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Bacteria and Archaea represent the base of the evolutionary tree of life and contain the

vast majority of phylogenetic and functional diversity1,2. These microorganisms and their

traits directly impact ecosystems and human health3,4. As such, a focus on functional traits

has become increasingly common in microbial ecology and these trait-based approaches have

the potential to link microbial communities and their ecological function5,6. But what is miss-

ing is how, why, and in what order microorganisms acquired the traits we observe in the

present day. These are important questions because they relate to the evolution, selective

advantage, and trait similarity of extant organisms. Here, we reconstruct the evolutionary

history of microbial traits using genomic data. We use the geological timeline and physio-

logical expectations to provide independent evidence in support of this evolutionary history.

Finally, we show that gene transition rates can be used to make predictions about the size and

type of genes in a genome: generalist genomes comprise many labile genes while specialist

genomes comprise more highly conserved functional genes. Our results provide a framework

for understanding the evolutionary history of extant microorganisms, and provide insights

into the evolution, selective advantage, and phylogenetic patterns of microbial traits. We an-

ticipate that our work will improve our understanding of microbial trait variation and help

identify microbial functional groups. In doing so, the evolutionary history of microbial traits

will shed new light on our understanding of microbial communities in environmental and

human ecosystems.
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Global estimates predict upwards of 1012 bacterial and archaeal species7,8; however, the origin

and maintenance of traits that define their phenotypes remains largely unknown. Trait evolutionary

history, which captures these processes, is the foundation describing differences between species

and links evolutionary relatedness and ecological function9. The true evolutionary history is un-

known, but observed traits provide a window into evolutionary processes through their distribu-

tions across phylogenic trees. The simplest model would be that traits are conserved and therefore

maintained by descendants. As such, taxonomy and/or phylogeny could be used as a trait proxy

because specific traits would be conserved within distinct groups10,11. Here, we refer to this as the

conservation framework. This framework is common in microbial ecology5. It has been used to

predict traits10, identify functional groups12, and is often used to describing differences between

communities based on indicator taxa. A more complex model would be that traits can be gained

through innovation but also lost by descendants due to changes in selection and environmental

context13. In this model, the dynamics of trait gain and loss can be represented as a stochastic

process14,15. Here, we refer to this as the gain-loss framework. This framework is a common way

to infer ancestral states16 and to predict traits for unknown organisms17.

These frameworks differ in the trait history they predict, but the differences provide an op-

portunity to understand trait innovation and selection. For example, the conservation framework

assumes that closely related organisms have conserved traits and functions18,19. This assumption

leverages the hierarchical evolutionary ancestry of organisms and the idea that related organisms

should resemble each other20,21. In contrast, the gain-loss framework assumes that both trait gain

and loss are common evolutionary mechanisms that can confer fitness advantages22,23,24. While

there has not been a wide-scale quantitative comparison of these frameworks, there is no reason to

expect one framework across all traits. For example, while we know there is a basic set of essential

genes required for cellular function25, high levels of genome reduction have been documented26.

As such, it may be more informative to compare predictions across traits. For example, when

the frameworks agree, it would suggest that traits are essential and thus maintained by descendants

once they originate. In contrast, if the frameworks disagree then it would suggest that traits are less
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essential and can be lost by descendants. These traits would provide mechanisms for evolutionary

diversification between related species.

In this study, we use 3179 bacterial and archaeal genomes to explore trait innovation based on

individual genes. In total, 2950 orthologous genes were associated with the genome collection.

Genes represent the raw genetic information underlying traits; therefore, while not phenotypic

traits themselves, genes can be used to understand trait distributions. Using these genomes, we

describe microbial innovations using the frameworks outlined above and illustrated in Fig. 1.

Specifically, the conservation framework identifies phylogenetic nodes where 90% of the descen-

dent genomes contain a gene of interest18. In contrast, the gain-loss framework estimates the nodes

where traits first arose using a two-state Markov process, allowing for traits to be both acquired

and lost over time14. Using these predictions, we compare the inferred innovation dates across

genes to understand the evolutionary history and to make predictions regarding trait selection and

genome composition.

Across genes, we find that predictions under the gain-loss framework are more ancestral than

those for the conservation framework (Fig. 2A). However, there is a large range in the discrepancy

(Fig. 2B). This suggests that the frameworks are part of a spectrum describing gene evolutionary

history. At one end, genes are essential and highly conserved after they originate. On the other

end, genes are non-essential and can be easily lost by descendants. Our results suggest that the

essential to non-essential gradient is related to inferred gene loss rates (Fig. 2C). To confirm this

possible mechanism, we simulated an idealized system where the true dynamics are controlled by

a Markov process (See Supplemental). In this simulation, we used a tree with similar size and

age, and a range of transition parameters which were similar to the inferred rates. In addition, our

simulation tested the prediction accuracy across the range of transition rates we observed. Our

simulation confirms that the observed discrepancy can be linked to high loss rates, and provides

further evidence to suggest that the conservation framework is a special case within the gain-loss

framework where loss rates are extremely low. Our findings also suggest that loss rates which lead
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to discrepancy are common across most genes (85%), which is consistent with studies showing

high levels of genome reduction throughout evolutionary time26. Therefore, our findings suggest

that the inferred gene loss rate is a quantitative measure of gene evolutionary lability, and can be

used as a proxy for how essential a gene is for cellular function.

To explore the evolutionary lability predictions, we compared the predictions for specific genes.

For example, there are about 290 genes with a strong agreement between the frameworks (Fig. 2B).

Genes predicted to originate at the base of the tree are involved in cellular processes such as growth,

information processing, and central metabolism which are essential for all organisms. Likewise,

genes involved with oxygenic photosynthesis are known to be essential for specific groups of

microorganisms (i.e., cyanobacteria). We expect these genes to be essential, and indeed they have

low loss rates and strong agreement between the frameworks. In contrast, there are >2500 genes

with disagreement between the frameworks. The majority of these genes (>70%) are involved

with cellular metabolism and 17% are involved with environmental information processing. While

these genes are not needed for core cellular functions (e.g., DNA replication, cell division), they

are used to acquire resources and contend with environmental variation. We expect these genes

to be more evolutionarily labile, and we find that they have high loss rates and low agreement

between the frameworks. Therefore, these genes may represent ways organisms experiment with

new traits and diversify into new ecological niches.

To explore the predictions regarding the origin of innovations, we compared the predictions for

genes within broad pathways. Pathway characteristics (e.g., required for cell division) and Earth’s

geological history can be used to provide expectations for our inferences. For example, while

some cellular processes are required by all organisms and thus show strong agreement at the base

of the tree (e.g., fitZ – encodes the cell division ring) other processes range from group specific

(e.g., mutH – encodes a sequence specific endonuclease) to evolutionarily labile (e.g., solR – a

quorum-sensing system regulator) (Fig. 3A). Likewise, we can leverage Earth’s geological history

as independent evidence. For example, current estimates suggest that life originated during the
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Hadean (> 4000 Mya)27, and that chemoautotrophic organisms dominated during the Archaean

(4000 – 2500 Mya)28. During the Archaean anoxygenic photosynthesis originated29 and towards

the end of the eon oxygenic photosynthesis originated thus ensuing the Great Oxidation Event28.

This series of geological events qualitatively supports the ordering of our predictions (Fig. 3B).

Furthermore, the discrepancy between the frameworks suggests that while oxygenic photosynthe-

sis is essential for a specific group (i.e., cyanobacteria), anoxygenic photosynthesis is highly labile

and often lost by descendants. Together, our results qualitatively recapitulate the evolutionary his-

tory of microbial traits and further suggest that the differences between frameworks is a signal of

evolutionary lability.

Documenting the evolutionary history of traits also allows us to gain insights into the ecology

and evolution of organisms. For example, genome size and the number of metabolic pathways may

distinguish generalists and specialist organisms30. Furthermore, gene transition rates may provide

evidence into evolutionary strategies and high rates may be a signature of evolutionary diversifica-

tion. Across genomes, we find a strong positive linear relationship between the estimated gene loss

rates and genome size (Fig. 4). These findings suggest that larger genomes contain genes which,

on average, have higher loss rates and are thus more evolutionarily labile (Fig. 2C). Therefore, if

genome size is a signature of the generalist–specialist gradient, then generalists contain more evo-

lutionarily labile genes and specialists contain more physiological essential genes. Furthermore,

while generalists maintain more genes, they are not hoarding traits but rather experimenting with

new ecological functions. These findings suggest that generalists are undergoing ecological di-

versification through a process of trait experimentation while specialists are relying on conserved

functional genes.

In this study, we cataloged the evolutionary history of microbial traits. We explored two frame-

works which differ in their assumptions. We demonstrated that the framework which included

loss met expectations for microbial evolutionary history. Last, we found that organisms with large

genomes contain genes with higher loss rates. We interpret the estimated loss rate as a measure
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of trait necessity and therefore needed in a generalizable evolutionary framework. As such, the

conservation framework is best when used as a heuristic to group extant organisms without direct

evolutionary implications or assumptions about trait loss. While the gain-loss framework lacks

mechanisms such as horizontal gene transfer, varying rates, and the non-independence of trait gain

and loss, it qualitatively recapitulates the evolutionary history of major metabolic processes. In

addition, while some traits may confer changes in diversification rates31, it is implausible that

these would be sustained indefinitely. Together, our results provide a tractable framework for

understanding microbial evolutionary history and describing the evolutionary underpinnings for

ecological differences.

Methods

Genomes were downloaded from the Joint Genome Institute (JGI) Integrated Microbial Genomes

(IMG) data warehouse. Briefly, we downloaded the full list of publicly available bacterial and

archaeal genomes (accessed April 2017, Supplemental Table 1). Using the JGI project ID, we

searched the JGI project status page for the database name and the names of any larger project

databases. Using the JGI Genome Portal API, we then searched for project archives and down-

loaded the most recent complete archive. We extracted each archive and only included those rep-

resenting genomes with KEGG annotations and high quality 16S rRNA gene sequences (> 1200

bp). The 16S rRNA gene sequences were identified by searching the annotation file (*.gff) for

entries based on the following search criteria: ‘rRNA.*product=16S‘. We parsed the entries for

annotated gene IDs and searched the associated sequence file (*.fna) for the sequence entry. The

KEGG KO annotations were found in the KO table file associated with each genome (*.ko.tab.txt).

We used KEGG annotations because they are hierarchically organized into pathways and mod-

ules32. In total, 3179 genomes met all the criteria to be included in our study and together these

genomes contained 2950 orthologous genes based on KEGG annotations. Database parsing and

downloading was done using a custom automated script which retrieved the required information
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and downloaded the genomes using the JGI API. Genome parsing was done using a mixture of

custom bash scripts and code implemented in R33.

Using the 16S rRNA genes, we created a representative phylogenetic tree. We aligned the 16S

rRNA genes based on the GreenGenes reference phylogeny (v. 13.8.99) using mothur34. We only

included sequences which aligned to the reference. We used FastTree to generate a phylogenetic

tree assuming the general time reversible model of nucleotide evolution35. We applied midpoint

rooting to our tree and used treePL to estimate divergence times36. We standardized the tree by

setting the root at 4000 ± 200 Mya27, estimates at this date should be regarded as evolving prior

to the bacterial–archaeal divergence. To prevent bias when comparing predictions to geological

events, we did not internally calibrate our tree. Therefore, the dates inferred in this study should

only be used as qualitative estimates. To check the accuracy of our tree reconstruction, we com-

pared taxonomic assignments with tree topology.

We used KEGG annotations to infer the evolutionary history of traits. While genes do not

represent phenotypic traits, they represent the genomic underpinning for traits and provide a stan-

dardized method to compare organisms. We treated genes as discrete traits based on presence-

absence. We then inferred the evolutionary history using our proposed frameworks (Fig. 1). Under

the conservation framework, we identified the nodes where 90% of the downstream genomes con-

tained the gene of interest18. Under the gain-loss framework, we fit a continuous time discrete

two-state Markov model to the observed trait states using maximum likelihood estimation16. This

is the commonly used Mk2 model and we used the joint likelihood for maximum likelihood esti-

mation. Other models of ancestral state reconstruction exist, including those which allow for state

dependent diversification rates31, but we assumed that changes in diversification rate would not be

sustained at the evolutionary timescale of our tree. Using the inferred rate parameters, we esti-

mated the probability of trait states at each node using the posterior probabilities at each internal

node. We identified the trait innovation as the first node at which the trait most likely went from

absent to present in a lineage using a posterior threshold of 0.5. Both methods were implemented
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in R using code adapted from the custom ConsenTrait function18 and the fitMK function from the

phytools R package37 in addition to custom scripts.
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Figure 1: Trait innovations in the microbial tree of life. A The two frameworks for trait innova-
tion. Under the conservation framework traits are gained but not lost. Absent traits are maintained
with probability of A or gained at probability 1 - A. Once a trait is gained, it is maintained by de-
scendants. Under the gain-loss framework traits are gained and lost. Absent traits are maintained
with probability A or gained at probability 1 - A. Once a trait is gained, it is maintained at prob-
ability B or lost at probability 1 - B. B Phylogenetic tree of bacteria (n = 3108) and archaea (n =
71). The tree is based on the 16S rRNA sequences. Example genes are plotted at the tips. Some
genes (e.g., ftsZ: cell division ring) are found in almost all genomes. Other genes (e.g., nirK) are
abundant on the tree, but highly dispersed across taxa. Finally, some genes (e.g., amoA) are found
in only a few groups.
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Figure 2: Innovation predictions under the gain-loss and conservation frameworks. A: Com-
parison between frameworks. Across genes, we find that gain-loss (GLF) predictions are more
ancestral than those for conservation (CF). The CF identifies two major groups of genes. The first
group is at the tree root contains 192 genes, including ftsZ (cell division), dnaA (DNA replication),
GPI (glycolosis), as well as other genes for cell growth and division, translation, and oxidative
phosphorylation. The second group includes 2666 genes at more recent nodes (∼ 222 Mya). Most
(95%) are associated with metabolism. In contrast, the GLF predicts more variation. First, a group
of 229 genes is predicted at root, with a 99% overlap with the CF. We find peaks of innovation
around 3400, 2400, and 1800 Mya. Finally, we find 1577 recent innovations (∼ 1200 Mya). Sim-
ilar to the CF, most are associated with metabolism. B: Agreement between the frameworks.
The agreement between the frameworks was calculated as the CF estimate divided by GLF esti-
mate. If the frameworks agree, then the agreement would be equal to 1. Across genes, we find
290 genes with agreement between the frameworks. This suggests that once these genes evolve,
they are maintained by descendants. However, about 2500 genes have an agreement below 1.
This suggests that these genes are not maintained after they originate. C: Lower agreement is
associated with higher gene loss rate. Loss rates and agreement were log10 transformed and a
linear regression model was used to determine the relationship between loss rate and agreement.
A significant negative relationship was found (F1,2796 = 3388, p < 0.001), suggesting that the dif-
ference in agreement between the frameworks is related to the loss rate inferred by ancestral state
reconstruction.
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Figure 3: Predicted innovation dates for genes in various pathways. Example gene innovations
predicted under the conservation (red boxes) and gain-loss (gray boxes) frameworks are shown
for cellular processes (A) and photosynthesis (B). For some genes, there is a strong agreement
between the two frameworks and the predictions overlap (e.g., ftsZ). For other genes, there is little
agreement between the frameworks. For example, genes related to anoxygenic photosynthesis
show a much earlier origin under the gain-loss framework. In addition, predictions under the gain-
loss framework are in better agreement with geological evidence for the appearance of specific
metabolic processes. For example, the Great Oxidation Event is predicted to have taken place
between 1800 and 2500 Mya29. Before this event, oxygen was a trace element in the atmosphere
and anaerobic processes dominated. In general, the predictions from the gain-loss framework
qualitatively recapitulate the ordering of these predictions.
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Figure 4: Larger genomes contain genes with a higher gene loss rate. There is a linear relation-
ship between the number of unique annotated genes in a genome and the median gene loss rate of
the genes contained in the genome. The loss rate of each gene is the maximum likelihood estimate
for the gene switching rate based on the ancestral state reconstruction. Loss rates were log10 trans-
formed and a linear regression model was used to determine the relationship between genome size
and loss rate. A significant positive relationship was found (F1,3123 = 8657, p < 0.001).
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