
Ecological Insights from the Evolutionary History

of Microbial Innovations

Mario E. Muscarella1 & James P. O’Dwyer1,2

1Department of Plant Biology, University of Illinois

2Carl R. Woese Institute for Genomic Biology, University of Illinois

Bacteria and Archaea represent the base of the evolutionary tree of life and contain the vast

majority of phylogenetic and functional diversity1,2. These microorganisms and their traits

directly impact ecosystems and human health3,4. As such, a focus on functional traits has

become increasingly common in microbial ecology and these trait-based approaches have the

potential to link microbial communities and their ecological function5,6. But what is missing is

how, why, and in what order microorganisms acquired the traits we observe in the present day.

These are important questions because they relate to the evolution, selective advantage, and

trait similarity of extant organisms. Here, we reconstruct the evolutionary history of microbial

traits using genomic data. We use the geological timeline and physiological expectations to

provide independent evidence in support of this evolutionary history. Finally, we show that

gene transition rates can be used to make predictions about the size and type of genes in a

genome: generalist genomes comprise many labile genes while specialist genomes comprise

more highly conserved functional genes. Our results provide a framework for understanding

the evolutionary history of extant microorganisms, and provide insights into the evolution,

selective advantage, and phylogenetic patterns of microbial traits. We anticipate that our

work will improve our understanding of microbial trait variation and help identify microbial

functional groups. In doing so, the evolutionary history of microbial traits will shed new light

on our understanding of microbial communities in environmental and human ecosystems.

Global estimates predict upwards of 1012 bacterial and archaeal species7,8; however, the origin and main-

tenance of traits that define their phenotypes remains largely unknown. Trait evolutionary history, which

captures these processes, is the foundation describing differences between species and links evolutionary re-

latedness and ecological function9. The true evolutionary history is unknown, but observed traits provide a

window into evolutionary processes through their distributions across phylogenic trees. The simplest model

would be that traits are conserved and therefore maintained by descendants. As such, taxonomy and/or phy-

logeny could be used as a trait proxy because specific traits would be conserved within distinct groups10,11.
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Here, we refer to this as the conservation framework. This framework is common in microbial ecology5.

It has been used to predict the traits of unknown organisms10, identify functional groups12, and is often

used to describing differences between communities based on indicator taxa. A more complex model would

be that traits can be gained through innovation but also lost by descendants due to changes in selection

and environmental context13. In this model, the dynamics of trait gain and loss can be represented as a

stochastic process14,15. Here, we refer to this as the gain-loss framework. This framework is a common way

to infer ancestral states16 and to predict traits for unknown organisms17.

These frameworks differ in the trait history they predict, but the differences provide an opportunity to under-

stand trait innovation and selection. For example, the conservation framework assumes that closely related

organisms have conserved traits and functions18,19. This assumption leverages the hierarchical evolutionary

ancestry of organisms and the idea that related organisms should resemble each other20,21. In contrast, the

gain-loss framework assumes that both trait gain and loss are common evolutionary mechanisms that can

confer fitness advantages22,23,24. While there has not been a wide-scale quantitative comparison of these

frameworks, there is no reason to expect one evolutionary framework across all traits. For example, while we

know there is a basic set of essential genes required for cellular function25, high levels of genome reduction

have been documented throughout evolutionary time26. As such, it may be more informative to compare

predictions across traits because the differences may provide insights into the selective advantage of partic-

ular traits. For example, when the conservation and gain-loss frameworks agree, it would suggest that traits

are essential and therefore maintained by descendants once they originate. In contrast, if the conservation

and gain-loss frameworks disagree then it would suggest that traits are less essential and can be lost by

descendants. These traits would be dispersed and would provide mechanisms for evolutionary diversification

between related species.

In this study, we use 3179 annotated bacterial and archaeal genomes to explore the innovation of microbial

traits based on individual genes. In total, 2950 orthologous genes were associated with this genome collection.

Genes represent the raw genetic information that underlies traits; therefore, while not phenotypic traits

themselves, genes can be used to understand trait distributions. Using these genomes, we describe microbial

innovations using the frameworks outlined above and illustrated in Fig. 1. The first framework, conservation,

identifies the phylogenetic nodes where 90% of the descendent genomes contain a gene of interest18. The

second framework, gain-loss, fits a mathematical model to the trait variation and identifies the most likely

phylogenetic nodes where a gene first originated based on ancestral state reconstructions14. Using these

predictions, we compare the inferred innovation dates across genes to understand the evolutionary history

of genes and to make predictions about trait selection and genome composition.
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Across genes, we find that predictions under the gain-loss framework are more ancestral than those for the

conservation framework (Fig. 2A). However, there is a large range in the discrepancy between the two

frameworks: some genes have no discrepancy while others have a large discrepancy (Fig. 2B). This finding

suggest that the frameworks are two parts of a spectrum describing gene evolutionary history. At one end,

genes are essential and highly conserved after they originate. On the other end, genes are non-essential

and can be easily lost by descendants. Our results suggest that the gradient from essential to non-essential

is related to the inferred gene loss rates (Fig. 2C). To confirm this possible mechanism, we simulated an

idealized system where the true dynamics are controlled by a Markov process (See Supplemental). In this

simulation, we used a tree with a similar size and age, and a range of transition parameters which were

similar to the rates inferred in the empirical data. In addition, we used our simulation to test the accuracy

of predictions across the range of transition rates we observed. Our simulation confirms that the observed

discrepancy between frameworks can be linked to high loss rates, and provides further evidence to suggest that

conservation is a special case within the gain-loss framework where loss rates are extremely low. Our findings

also suggest that elevated loss rates (i.e., rates which lead to discrepancy) are common across most genes

(85%), and these findings are consistent with studies showing high levels of genome reduction throughout

evolutionary time26. Therefore, our findings suggest that the inferred gene loss rate is a quantitative measure

of gene evolutionary lability, and thus a can be used as a proxy for how essential a gene is for the overall

functioning of an organism.

To explore the predictions regarding evolutionary lability, we compared the predictions for specific genes.

For example, there are about 290 genes with a strong agreement between the frameworks (Fig. 2B). Some

of these genes are predicted to originate at the base of the tree and are involved in cellular processes such as

cellular growth, information processing, and central metabolism which are essential for all organisms. Others

include genes that originated later such as those involved with oxygenic photosynthesis and are known to

be essential for specific groups microorganisms (e.g., cyanobacteria). We would expect these genes to be

essential, and indeed they have low loss rates and strong agreement between the frameworks. In contrast,

there are > 2500 genes with disagreement between the frameworks. The majority of these genes (> 70%) are

involved with cellular metabolism and 17% are involved with environmental information processing. While

these genes are not needed for core cellular functions (i.e., DNA replication, cell division), they are used

to acquire resources and contend with environmental variation. We would expect these genes to be more

evolutionarily labile, and we find that they have high loss rates and low agreement between the frameworks.

Therefore, these genes may represent ways organisms experiment with new traits and diversify into new

ecological niches.
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To explore the predictions regarding the origin of innovations, we compared the predictions for genes within

broad pathways. Pathway characteristics (e.g., required for cell division) and the evolution through geolog-

ical time can be used to provide expectations for our inferences. For example, while some cellular processes

are required by all organisms and thus show strong agreement at the base of the tree (e.g., fitZ – encodes

the cell division ring) other processes range from group specific (e.g., mutH – encodes a sequence specific en-

donuclease) to evolutionarily labile (e.g., solR – a quorum-sensing system regulator) (Fig. 3A). Likewise, we

can leverage Earth’s geological history as independent evidence to test our predictions. For example, current

estimates suggest that life originated during the Hadean (> 4000 Mya)27, and that chemoautotrophic organ-

isms dominated during the Archaean (4000 – 2500 Mya)28. During the Archaean anoxygenic photosynthesis

originated29 and towards the end of the eon oxygenic photosynthesis originated thus ensuing the Great Ox-

idation Event28. This series of geological events qualitatively supports the ordering of our predictions (Fig.

3B). However, the discrepancy between the frameworks suggests that while oxygenic photosynthesis is essen-

tial for a specific bacterial group (i.e., cyanobacteria), anoxygenic photosynthesis is highly labile and often

lost by descendants. Together, our results qualitatively recapitulate the evolutionary history of microbial

traits and further suggest that the differences between frameworks is a signal of evolutionary lability.

Documenting the evolutionary history of traits also allows us to gain insights into the ecology and evolution

of organisms. For example, genome size and the number of metabolic pathways may distinguish generalists

and specialist organisms30. Furthermore, gene transition rates may provide evidence into evolutionary

strategies and high rates may be a signature of evolutionary diversification. Across genomes, we find a

strong positive linear relationship between the estimated gene loss rates and genome size (i.e., the number

of unique annotated genes) (Fig. 4). These findings suggest that larger genomes contain genes which, on

average, have higher loss rates and are thus more evolutionarily labile (Fig. 2C). Therefore, if genome size is

a signature of the generalist–specialist gradient, then generalists contain more evolutionarily labile genes and

specialists contain more physiological essential genes. These findings suggest that generalists are undergoing

ecological diversification through a process of trait experimentation while specialists are relying on conserved

functional genes.

In this study, we cataloged the evolutionary history of microbial traits. We explored two frameworks which

differ in their assumptions. We demonstrated that the framework which included loss met expectations for

microbial evolutionary history. Last, we found that organisms with large genomes contain genes with higher

loss rates. We interpret the estimated loss rate as a measure of trait necessity and therefore needed in a

generalizable evolutionary framework. As such, the conservation framework is best when used as a heuristic

to group extant organisms without direct evolutionary implications or assumptions about trait loss. While
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the gain-loss framework lacks mechanisms such as horizontal gene transfer, varying rates, and the non-

independence of trait gain and loss, it qualitatively recapitulates the evolutionary history of major metabolic

processes. In addition, while some traits may confer a change in diversification31, it is implausible that

this would be sustained indefinitely. Together, our results provide a tractable framework for understanding

microbial evolutionary history and describing the evolutionary underpinnings for ecological differences.

Methods

Genomes were downloaded from the Joint Genome Institute Integrated Microbial Genomes (JGI IMG)

data warehouse. Briefly, we downloaded the full list of publically available bacterial and archaeal genomes

(accessed April 2017, Supplemental Table 1). Using the JGI project ID, we searched the JGI project status

page for the database name and the names of any larger project databases. Using the JGI Genome Portal

API, we then searched for project archives and downloaded the most recent complete archive. We extracted

each archive and only included those representing genomes with KEGG annotations and high quality 16S

rRNA gene sequences (> 1200 bp). The 16S rRNA gene sequences were identified by searching the annotation

file (*.gff) for entries based on the following search criteria: ‘rRNA.*product=16S‘. We parsed the entries

for annotated gene IDs and searched the associated sequence file (*.fna) for the sequence entry. The KEGG

KO annotations were found in the KO table file associated with each genome (*.ko.tab.txt). We used KEGG

annotations because they are hierarchically organized into pathways and modules32. In total, 3179 genomes

met all the criteria to be included in our study and together these genomes contained 2950 orthologous genes

based on KEGG annotations. Database parsing and downloading was done using a custom automated script

which retrieved the required information and downloaded the genomes using the JGI API. Genome parsing

was done using a mixture of custom bash scripts and code implemented in R33.

Using the 16S rRNA genes, we created a representative phylogenetic tree. We aligned the 16S rRNA genes

based on the GreenGenes reference phylogeny (v. 13.8.99) using mothur34. We only included sequences

which aligned to the reference. We used FastTree to generate a phylogenetic tree assuming the general time

reversible model of nucleotide evolution35. We applied midpoint rooting to our tree and used treePL to

estimate divergence times36. We standardized the tree by setting the root at 4000 ± 200 Mya27, estimates

at this date should be regarded as evolving prior to the bacterial–archaeal divergence. To prevent bias

when comparing predictions to geological events, we did not internally calibrate our tree. Therefore, the

dates inferred in this study should only be used as qualitative estimates. To check the accuracy of our tree

reconstruction, we compared taxonomic assignments with tree topology.

We used KEGG annotations to infer the evolutionary history of traits. While genes do not represent
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phenotypic traits, they represent the genomic underpinning for traits and provide a standardized method

to compare organisms. We treated genes as discrete traits based on presence-absence. We then inferred

the evolutionary history using our proposed frameworks (Fig. 1). Under the conservation framework, we

identified the nodes where 90% of the downstream genomes contained the gene of interest18. Under the

gain-loss framework, we fit a continuous time discrete state Markov model to the observed trait states using

maximum likelihood estimation16. This is the commonly used Mk2 model and we used the joint likelihood

for maximum likelihood estimation. Other models of ancestral state reconstruction exist, including those

which allow for state dependent diversification rates31, but we assumed that changes in diversification rate

would not be sustained at the evolutionary timescale of our tree. Using the inferred rate parameters, we

estimated the probability of trait states at each node using the posterior probabilities at each internal node.

We identified the trait innovation as the first node at which the trait most likely went from absent to present

in a lineage using a posterior threshold of 0.5. Both methods were implemented in R using code adapted

from the custom ConsenTrait function18 and the fitMK function from the phytools R package37 in addition

to custom scripts.
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Figure 1: Trait innovations in the microbial tree of life. A The two phylogenetic frameworks for
trait innovation. Under the conservation framework traits are gained but not lost. Absent traits can either
be maintained with probability of A or gained at probability 1−A. Once a trait is gained, it is maintained
by descendants. Under the gain-loss framework traits are gained and lost. Absent traits can either be
maintained with probability A or gained at probability 1−A. Once a trait is gained, it can be maintained
at probability B or lost at probability 1−B. B Phylogenetic tree of bacteria (n = 3108) and archaea (n =
71). The tree is based on the 16S rRNA sequences from genomes in the IMG database. Gene annotations
based on the KEGG database were used to determine the presence of genes. Example genes are plotted at
the tips. Some genes (e.g., ftsZ : cell division ring) are found in almost all genomes. Other genes (e.g., nirK )
are abundant on the tree, but highly dispersed across taxa. Finally, some genes (e.g., amoA) are found in
only a few groups.
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Figure 2: Innovation predictions under the gain-loss and conservation frameworks. A: Com-
parison between the frameworks. Across genes, we find that gain-loss predictions are more ancestral
than those for conservation. The conservation framework identifies two major groups of genes. The first
group is at the base of the tree and contains 192 genes. This group includes genes such as ftsZ, dnaA,
GPI which are involved with cell division, DNA replication, and glycolysis. Other genes in this group are
involved with processes such as cell growth and division, translation, and oxidative phosphorylation. The
other major group in the conservation framework includes 2666 genes and they are predicted at more recent
nodes: median age 222 Mya and range from 1 to 1800 Mya with a strong positive skew. Unlike the first
group, most of these genes (95%) are associated with metabolism. In contrast, we find more variation in the
innovations predicted with the gain-loss framework. First, there is a group of 229 genes predicted at root,
with a 99% overlap with the conservation framework. In addition, we find major peaks of innovation around
3400, 2400, and 1800 Mya which correspond to 96, 519 and 327 genes respectively. Finally, we find a distri-
bution of 1577 recent innovations: median age 1200 Mya and min age 114 Mya. Similar to the conservation
framework, most genes in these groups are associated with metabolism. B: Agreement between the two
frameworks. The agreement between the two frameworks was calculated as the conservation framework
estimate divided by gain-loss framework estimate. If the two frameworks agree, then the agreement would
be equal to 1. Across genes, we find 290 genes with agreement between the two frameworks. This suggests
that once these genes evolve, they are maintained by descendants. Therefore, these genes appear to be
essential. However, for about 2500 genes the agreement is less than 1. This suggests that these genes are
not maintained after they originate. Genes with an agreement much less than 1 appear to be non-essential.
C: Lower agreement is associated with higher gene loss rate. Both loss rates and agreement were
log10 transformed and a linear regression model was used to determine the relationship between loss rate
and agreement. A significant negative relationship was found (F1,2796 = 3388, p < 0.001), suggesting that
the difference in agreement between the frameworks is related to the loss rate inferred by ancestral state
reconstruction.
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Figure 3: Predicted innovation dates for genes in various pathways. Example gene innovations
predicted under the conservation (red boxes) and gain-loss (gray boxes) frameworks are shown for cellular
processes (A) and photosynthesis (B). For some genes, there is a strong agreement between the two frame-
works and the predictions overlap (e.g., ftsZ ). For other genes, there is little agreement between the two
frameworks. For example, genes related to anoxygenic photosynthesis show a much earlier origin under the
gain-loss framework. In addition, predictions under the gain-loss framework are in better agreement with
geological evidence for the appearance of specific metabolic processes. For example, the Great Oxidation
Event is predicted to have taken place between 1800 and 2500 Mya29. Before this event, oxygen was a trace
element in the atmosphere and anaerobic processes dominated. In general, the predictions from the gain-loss
framework qualitatively recapitulate the ordering of these predictions.
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Figure 4: Larger genomes contain genes with a higher gene loss rate. There is a linear relationship
between the number of unique annotated genes in a genome and the median gene loss rate of the genes
contained in the genome. The loss rate of each gene is the maximum likelihood estimate for the gene
switching rate based on the ancestral state reconstruction. Loss rates were log10 transformed and a linear
regression model was used to determine the relationship between genome size and loss rate. A significant
positive relationship was found (F1,3123 = 8657, p < 0.001).
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