitute a random 117 

sample of the genome, we implemented a suite of tests to assess the robustness and 118 

generalizability of features identified as significantly separating successes from failures in the 119 

biased sample. 120 

 121 

A handful of the initial 150,000+ features passed our tests for robustness and generalizability to 122 

new targets or target classes. Interestingly, these features were predominantly derived from gene 123 

expression datasets. Notably, two significant features were discovered repeatedly in multiple 124 

datasets: successful targets tended to have lower mean mRNA expression across tissues and 125 

higher expression variance than failed targets. We also trained a classifier to predict phase III 126 

success probabilities for untested targets (no phase III clinical trial outcomes reported for drug 127 

candidates that selectively modulate these targets). We identified 943 targets with sufficiently 128 

unfavorable expression characteristics to be predicted twice as likely to fail in phase III clinical 129 

trials as past phase III targets. Furthermore, we identified 2,700,856 target pairs predicted with 130 

99% consistency to have a 2-fold difference in success probability. Such pairwise comparisons 131 
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may be useful for prioritizing short lists of targets under consideration for a therapeutic program. 132 

We conclude this paper with a discussion of the biases and limitations faced when attempting to 133 

analyze, model, or interpret data on clinical trial outcomes.  134 

  135 
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RESULTS 136 

 137 

Examples of successful and failed targets obtained from phase III clinical trial reports 138 

 139 

We extracted phase III clinical trial outcomes reported in Pharmaprojects (38) for drug 140 

candidates reported to be selective (single documented target) and tested as treatments for non-141 

cancer diseases. We grouped the outcomes by target, scored targets with at least one approved 142 

drug as successful (NS=259), and scored targets with no approved drugs and at least one 143 

documented phase III failure as failed (NF=72) (Supplementary Table S1). The target success 144 

rate (77%) appears to be inflated relative to typically reported phase III success rates (58%) (2) 145 

because we scored targets by their best outcome across multiple trials. 146 

 147 

Comprehensive and diverse collection of target features obtained from the Harmonizome 148 

 149 

We obtained target features from the Harmonizome (39), a recently published collection of 150 

features of genes and proteins extracted from over 100 Omics datasets. We limited our analysis 151 

to 67 datasets that are in the public domain or GSK had independently licensed (Table 1). Each 152 

dataset in the Harmonizome is organized into a matrix with genes labeling the rows and features 153 

such as diseases, phenotypes, tissues, and pathways labeling the columns. We included the mean 154 

and standard deviation calculated along the rows of each dataset as additional target features. 155 

These summary statistics provide potentially useful and interpretable information about targets, 156 

such as how many pathway associations a target has or how variable a target’s expression is 157 

across tissues. 158 
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 159 

Table 1. Datasets tested for features significantly separating successful targets from failed targets. 160 
Dataset Feature Type 

Total 
Genes 

Covered 
Samples 

Total 
Features 

Covered 
Features 

Reduced 
Features 

Roadmap Epigenomics Cell and Tissue 
DNA Methylation Profiles 

cell or tissue DNA methylation 13835 227 26 26 4 

Allen Brain Atlas Adult Human Brain 
Tissue Gene Expression Profiles 

cell or tissue expression 17979 287 416 416 2 

Allen Brain Atlas Adult Mouse Brain 
Tissue Gene Expression Profiles 

cell or tissue expression 14248 287 2234 2234 2 

BioGPS Human Cell Type and Tissue 
Gene Expression Profiles 

cell or tissue expression 16383 320 86 86 2 

BioGPS Mouse Cell Type and Tissue 
Gene Expression Profiles 

cell or tissue expression 15443 313 76 76 2 

GTEx Tissue Gene Expression Profiles cell or tissue expression 26005 328 31 31 2 

GTEx Tissue Sample Gene Expression 
Profiles 

cell or tissue expression 19250 301 2920 2920 2 

HPA Cell Line Gene Expression Profiles cell or tissue expression 15868 259 45 45 1 

HPA Tissue Gene Expression Profiles cell or tissue expression 17496 314 33 33 2 

HPA Tissue Protein Expression Profiles cell or tissue expression 15788 266 46 46 11 

HPA Tissue Sample Gene Expression 
Profiles 

cell or tissue expression 16742 300 123 123 2 

HPM Cell Type and Tissue Protein 
Expression Profiles 

cell or tissue expression 7274 94 6 6 2 

ProteomicsDB Cell Type and Tissue 
Protein Expression Profiles 

cell or tissue expression 2776 28 55 55 5 

Roadmap Epigenomics Cell and Tissue 
Gene Expression Profiles 

cell or tissue expression 12824 164 59 59 6 

TISSUES Curated Tissue Protein 
Expression Evidence Scores 

cell or tissue expression 16216 317 645 245 106 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

cell or tissue expression 17922 316 245 244 44 

TISSUES Text-mining Tissue Protein 
Expression Evidence Scores 

cell or tissue expression 16184 330 4189 2974 2118 

ENCODE Histone Modification Site 
Profiles 

cell or tissue histone 
modification sites 

22382 330 437 432 91 

Roadmap Epigenomics Histone 
Modification Site Profiles 

cell or tissue histone 
modification sites 

21032 313 385 295 282 

ENCODE Transcription Factor Binding 
Site Profiles 

cell or tissue transcription 
factor binding sites 

22845 330 1681 1591 723 

JASPAR Predicted Transcription Factor 
Targets 

cell or tissue transcription 
factor binding sites 

21547 330 113 80 77 

COMPARTMENTS Curated Protein 
Localization Evidence Scores 

cellular compartment 
associations 

16738 330 1465 228 105 

COMPARTMENTS Experimental 
Protein Localization Evidence Scores 

cellular compartment 
associations 

6495 73 61 37 10 

COMPARTMENTS Text-mining Protein 
Localization Evidence Scores 

cellular compartment 
associations 

14375 330 2083 877 545 

GO Cellular Component Annotations 
cellular compartment 
associations 

16757 328 1549 208 124 

LOCATE Curated Protein Localization 
Annotations 

cellular compartment 
associations 

9639 269 80 50 20 

LOCATE Predicted Protein Localization 
Annotations 

cellular compartment 
associations 

19747 325 26 23 10 

CTD Gene-Chemical Interactions chemical interactions 11125 321 9518 2222 2042 

Guide to Pharmacology Chemical 
Ligands of Receptors 

chemical interactions 899 209 4896 189 52 

Kinativ Kinase Inhibitor Bioactivity 
Profiles 

chemical interactions 232 9 28 28 25 

KinomeScan Kinase Inhibitor Targets chemical interactions 287 10 75 75 72 
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CMAP Signatures of Differentially 
Expressed Genes for Small Molecules 

chemical perturbation 
differentially expressed genes 

12148 300 6102 5066 5065 

ClinVar SNP-Phenotype Associations 
disease or phenotype 
associations 

2458 143 3293 3 2 

CTD Gene-Disease Associations 
disease or phenotype 
associations 

21582 331 6327 2926 2116 

dbGAP Gene-Trait Associations 
disease or phenotype 
associations 

5668 147 512 51 49 

DISEASES Curated Gene-Disease 
Assocation Evidence Scores 

disease or phenotype 
associations 

2252 115 772 94 49 

DISEASES Experimental Gene-Disease 
Assocation Evidence Scores 

disease or phenotype 
associations 

4055 131 352 106 43 

DISEASES Text-mining Gene-Disease 
Assocation Evidence Scores 

disease or phenotype 
associations 

15309 330 4630 2559 1850 

GAD Gene-Disease Associations 
disease or phenotype 
associations 

10705 318 12780 1189 980 

GAD High Level Gene-Disease 
Associations 

disease or phenotype 
associations 

8016 314 20 19 16 

GWAS Catalog Gene-Disease 
Associations 

disease or phenotype 
associations 

4356 127 1009 30 28 

GWASdb SNP-Disease Associations 
disease or phenotype 
associations 

11805 253 587 252 126 

GWASdb SNP-Phenotype Associations 
disease or phenotype 
associations 

12488 261 824 397 150 

HPO Gene-Disease Associations 
disease or phenotype 
associations 

3158 171 6844 1187 667 

HuGE Navigator Gene-Phenotype 
Associations 

disease or phenotype 
associations 

12055 322 2755 1241 1153 

MPO Gene-Phenotype Associations 
disease or phenotype 
associations 

7798 299 8581 2434 1444 

OMIM Gene-Disease Associations 
disease or phenotype 
associations 

4553 209 6177 5 4 

GeneSigDB Published Gene Signatures gene signatures or modules 19723 331 3517 1363 1313 

MSigDB Cancer Gene Co-expression 
Modules 

gene signatures or modules 4869 135 358 135 95 

MiRTarBase microRNA Targets microRNA targets 12086 218 598 93 91 

TargetScan Predicted Conserved 
microRNA Targets 

microRNA targets 14923 283 1539 1020 791 

TargetScan Predicted Nonconserved 
microRNA Targets 

microRNA targets 18210 324 1541 1534 1236 

GO Biological Process Annotations 
pathway, function, or process 
associations 

15717 328 13214 2436 1215 

GO Molecular Function Annotations 
pathway, function, or process 
associations 

15777 327 4164 367 204 

HumanCyc Pathways 
pathway, function, or process 
associations 

932 41 288 11 8 

KEGG Pathways 
pathway, function, or process 
associations 

7016 298 303 185 179 

PANTHER Pathways 
pathway, function, or process 
associations 

1962 138 147 40 39 

Reactome Pathways 
pathway, function, or process 
associations 

9005 309 1814 289 159 

Wikipathways Pathways 
pathway, function, or process 
associations 

4958 263 301 140 137 

DEPOD Substrates of Phosphatases phosphatase interactions 293 19 114 13 9 

NURSA Protein Complexes protein complex associations 9785 141 1798 1182 1181 

InterPro Predicted Protein Domain 
Annotations 

protein domain associations 18002 329 11017 119 63 

BioGRID Protein-Protein Interactions protein interactions 15270 306 15272 1191 1163 

DIP Protein-Protein Interactions protein interactions 2709 140 2711 32 24 

Guide to Pharmacology Protein Ligands 
of Receptors 

protein interactions 187 46 213 5 4 
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IntAct Biomolecular Interactions protein interactions 12303 269 12305 422 417 

GTEx eQTL SNP eQTL targets 7898 107 7817 2 1 

TOTALS NA NA NA 174228 44092 28562 

 161 

The datasets contained a total of 174,228 features covering 16 feature types (Table 1). We 162 

restricted our analysis to 44,092 features that had at least three non-zero values for targets 163 

assigned a phase III outcome. Many datasets had strong correlations among their features. To 164 

reduce feature redundancy and avoid excessive multiple hypothesis testing while maintaining 165 

interpretability of features, we replaced each group of highly correlated features with the group 166 

mean feature and assigned it a representative label (Fig 1, Supplementary Table S2). The number 167 

of features shrunk to 28,562 after reducing redundancy. 168 

 169 

Fig 1. Feature Selection Pipeline. Each dataset took the form of a matrix with genes labeling the rows and features 170 

labeling the columns. We appended the mean and standard deviation computed across all features as two additional 171 

features. Step 1: We filtered the columns to eliminate redundant features, replacing each group of correlated 172 

features with the group average feature, where a group was defined as features with squared pair-wise correlation 173 

coefficient r2 ≥ 0.5. If the dataset mean feature was included in a group of correlated features, we replaced the group 174 

with the dataset mean. Step 2: We filtered the rows for targets with clinical trial outcomes of interest: targets of 175 

selective drugs approved for non-cancer indications (successes) and targets of selective drug candidates that failed in 176 

phase III clinical trials for non-cancer indications (failures). Step 3: We tested the significance of each feature as an 177 

indicator of success or failure using permutation tests to quantify the significance of the difference between the 178 

means of the successful and failed targets. We corrected for multiple hypothesis testing using the Benjamini-179 

Yekutieli method to control the false discovery rate at 0.05 within each dataset. Step 4: We “stressed” the 180 

significant features with additional tests to assess their robustness and generalizability. For example, we used 181 

bootstrapping to estimate probabilities that the significance findings will replicate on similar sets of targets. 182 

 183 

Target features tested for correlation with phase III outcome 184 
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 185 

We performed permutation tests (40, 41) on the remaining 28,562 target features to find features 186 

with a significant difference between the successful and failed targets, and we corrected p-values 187 

for multiple hypothesis testing using the Benjamini-Yekutieli method (42) (Fig 1, Supplementary 188 

Table S2). We used permutation testing to apply the same significance testing method to all 189 

features, since they had heterogeneous data distributions. We detected 19 features correlated with 190 

clinical outcome at a within-dataset false discovery rate of 0.05 (Table 2). The significant 191 

features were derived from 7 datasets, of which 6 datasets were gene expression atlases: Allen 192 

Brain Atlas adult human brain tissues (43, 44), Allen Brain Atlas adult mouse brain tissues (43, 193 

45), BioGPS human cell types and tissues (46-48), BioGPS mouse cell types and tissues (46-48), 194 

Genotype-Tissue Expression Project (GTEx) human tissues (49, 50), and Human Protein Atlas 195 

(HPA) human tissues (51). The remaining dataset, TISSUES (52), was an integration of 196 

experimental gene and protein tissue expression evidence from multiple sources. Two 197 

correlations were significant in multiple datasets: successful targets tended to have lower mean 198 

expression across tissues and higher expression variance than failed targets. 199 

 200 

Table 2. Features significantly correlated with phase III outcome. 201 

Dataset Feature 
Corr 
Pval 

Correl-
ation 
Sign 

Correlated 
Target Classes 
(and sign) 

Repl Prob 
(Bootstrap) 

Repl Prob 
(Class Holdout 
Bootstrap) 

Repl Prob 
(Within Class 
Permutation 
Bootstrap) 

BioGPS Human Cell Type and Tissue 
Gene Expression Profiles 

[mean] 0.001 -1 GPCRs (-1) 0.89 0.98 0.83 

BioGPS Human Cell Type and Tissue 
Gene Expression Profiles 

stdv 0.010 -1 
GPCRs (-1), 
Integrins (+1) 

0.69 0.56 0.32 

BioGPS Mouse Cell Type and Tissue 
Gene Expression Profiles 

[mean] 0.042 -1 GPCRs (-1) 0.55 0.71 0.56 

Allen Brain Atlas Adult Human Brain 
Tissue Gene Expression Profiles 

[mean] 0.006 -1 GPCRs (-1) 0.78 0.80 0.78 

Allen Brain Atlas Adult Mouse Brain 
Tissue Gene Expression Profiles 

r3 roof plate 0.002 -1 None 0.88 1.00 0.89 

Allen Brain Atlas Adult Mouse Brain 
Tissue Gene Expression Profiles 

[mean] 0.007 -1 None 0.76 1.00 0.79 

GTEx Tissue Gene Expression Profiles [mean] 0.014 -1 GPCRs (-1) 0.65 0.60 0.76 

GTEx Tissue Gene Expression Profiles stdv 0.014 +1 GPCRs (+1) 0.69 0.94 0.76 
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HPA Tissue Gene Expression Profiles [mean] 0.004 -1 GPCRs (-1) 0.80 0.90 0.85 

HPA Tissue Gene Expression Profiles stdv 0.004 +1 None 0.81 1.00 0.81 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

bone marrow 0.001 -1 GPCRs (-1) 0.92 0.96 0.66 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

[hematopoietic 
cells] 

0.001 -1 
GPCRs (-1), 
Integrins (+1) 

0.93 1.00 0.72 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

[mean] 0.001 -1 GPCRs (-1) 0.85 0.99 0.76 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

[epithalamus and 
pineal gland] 

0.012 -1 None 0.73 0.97 0.49 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

erythroid cell 0.015 -1 None 0.68 0.94 0.45 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

[t-lymphocyte] 0.017 -1 None 0.65 0.95 0.65 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

[miscellaneous 
tissues] 

0.017 -1 GPCRs (-1) 0.64 0.64 0.63 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

[thymus and 
thorax] 

0.017 -1 Integrins (+1) 0.60 0.37 0.44 

TISSUES Experimental Tissue Protein 
Expression Evidence Scores 

adrenal cortex 0.043 -1 None 0.44 0.62 0.45 

Footnotes 

Abbreviations: Corr Pval = p-value corrected for multiple hypothesis testing, Repl Prob = replication probability. 

[Square brackets] denote groups of features. 

[miscellaneous tissues] is a heterogeneous group of digestive, respiratory, urogenital, reproductive, nervous, cardiovascular, and hematopoietic 
system tissues. 

White background indicates features that passed all tests for robustness and generalizability. 

Gray background indicates features that failed at least one test for robustness or generalizability. Strikethrough italics indicates the failed test(s). 

 202 

Significant features tested for robustness to sample variation and generalization across 203 

target classes 204 

 205 

Because targets of drugs and drug candidates do not constitute a random sample of the genome, 206 

features that separate successful targets from failed targets in our sample may perform poorly as 207 

genome-wide predictors of success versus failure. We performed three analyses to address this 208 

issue (Fig 1). 209 

 210 

Robustness to sample variation 211 

 212 
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We used bootstrapping (53, 54) (sampling with replacement from the original set of examples to 213 

construct sets of examples equal in size to the original set) to investigate how robust our 214 

significance findings were to variation in the success and failure examples. For each dataset that 215 

yielded significant features in our primary analysis, we repeated the analysis on 1000 bootstrap 216 

samples and quantified the replication probability (55) of each feature as the fraction of 217 

bootstraps yielding a significant correlation with phase III outcome at a within-dataset false 218 

discovery rate of 0.05. Twelve features had less than 80% probability (considered a strong 219 

replication probability in (55)) that their correlation with clinical outcome will generalize to new 220 

examples (Table 2). 221 

 222 

Robustness to target class variation 223 

 224 

We tested if any of the significance findings depended upon the presence of targets from a single 225 

target class in our sample. We obtained target class labels (i.e. gene family labels) from the 226 

HUGO Gene Nomenclature Committee (56), tested if any target classes were significantly 227 

correlated with phase III outcome, and then tested if these classes were correlated with any 228 

features. The GPCR and integrin classes were correlated with phase III outcome as well as 229 

several features (Table 2). This raised the possibility that instead of these features being genome-230 

wide indicators of clinical outcome, they were simply reflecting the fact that many GPCRs have 231 

succeeded (62/70, p<0.05) or that integrins have failed (3/3, p<0.01). To test this possibility, we 232 

repeated the bootstrapping procedure described above to obtain replication probabilities, except 233 

excluded GPCRs and integrins from being drawn in the bootstrap samples. Six features had less 234 
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than 80% probability that their correlation with clinical outcome will generalize to new target 235 

classes (Table 2). 236 

 237 

Generalization across target classes 238 

 239 

In the preceding analysis, we checked one target class at a time for its impact on our significance 240 

findings. To broadly test whether features generalize across target classes, we repeated the 241 

permutation testing described in our initial analysis, but only shuffled the success/failure labels 242 

within target classes, inspired by the work of Epstein et al. (57) on correcting for confounders in 243 

permutation testing. By generating a null distribution with preserved ratio of successes to failures 244 

within each target class, features must correlate with clinical outcome within multiple classes to 245 

be significant, while features that discriminate between classes will not be significant. We 246 

repeated the modified permutation tests on 1000 bootstrap samples to obtain replication 247 

probabilities. We rejected fifteen features that had less than 80% probability that their correlation 248 

with clinical outcome generalizes across target classes (Table 2). This set of fifteen features 249 

included all features with less than 80% replication probability in either of the previous two tests. 250 

The remaining robust and generalizable features were: 1) mean mRNA expression across tissues 251 

(HPA and BioGPS human tissue expression datasets), 2) standard deviation of expression across 252 

tissues (HPA human tissue expression dataset), and 3) expression in r3 roof plate (Allen Brain 253 

Atlas adult mouse brain tissue expression dataset). The r3 roof plate expression profile was 254 

correlated with mean expression across tissues in the Allen Brain Atlas dataset (r2=0.47), falling 255 

just below the r2=0.5 cut-off that would have grouped r3 roof plate with the mean expression 256 

profile during dimensionality reduction. 257 
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 258 

Classifier-based assessment of feature usefulness and interpretability 259 

 260 

Statistical significance did not guarantee the remaining features would be useful in practice for 261 

discriminating between successes and failures. To test their utility, we trained a classifier to 262 

predict target success or failure, using cross-validation to select a model type (Random Forest or 263 

logistic regression) and a subset of features useful for prediction. Because we used all targets 264 

with phase III outcomes for the feature selection procedure described above, simply using the 265 

final set of features to train a classifier on the same data would yield overly optimistic 266 

performance, even with cross-validation. Therefore, we implemented a nested cross-validation 267 

routine to perform both feature selection and model selection (58). 268 

 269 

Cross-validation routine 270 

 271 

The outer loop of the cross-validation routine had five steps (Fig 2): 1) separation of targets with 272 

phase III outcomes into training and testing sets, 2) univariate feature selection using the training 273 

set, 3) aggregation of features from different datasets into a single feature matrix, 4) classifier-274 

based feature selection and model selection using the training set, and 5) evaluation of the 275 

classifier on the test set. Step 4 used an inner loop with 5-fold cross-validation repeated 20 times 276 

to estimate the performance of different classifier types (Random Forest or logistic regression) 277 

and feature subsets (created by incremental feature elimination). The simplest classifier (least 278 

number of features, with logistic regression considered simpler than Random Forest) with cross-279 

validation values for area under the receiver operating characteristic curve (AUROC) and area 280 
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under the precision-recall curve (AUPR) within 95% of maximum was selected. The outer loop 281 

used 5-fold cross-validation repeated 200 times, which provided 1000 train-test cycles for 282 

estimating the generalization performance of the classifier and characterizing the consistency of 283 

the selected features and model type. 284 

 285 

Fig 2. Modeling Pipeline. We trained a classifier to predict phase III clinical trial outcomes, using 5-fold cross-286 

validation repeated 200 times to assess the stability of the classifier and estimate its generalization performance. For 287 

each fold of cross-validation, modeling began with the non-redundant features for each dataset. Step 1: We split the 288 

targets with phase III outcomes into training and testing sets. Step 2: We performed univariate feature selection 289 

using permutation tests to quantify the significance of the difference between the means of the successful and failed 290 

targets in the training examples. We controlled for target class as a confounding factor by only shuffling outcomes 291 

within target classes. We accepted features with adjusted p-values less than 0.05 after correcting for multiple 292 

hypothesis testing using the Benjamini-Yekutieli method. Step 3: We aggregated significant features from all 293 

datasets into a single feature matrix. Step 4: We performed incremental feature elimination with an inner 5-fold 294 

cross-validation loop repeated 20 times to select the type of classifier (Random Forest or logistic regression) and 295 

smallest subset of features that had cross-validation area under the receiver operating characteristic curve (AUROC) 296 

and area under the precision-recall curve (AUPR) values within 95% of maximum. Step 5: We refit the selected 297 

model using all the training examples and evaluated its performance on the test examples. 298 

 299 

Classifier consistency 300 

 301 

Simple models were consistently selected for the classifier (Table 3, Supplementary Table S3). 302 

In 1000 train-test cycles, a logistic regression model with one feature was selected most the time 303 

(66%), followed in frequency by a logistic regression model with two features (8%), a Random 304 

Forest model with two features (8%), and a logistic regression model with three features (6%). 305 

Other combinations of model type (logistic regression or Random Forest) and number of features 306 
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(ranging from 1 to 8) appeared 11% of the time (each 4% or less). For one of the train-test cycles 307 

(0.1%), no significant features were found in the univariate feature selection step, resulting in a 308 

null model. Note that the logistic regression models were selected primarily because we imposed 309 

a preference for simple and interpretable models, not because they performed better than 310 

Random Forest models. The Random Forest model tended to perform as well as the logistic 311 

regression model on the inner cross-validation loop, with AUROC = 0.62 ± 0.06 for Random 312 

Forest and 0.63 ± 0.05 for logistic regression (Supplementary Table S4). 313 

 314 

Table 3. Distribution of train-test cycles by classifier type and number of selected features. 315 

  
Selected Model Type 

 

  
Logistic Regression Random Forest Total 

S
el

ec
te

d 
F

ea
tu

re
s 

1 662 5 667 

2 82 84 166 

3 57 41 98 

4 22 2 24 

5 24 1 25 

6 11 0 11 

7 6 0 6 

8 2 0 2 

 
Total 866 133 999* 

Footnotes 

* 1 train-test cycle yielded no significant features for modeling 

 316 

Gene expression features were consistently selected for the classifier (Table 4, Supplementary 317 

Table S3). Mean mRNA expression across tissues and standard deviation of expression across 318 

tissues had frequencies of 69% and 59%, respectively. More precisely, 36% of the models used 319 

mean mRNA expression across tissues as the only feature, 31% used standard deviation of 320 

expression as the only feature, and 12% used mean and standard deviation as the only two 321 

features. Other expression features appeared in 21% of the models. These expression features 322 
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tended to be correlated with mean expression across tissues (median r2=0.49). Disease 323 

association features appeared in 0.4% of the models. 324 

 325 

Table 4. Number of train-test cycles in which feature was selected for the classifier. 326 
Feature Type Feature Count 

cell or tissue expression mean across tissues 685 

cell or tissue expression standard deviation across tissues 585 

cell or tissue expression other 214 

disease or phenotype associations mean across diseases 2 

disease or phenotype associations other 2 

pathway, function, or process associations any 1 

 327 

Classifier performance 328 

 329 

The classifier consistently had better than random performance in cross-validation (Fig 3, Table 330 

5, Supplementary Table S5). The 2.5th, 50th, and 97.5th percentiles for AUROC were 0.51, 0.57, 331 

and 0.61. For comparison, a random ordering of targets would yield an AUROC of 0.50. The 332 

receiver operating characteristic curve showed that there was no single cut-off that would 333 

provide satisfactory discrimination between successes and failures (Fig 3A). For an alternative 334 

view, we used kernel density estimation (59) to fit distributions of the probability of success 335 

predicted by the classifier for the successful, failed, and unlabeled targets (Fig 3B, 336 

Supplementary Table S1). The distributions for successes and failures largely overlapped, except 337 

in the tails. 338 

 339 

Fig 3. Classifier Performance. (A) Receiver operating characteristic (ROC) curve. The solid black line indicates 340 

the median performance across 200 repetitions of 5-fold cross-validation and the gray area indicates the range of the 341 

2.5 and 97.5 percentiles. The dotted black line indicates the performance of random rankings. (B) Distributions of 342 

the probability of success predicted by the classifier for the successful, failed, and unlabeled targets. (C) Precision-343 
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recall curve for success predictions. (D) Precision-recall curve for failure predictions. (E) Pairwise target 344 

comparisons. For each pair of targets, we computed the fraction of repetitions of cross-validation in which Target B 345 

had a higher predicted probability of success greater than Target A. The heatmap illustrates this fraction, thresholded 346 

at 0.95 or 0.99, plotted as a function of the median predicted probabilities of success of two targets. The upper left 347 

region is where the classifier is 95% (above solid black line) or 99% (above dotted blue line) consistent in predicting 348 

greater probability of success of Target B than Target A. (F) Relationship between features and phase III outcomes. 349 

Heat map showing the projection of the predicted success probabilities onto the two dominant features selected for 350 

the classifier: mean expression across tissues and standard deviation of expression across tissues. Red, white, and 351 

blue background colors correspond to 1, 0.5, and 0 success probabilities. Red plusses and blue crosses mark the 352 

locations of the success and failure examples. It appears the model has learned that failures tend to have high mean 353 

expression and low standard deviation of expression across tissues, while successes tend to have low mean 354 

expression and high standard deviation of expression. The success and failure examples are not well separated, 355 

indicating that we did not discover enough features to fully explain why targets succeed or fail in phase III clinical 356 

trials. 357 

 358 

Table 5. Classifier performance statistics. 359 
Statistic 2.5 Percentile Median 97.5 Percentile 

True Positives (TP) 91 220 243 

False Positives (FP) 16 52 65 

True Negatives (TN) 5 16 52 

False Negatives (FN) 1 24 154 

True Positive Rate (TPR) 0.370 0.903 0.995 

False Positive Rate (FPR) 0.232 0.762 0.928 

False Negative Rate (FNR) 0.005 0.096 0.630 

True Negative Rate (TNR) 0.072 0.237 0.768 

Misclassification Rate (MCR) 0.206 0.241 0.542 

Accuracy (ACC) 0.458 0.759 0.794 

False Discovery Rate (FDR) 0.149 0.194 0.213 

Positive Predictive Value (PPV) 0.787 0.806 0.851 

False Omission Rate (FOMR) 0.233 0.583 0.741 

Negative Predictive Value (NPV) 0.259 0.417 0.767 

Area Under Receiver Operating Characteristic Curve (AUROC) 0.512 0.574 0.615 

Area Under Precision-Recall Curve (AUPR) 0.777 0.811 0.836 
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Positive Likelihood Ratio (PLR) 1.058 1.184 1.619 

Negative Likelihood Ratio (NLR) 0.086 0.402 0.819 

Diagnostic Odds Ratio (DOR) 1.748 3.066 13.344 

Risk Ratio (RR) 1.143 1.387 3.447 

Matthews Correlation Coefficient (MCC) 0.100 0.178 0.251 

 360 

We attempted to identify subsets of targets with high positive predictive value (PPV) or high 361 

negative predictive value (NPV). The median PPV rose as high as 0.99, but uncertainty in the 362 

PPV was so large that we could not be confident in identifying any subset of targets with a 363 

predicted success rate better than the historical 0.77 (Fig 3C). The median NPV rose to 0.40, 364 

roughly twice the historical failure rate of 0.23. Furthermore, at 0.40 median NPV, 99% of the 365 

cross-validation repetitions had an NPV greater than the historical failure rate (Fig 3D). Using 366 

this cut-off, we identified 943 unlabeled targets expected to be twice as likely to fail in phase III 367 

clinical trials as past phase III targets. 368 

 369 

We reasoned that a more practical use of the classifier would be to make pair-wise comparisons 370 

among a short list of targets already under consideration for a therapeutic program. To assess the 371 

utility of the classifier for this purpose, for every pair of targets TA and TB, we computed the 372 

fraction of cross-validation runs in which the classifier predicted greater probability of success 373 

for TB than TA. We identified 67,270,678 target pairs (39%) with at least a 0.1 difference in 374 

median success probability where the classifier was 95% consistent in predicting greater 375 

probability of success for TB than TA. The classifier was 99% consistent for 41528043 target 376 

pairs (24%). Requiring at least a 2-fold difference in median success probability between TB and 377 

TA reduced these counts to 2,730,437 target pairs (1.6%) at 95% consistency and 2,700,856 378 

target pairs (1.6%) at 99% consistency. We visualized these results by plotting the 95% and 99% 379 

consistency fraction thresholds smoothly interpolated as a function of the median predicted 380 
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probabilities of success of TA and TB (Fig 3E). For a median probability of success of TA around 381 

0.2, TB must have a median probability of success of 0.5 or greater at the 99% threshold. For 382 

lower TA success probabilities, the TB success probability must be even higher because there is 383 

greater uncertainty about the low TA probabilities. For higher TA success probabilities, the TB 384 

success probability at the 99% threshold increases steadily until a TA success probability of about 385 

0.6, where the TB success probability reaches 1. For TA success probabilities above 0.6, no 386 

targets are predicted to have greater probability of success with 99% consistency. 387 

 388 

Feature interpretation 389 

 390 

To interpret the relationship inferred by the classifier between target features and outcomes, we 391 

created a heatmap of the probability of success predicted by the classifier projected onto the two 392 

features predominantly selected for the model: mean expression and standard deviation of 393 

expression across tissues (Fig 3F). The probability of success was high in the subspace with low 394 

mean expression and high standard deviation of expression, and transitioned to low probability in 395 

the subspace with high mean expression and low standard deviation of expression. This trend 396 

appeared to be consistent with the distribution of the success and failure examples in the space. 397 

  398 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2017. ; https://doi.org/10.1101/220848doi: bioRxiv preprint 

https://doi.org/10.1101/220848
http://creativecommons.org/licenses/by-nd/4.0/


23 
 

DISCUSSION 399 

 400 

Gene expression predicts phase III outcome 401 

 402 

We searched over 150,000 target features from 67 datasets covering 16 feature types for 403 

predictors of target success or failure in phase III clinical trials (Table 1, Fig 1). We found 404 

several features significantly correlated with phase III outcome, robust to re-sampling, and 405 

generalizable across target classes (Table 2). To assess the usefulness of such features, we 406 

implemented a nested cross-validation routine to select features, train a classifier to predict the 407 

probability a target will succeed in phase III clinical trials, and estimate the stability and 408 

generalization performance of the model (Figs 2 and 3, Tables 3, 4, and 5). Ultimately, we found 409 

two features useful for predicting success or failure of targets in phase III clinical trials. 410 

Successful targets tended to have low mean mRNA expression across tissues and high standard 411 

deviation of mRNA expression across tissues (Fig 3F). These features were significant in 412 

multiple gene expression datasets, which increased our confidence that their relationship to phase 413 

III outcome was real, at least for the targets in our sample, which included only targets of 414 

selective drugs indicated for non-cancer diseases. 415 

 416 

One interpretation of why the gene expression features were predictive of phase III outcome is 417 

that they are informative of the specificity of a target’s expression across tissues. A target with 418 

tissue specific expression would have a high standard deviation relative to its mean expression 419 

level. Tissue specific expression has been proposed by us and others as a favorable target 420 

characteristic in the past (4, 14, 60-62), but the hypothesis had not been evaluated empirically 421 
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using examples of targets that have succeeded or failed in clinical trials. For a given disease, if a 422 

target is expressed primarily in the disease tissue, it is considered more likely that a drug will be 423 

able to exert a therapeutic effect on the disease tissue while avoiding adverse effects on other 424 

tissues. Additionally, specific expression of a target in the tissue affected by a disease could be 425 

an indicator that dysfunction of the target truly causes the disease. 426 

 427 

The distribution of the success and failure examples in feature space (Fig 3F) partially supports 428 

the hypothesis that tissue specific expression is a favorable target feature. Successes were 429 

enriched among targets with low mean expression and high standard deviation of expression 430 

(tissue specific expression), and failures were enriched among targets with high mean expression 431 

and low standard deviation of expression (constitutive expression). However, it does not hold in 432 

general that, at any given mean expression level, targets with high standard deviation of 433 

expression tend to be more successful than targets with low standard deviation of expression. 434 

Nevertheless, our results encourage further investigation of the relationship between tissue 435 

specific expression and clinical trial outcomes. Deeper insight may be gleaned from analysis of 436 

gene expression features explicitly designed to quantify specificity of a target’s expression in the 437 

tissue(s) affected by the disease treated in each clinical trial. 438 

 439 

Caveats and limitations 440 

 441 

Latent factors (variables unaccounted for in this analysis) could confound relationships between 442 

target features and phase III outcomes. For example, diseases pursued vary from target to target, 443 

and a target’s expression across tissues may be irrelevant for diseases where drugs can be 444 
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delivered locally or for Mendelian loss-of-function diseases where treatment requires systemic 445 

replacement of a missing or defective protein. Also, clinical trial failure rates vary across disease 446 

classes (2). Although we excluded targets of cancer therapeutics from our analysis, we otherwise 447 

did not control for disease class as a confounding explanatory factor. Modalities (e.g. small 448 

molecule, antibody, antisense oligonucleotide, gene therapy, or protein replacement) and 449 

directions (e.g. activation or inhibition) of target modulation also vary from target to target and 450 

could be confounding explanatory factors or alter the dependency between target features and 451 

outcomes. 452 

 453 

The potential issues described above are symptoms of the fact that our analysis (and any analysis 454 

of clinical trial outcomes) attempts to draw conclusions from a small (roughly 300 targets) and 455 

biased sample (63, 64). Latent factors such as target classes, disease classes, modalities, and 456 

directions of target modulation are not uniformly represented in the sample, yet correlations 457 

between target features and clinical trial outcomes likely depend on these factors. Unfortunately, 458 

attempts to stratify, match, or otherwise control for these factors are limited by the sample size. 459 

(The number of combinations of target class, disease class, modality, and direction of modulation 460 

exceeds the sample size.) We employed several tests to build confidence that our findings 461 

generalize across target classes, but did not address other latent factors. Consequently, we cannot 462 

be sure that conclusions drawn from this study apply equally to targets modulated in any 463 

direction, by any means, to treat any disease. For specific cases, expert knowledge and common 464 

sense should be relied upon to determine whether conclusions from this study (or similar studies) 465 

are relevant. 466 

 467 
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Another limitation is selection bias (63, 64). Targets of drugs are not randomly selected from the 468 

genome and cannot be considered representative of the population of all possible targets. 469 

Likewise, diseases treated by drugs are not randomly chosen; therefore, phase III clinical trial 470 

outcomes for each target cannot be considered representative of the population of all possible 471 

outcomes. Although we implemented tests to build confidence that our findings can generalize to 472 

new targets and new target classes, ultimately, no matter how we dissect the sample, a degree of 473 

uncertainty will always remain about the relevance of any findings for new targets that lack a 474 

representative counterpart in the sample. 475 

 476 

Additionally, data processing and modeling decisions have introduced bias into the analysis. For 477 

example, we scored each target as successful or failed by its best outcome in all applicable 478 

(selective drug, non-cancer indication) phase III clinical trials. This approach ignores nuances. A 479 

target that succeeded in one trial and failed in all others is treated as equally successful as a target 480 

that succeeded in all trials. Also, the outcome of a target tested in a single trial is treated as 481 

equally certain as the outcome of a target tested in multiple trials. Representing target outcomes 482 

as success rates or probabilities may provide better signal for discovering features predictive of 483 

outcomes. 484 

 485 

Another decision was to use datasets of features as we found them, rather than trying to reason 486 

about useful features that could be derived from the original data. Because of the breadth of data 487 

we interrogated, the effort and expertise necessary to hand engineer features equally well across 488 

all datasets exceeded our resources. Others have had success hand engineering features for 489 

similar applications in the past, particularly with respect to computing topological properties of 490 
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targets in protein-protein interaction networks (18, 20, 21). This analysis could benefit from such 491 

efforts, potentially changing a dataset or feature type from yielding no target features correlated 492 

with phase III outcomes to yielding one or several useful features (22). On a related point, 493 

because we placed a priority on discovering interpretable features, we performed dimensionality 494 

reduction by averaging groups of highly correlated features and concatenating their (usually 495 

semantically related) labels. Dimensionality reduction by principal components analysis (65) or 496 

by training a deep auto-encoder (66) could yield more useful features, albeit at the expense of 497 

interpretability. 498 

 499 

We cannot stress enough the importance of taking care not to draw broad conclusions from our 500 

study, particularly with respect to the apparent dearth of features predictive of target success or 501 

failure. We examined only a specific slice of clinical trial outcomes (phase III trials of selective 502 

drugs indicated for non-cancer diseases) summarized in a particular way (net outcome per target, 503 

as opposed to outcome per target-indication pair). Failure of a feature to be significant in our 504 

analysis should not be taken to mean it has no bearing on target selection. For example, prior 505 

studies have quantitatively shown that genetic evidence of disease association(s) is a favorable 506 

target characteristic (3, 36), but we did not find a significant correlation between genetic 507 

evidence and target success in phase III clinical trials. Our finding is consistent with the work of 508 

Nelson et al. (36), who investigated the correlation between genetic evidence and drug 509 

development outcomes at all phases and found a significant correlation overall and at all phases 510 

of development except phase III. As a way of checking our work, we applied our methods to test 511 

for features that differ between targets of approved drugs and the remainder of the druggable 512 

genome (instead of targets of phase III failures), and we recovered the finding of Nelson et al. 513 
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that targets of approved drugs have significantly more genetic evidence than the remainder of the 514 

druggable genome (Supplementary Table S6). This example serves as a reminder to be cognizant 515 

of the domain of applicability of research findings. Though we believe we have performed a 516 

rigorous and useful analysis, we have shed light on only a small piece of a large and complex 517 

puzzle. 518 

 519 

Advances in machine learning enable and embolden us to create potentially powerful predictive 520 

models for target selection. However, as described in the limitations, scarce training data are 521 

available, the data are far from ideal, and we must be cautious about building models with biased 522 

data and interpreting their predictions. For example, many features that appeared to be 523 

significantly correlated with phase III clinical trial outcomes in our primary analysis did not hold 524 

up when we accounted for target class selection bias. This study highlights the need for both 525 

domain knowledge and modeling expertise to tackle such challenging problems. 526 

 527 

Conclusion 528 

 529 

Our analysis revealed several features that significantly separated targets of approved drugs from 530 

targets of drug candidates that failed in phase III clinical trials. This suggested that it is feasible 531 

to construct a model integrating multiple interpretable target features derived from Omics 532 

datasets to inform target selection. Only features derived from tissue expression datasets were 533 

promising predictors of success versus failure in phase III, specifically, mean mRNA expression 534 

and standard deviation of expression across tissues. Although these features were significant at a 535 

false discovery rate cut-off of 0.05, their effect sizes were too small to be useful for classification 536 
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of the majority of untested targets, however, even a two-fold improvement in target quality can 537 

dramatically increase R&D productivity (67). We identified 943 targets predicted to be twice as 538 

likely to fail in phase III clinical trials as past phase III targets, and, therefore, should be flagged 539 

as having unfavorable expression characteristics. We also identified 2,700,856 target pairs 540 

predicted with 99% consistency to have a 2-fold difference in success probability, which could 541 

be useful for prioritizing short lists of targets with attractive disease relevance.  542 

 543 

It should be noted that our analysis was not designed or powered to show that specific datasets or 544 

data types have no bearing on target selection. There are many reasons why a dataset may not 545 

have yielded any significant features in our analysis. In particular, data processing and filtering 546 

choices could determine whether or not a dataset or data type has predictive value. Also, latent 547 

factors, such as target classes, disease classes, modalities, and directions of target modulation, 548 

could confound or alter the dependency between target features and clinical trial outcomes. 549 

Finally, although we implemented tests to ensure robustness and generalizability of the target 550 

features significantly correlated with phase III outcomes, selection bias in the sample of targets 551 

available for analysis is a non-negligible limitation of this study and others of its kind. 552 

Nevertheless, we are encouraged by our results and anticipate deeper insights and better models 553 

in the future, as researchers improve methods for handling sample biases and learn more 554 

informative features. 555 

  556 
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METHODS 557 

 558 

Data 559 

 560 

Clinical Outcomes 561 

 562 

We extracted data from Citeline’s Pharmaprojects database (38) (downloaded May 27, 2016), 563 

reformatting available XML data into a single tab-delimited form having one row for each asset 564 

(i.e. drug or drug candidate)/company combination. For each asset, known targets, identified 565 

with EntrezGene (68) IDs and symbols, and indications are reported. We obtained 107,120 asset-566 

indication pairs and 37,211 asset-target pairs, correcting a single outdated EntrezGene ID, for 567 

SCN2A, which we updated from 6325 to 6326. 568 

 569 

An overall pipeline status of each asset (e.g. “Launched”, “Discontinued”, “No Development 570 

Reported”) is reported in a single field (“Status”), and detailed information for each indication 571 

being pursued is dispersed throughout several other fields (e.g., “Key Event Detail”, 572 

“Overview”, etc.). While many assets have been tried against a single indication, and thus the 573 

status of the asset-indication pair is certain, the majority (N=61,107) of asset-indication pairs are 574 

for assets with multiple indications. For those pairs, we used a combination of string searching of 575 

these fields and manual review of the results to determine the likely pipeline location and status 576 

of each indication. For example, we excluded efforts where a trial of an asset was reported as 577 

planned, but no further information was available. Asset-indication pairs were thus assigned a 578 

status of Successful (“Launched”, “Registered”, or “Pre-registration”), Failed (“Discontinued”, 579 
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“No Development Reported”, “Withdrawn”, or “Suspended”), or In Progress, consisting of 580 

9,337, 72,269 and 25,159 pairs, respectively. We then used the pipeline location to assign each 581 

asset-indication pair to one of 10 outcomes: Succeeded, In Progress-Preclinical, In Progress-582 

Phase I, In Progress-Phase II, In Progress-Phase III, Failed-Preclinical, Failed-Phase I, Failed-583 

Phase II, Failed-Phase III, and Failed-Withdrawn. We discarded indications which were 584 

diagnostic in nature or unspecified, mapping the remainder to Medical Subject Headings (MeSH) 585 

(69). We also observed that only 24% of the failures reported in Pharmaprojects are clinical 586 

failures, suggesting a clinical success rate of nearly 35%, much higher than typically cited (67). 587 

 588 

We joined the list of asset-indication-outcome triples with the list of asset-target pairs to produce 589 

a list of asset-target-indication-outcome quadruples. We then filtered the list to remove: 1) assets 590 

with more than one target, 2) non-human targets, 3) cancer indications (indications mapped to 591 

MeSH tree C04), and 4) outcomes labeled as In Progress at any stage or Failed prior to Phase III. 592 

We scored the remaining targets (N=331) as Succeeded (N=259), if the target had at least one 593 

successful asset remaining in the list, or Failed (N=72), otherwise. 594 

 595 

Target Features 596 

 597 

We obtained target features from the Harmonizome (39), a recently published collection of 598 

features of genes and proteins extracted from over 100 Omics datasets. We downloaded (on June 599 

30, 2016) a subset of Harmonizome datasets that were in the public domain or GSK had 600 

independently licensed (Table 1). Each dataset was structured as a matrix with genes labeling the 601 

rows and features such as diseases, phenotypes, tissues, and pathways labeling the columns. 602 
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Genes were identified with EntrezGene IDs and symbols, enabling facile integration with the 603 

clinical outcome data from Pharmaprojects. Some datasets were available on the Harmonizome 604 

as a “cleaned” version and a “standardized” version. In all instances, we used the cleaned 605 

version, which preserved the original data values (e.g. gene expression values), as opposed to the 606 

standardized version, in which the original data values were transformed into scores indicating 607 

relative strengths of gene-feature associations intended to be comparable across datasets. The 608 

data matrices were quantitative and filled-in (e.g. gene expression measured by microarray), 609 

quantitative and sparse (e.g. protein expression measured by immunohistochemistry), or 610 

categorical (i.e. binary) and sparse (e.g. pathway associations curated by experts). We 611 

standardized quantitative, filled-in features by subtracting the mean and then dividing by the 612 

standard deviation. We scaled quantitative, sparse features by dividing by the mean. We included 613 

the mean and standard deviation calculated along the rows of each dataset as additional target 614 

features. We excluded features that had fewer than three non-zero values for the targets with 615 

phase III clinical trial outcomes. The remaining features, upon which our study was based, have 616 

been deposited at https://github.com/arouillard/omic-features-successful-targets. 617 

 618 

Dimensionality Reduction 619 

 620 

Our goals in performing dimensionality reduction were to identify groups of highly correlated 621 

features, avoid excessive multiple hypothesis testing, and maintain interpretability of features. 622 

For each dataset, we computed pair-wise feature correlations (r) using the Spearman correlation 623 

coefficient (70-72) for quantitative, filled-in datasets, and the cosine coefficient (71, 72) for 624 

sparse or categorical datasets. We thresholded the correlation matrix at r2=0.5 (for the Spearman 625 
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correlation coefficient, this corresponds to one feature explaining 50% of the variance of another 626 

feature, and for the cosine coefficient, this corresponds to one feature being aligned within 45 627 

degrees of another feature) and ordered the features by decreasing number of correlated features. 628 

We created a group for the first feature and its correlated features. If the dataset mean was 629 

included in the group, we replaced the group of features with the dataset mean. Otherwise, we 630 

replaced the group of features with the group mean and assigned it the label of the first feature 631 

(to indicate that the feature represents the average of features correlated with the first feature), 632 

while also retaining a list of the labels of all features included in the group. We continued 633 

through the list of features, repeating the grouping process as described for the first feature, 634 

except excluding features already assigned to a group from being assigned to a second group. 635 

 636 

Feature Selection 637 

 638 

We performed permutation tests (40, 41) to find features with a significant difference between 639 

successful and failed targets. We used permutation testing in order to apply the same significance 640 

testing method to all features. The features in our collection had heterogeneous shapes of their 641 

distributions and varying degrees of sparsity, and therefore no single parametric test would be 642 

appropriate for all features. Furthermore, individual features frequently violated assumptions 643 

required for parametric tests, such as normality for the t-test (for continuous-valued features) or 644 

having at least five observations in each entry of the contingency table for the Chi-squared test 645 

(for categorical features). For each feature, we performed 105 success/failure label permutations 646 

to obtain a null distribution for the difference between the means of successful and failed targets, 647 

and then calculated an empirical two-tailed p-value as the fraction of permutations that yielded a 648 
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difference between means at least as extreme as the actual observed difference. We used the 649 

Benjamini-Yekutieli method (42) to correct for multiple hypothesis testing within each dataset 650 

and accepted features with corrected p-values less than 0.05 as significantly correlated with 651 

phase III clinical trial outcomes, thus controlling the false discovery rate at 0.05 within each 652 

dataset. 653 

 654 

Feature Robustness and Generalizability 655 

 656 

Robustness to sample variation 657 

 658 

We used bootstrapping (53, 54) to investigate how robust our significance findings were to 659 

variation in the success and failure examples. We created a bootstrap sample by sampling with 660 

replacement from the original set of examples to construct an equal sized set of examples. For 661 

each dataset that yielded significant features in our primary analysis, we repeated the analysis on 662 

the bootstrap sample and recorded whether the features were still significant at the 663 

aforementioned 0.05 false discovery rate cut-off. We performed this procedure on 1000 bootstrap 664 

samples and quantified the replication probability (55) of each feature as the fraction of 665 

bootstraps showing a significant correlation between the feature and phase III clinical trial 666 

outcomes. We accepted features with replication probabilities greater than 0.8 (55) as robust to 667 

sample variation. 668 

 669 

Robustness to target class variation 670 

 671 
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We tested if any of the significance findings depended upon the presence of targets from a single 672 

target class in our sample. We obtained target class labels (i.e. gene family labels) from the 673 

HUGO Gene Nomenclature Committee (56) (downloaded April 19, 2016) and created binary 674 

features indicating target class membership. Using the same permutation testing and multiple 675 

hypothesis testing correction methods described above for feature selection, we tested if any 676 

target classes were significantly correlated with phase III clinical trial outcomes. Then, we tested 677 

if the significant target classes were correlated with any significant features. Such features might 678 

be correlated with clinical outcome only because they are surrogate indicators for particular 679 

target classes that have been historically very successful or unsuccessful, as opposed to the 680 

features being predictors of clinical outcome irrespective of target class. To test this possibility, 681 

we performed a bootstrapping procedure as described above, except did not allow examples from 682 

target classes correlated with clinical outcome to be drawn when re-sampling. Thus, the modified 683 

bootstrapping procedure provided replication probabilities conditioned upon missing information 684 

about target classes correlated with clinical outcome. We accepted features with replication 685 

probabilities greater than 0.8 as robust to target class variation. 686 

 687 

Generalization across target classes 688 

 689 

We implemented a modified permutation test, inspired by the approach of Epstein et al. (57) to 690 

correct for confounders in permutation testing, to select features correlated with phase III clinical 691 

trial outcomes while controlling for target class as a confounding explanatory factor. In the 692 

modified permutation test, success/failure labels were shuffled only within target classes, so the 693 

sets of null examples had the same ratios of successes to failures within target classes as in the 694 
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set of observed examples. Consequently, features had to correlate with clinical outcome within 695 

multiple classes to be significant, while features that discriminated between classes would not be 696 

significant. We performed bootstrapping as described previously to obtain replication 697 

probabilities for the significant features, in this case conditioned upon including target class as an 698 

explanatory factor. We accepted features with replication probabilities greater than 0.8 as 699 

generalizable across target classes represented in the sample. 700 

 701 

Clinical Outcome Classifier 702 

 703 

We trained a classifier to predict target success or failure in phase III clinical trials, using a 704 

procedure like the above for initial feature selection, then using cross-validation to select a model 705 

type (Random Forest or logistic regression) and subset of features useful for prediction. We used 706 

an outer cross-validation loop with 5-folds repeated 200 times, yielding a total of 1000 train-test 707 

cycles, to estimate the generalization performance and stability of the feature selection and 708 

model selection procedure (58). Each train-test cycle had five steps: 1) splitting examples into 709 

training and testing sets, 2) univariate feature selection on the training data, 3) aggregation of 710 

significant features from different datasets into a single feature matrix, 4) model selection and 711 

model-based (multivariate) feature selection on the training data, and 5) evaluation of the 712 

classifier on the test data. 713 

 714 

Step 2: Univariate feature selection 715 

 716 
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Beginning with the non-redundant features obtained from dimensionality reduction, we 717 

performed modified permutation tests to find features with a significant difference between 718 

successful and failed targets in the training examples. As described above, for the modified 719 

permutation test, success/failure labels were shuffled only within target classes. This was done to 720 

control for target class as a confounding factor that might explain correlations between phase III 721 

outcomes and features. For each feature, we performed 104 success/failure label permutations 722 

and calculated an empirical two-tailed p-value. We corrected for multiple hypothesis testing 723 

within each dataset and accepted features with corrected p-values less than 0.05. 724 

 725 

Step 3. Feature aggregation 726 

 727 

Significant features from different datasets, each having different target coverage, had to be 728 

aggregated into a single feature matrix prior to training a classifier. When features from many 729 

datasets were aggregated, we found that the set of targets with no missing data across all features 730 

could become very small. To mitigate this, we excluded features from non-human datasets and 731 

small datasets (fewer than 2,000 genes). We also excluded features from the Allen Brain Atlas 732 

human brain expression atlas, unless there were no other significant features, because we noticed 733 

it had poor coverage of targets with phase III outcomes (287) compared to other expression 734 

atlases, such as BioGPS (320), GTEx (328), and HPA (314), which almost always yielded 735 

alternative significant expression-based features. After aggregating features into a single matrix, 736 

we min-max scaled the features so that features from different datasets would have the same 737 

range of values (from 0 to 1). 738 

 739 
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To reduce redundancy in the aggregated feature matrix, we grouped features as described for the 740 

primary analysis. We used the cosine coefficient to compute pair-wise feature correlations 741 

because some features were sparse. Instead of replacing groups of correlated features with the 742 

group mean, we selected the feature in each group that was best correlated with phase III 743 

outcomes, because we preferred not to create features derived from multiple datasets. 744 

 745 

Step 4. Model selection and model-based feature selection 746 

 747 

We hypothesized that a Random Forest classifier (73) would be a reasonable model choice 748 

because the Random Forest model does not make any assumptions about the distributions of the 749 

features and can seamlessly handle a mixture of quantitative, categorical, filled-in, or sparse 750 

features. Furthermore, we expected each train-test cycle to yield only a handful of significant 751 

features. Consequently, we would have 10- to 100-fold more training examples than features and 752 

could potentially afford to explore non-linear feature combinations. We also trained logistic 753 

regression classifiers and used an inner cross-validation loop (described below) to choose 754 

between Random Forest and logistic regression for each train-test cycle of the outer cross-755 

validation loop. We used the implementations of the Random Forest and logistic regression 756 

classifiers available in the Scikit-learn machine learning package for Python. To correct for 757 

unequal class sizes during training, the loss functions of these models weighted the training 758 

examples inversely proportional to the size of each example’s class. 759 

 760 

We performed incremental feature elimination with an inner cross-validation loop to 1) choose 761 

the type of classifier (Random Forest or logistic regression) and 2) choose the smallest subset of 762 
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features needed to maximize the performance of the classifier. First, we trained Random Forest 763 

and logistic regression models using the significant features aggregated in Step 2, performing 5-764 

fold cross-validation repeated 20 times to obtain averages for the area under the receiver 765 

operating characteristic curve (AUROC) and area under the precision recall curve (AUPR). We 766 

also obtained average feature importance scores from the Random Forest model. Next, we 767 

eliminated the feature with lowest importance score and trained the models using the reduced 768 

feature set, performing another round of 5-fold cross-validation repeated 20 times to obtain 769 

AUROC, AUPR, and feature importance scores. We continued eliminating features then 770 

obtaining cross-validation performance statistics and feature importance scores until no features 771 

remained. Then, we found all models with performance within 95% of the maximum AUROC 772 

and AUPR. If any logistic regression models satisfied this criterion, we selected the qualifying 773 

logistic regression model with fewest features. Otherwise, we selected the qualifying Random 774 

Forest model with fewest features. 775 

 776 

Step 5. Classifier evaluation 777 

 778 

For each train-test cycle, after selecting a set of features and type of model (Random Forest or 779 

logistic regression) in Step 4, we re-fit the selected model to the training data and predicted 780 

success probabilities for targets in the test set as well as unlabeled targets. For each round of 5-781 

fold cross-validation, we computed the classifier’s receiver operating characteristic curve, 782 

precision-recall curve, and performance summary statistics, including the true positive rate, false 783 

positive rate, positive predictive value, negative predictive value, and Matthews correlation 784 

coefficient. 785 
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 786 

We computed distributions of the log odds ratios predicted by the classifier (log of the ratio of 787 

the predicted probability of success over the probability of failure) for the successful, failed, and 788 

untested (unlabeled) targets, aggregating predicted probabilities from the 200 repetitions of 5-789 

fold cross-validation. Histograms of the log odds ratios for the three groups of targets were 790 

roughly bell-shaped, so we fit the distributions using kernel density estimation (59) with a 791 

Gaussian kernel and applied Silverman’s rule for the bandwidth. We transformed the fitted 792 

distributions from a function of log odds ratio to a function of probability of success using the 793 

rule pdf(x) = pdf(y)*|dy/dx|. 794 

 795 

We created a heatmap of the probability of success predicted by the classifier projected onto the 796 

two dominant features in the model: mean mRNA expression across human tissues and standard 797 

deviation of mRNA expression across human tissues. We examined the heatmap to interpret the 798 

classifier’s decision function and assess its plausibility. 799 

 800 

To more concretely assess the usefulness of the classifier, we found the probability cut-off 801 

corresponding to the maximum median positive predictive value and determined the number of 802 

unlabeled targets predicted to succeed at that cut-off. Likewise, we found the probability cut-off 803 

corresponding to the maximum median negative predictive value and determined the number of 804 

unlabeled targets predicted to fail at that cut-off. We also created a heatmap illustrating the 805 

separation needed between the median predicted success probabilities of two targets in order to 806 

be confident that one target is more likely to succeed than the other. This heatmap was created by 807 
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calculating the fraction of times Target B had greater probability of success than Target A across 808 

the 200 repetitions of 5-fold cross-validation, for all pairs of targets. 809 

 810 

Implementation 811 

 812 

Computational analyses were written in Python 3.4.5 and have the following package 813 

dependencies: Fastcluster 1.1.20, Matplotlib 1.5.1, Numpy 1.11.3, Requests 2.13.0, Scikit-learn 814 

0.18.1, Scipy 0.18.1, and Statsmodels 0.6.1. Code, documentation, and data have been deposited 815 

on GitHub at https://github.com/arouillard/omic-features-successful-targets. 816 

 817 

  818 
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