1 Improved genome assembly and annotation for the rock pigeon (*Columba livia*)

- 2
- 3 Carson Holt^{*,†}, Michael Campbell^{*,1}, David A. Keays[‡], Nathaniel Edelman[‡], Aurélie
- 4 Kapusta^{*,†}, Emily Maclary[§], Eric Domyan^{§,**}, Alexander Suh^{††}, Wesley C. Warren^{‡‡},
- 5 Mark Yandell^{*,†}, M. Thomas P. Gilbert^{§§,***}, Michael D. Shapiro[§]
- 6 * Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- 7 † USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
- 8 **‡** Research Institute of Molecular Pathology, Vienna, Austria
- 9 § Department of Biology, University of Utah, Salt Lake City, UT, USA
- 10 ** Department of Biology, Utah Valley University, Orem, UT, USA
- 11 ⁺⁺ Department of Evolutionary Biology (EBC), University of Uppsala, Uppsala, Sweden
- 12 ^{‡‡} Genome Institute at Washington University, St. Louis, MO, USA
- 13 §§ Natural History Museum of Denmark, University of Copenhagen, Copenhagen,
- 14 Denmark
- 15 *** Norwegian University of Science and Technology, University Museum, 7491
- 16 Trondheim, Norway
- 17 1 Current address: Division of Plant Biology, Cold Spring Harbor Laboratory, Cold
- 18 Spring Harbor, NY, USA
- 19

20 Accession numbers:

- 21 BioProject: PRJNA167554
- 22 Genome: This Whole Genome Shotgun project has been deposited at
- 23 DDBJ/ENA/GenBank under the accession AKCR00000000. The version described in
- this paper is version AKCR02000000.
- 25 RNAseq data: SAMN07417936, SAMN07417937, SAMN07417938, SAMN07417939,
- 26 SAMN07417940, SAMN07417941, SAMN07417942, SAMN07417943
- 27

28 **Running title:**

- 29 "HiRise genome assembly of rock pigeon"
- 30

31 Keywords:

- 32 Columba livia, rock pigeon, HiRise assembly, MAKER annotation
- 33
- 34 Author for Correspondence:
- 35 Michael D. Shapiro, Department of Biology, University of Utah, 257 S 1400 E, Salt Lake
- 36 City, UT 84108, <u>shapiro@biology.utah.edu</u>, +1 801 581 5690
- 37

38 Abstract

39 The domestic rock pigeon (Columba livia) is among the most widely distributed and 40 phenotypically diverse avian species. This species is broadly studied in ecology, genetics, 41 physiology, behavior, and evolutionary biology, and has recently emerged as a model for 42 understanding the molecular basis of anatomical diversity, the magnetic sense, and other 43 key aspects of avian biology. Here we report an update to the C. livia genome reference 44 assembly and gene annotation dataset (Cliv 1.0). Greatly increased scaffold lengths in 45 the updated reference assembly, along with an updated annotation set, provide improved 46 tools for evolutionary and functional genetic studies of the pigeon, and for comparative 47 avian genomics in general.

48

49 Introduction

Intensive selective breeding of the domestic rock pigeon (*Columba livia*) has resulted in over 350 breeds with extreme differences in morphology and behavior (Levi 1986; Domyan and Shapiro 2017). The large phenotypic differences among different breeds make them a useful model for studying the genetic basis of radical phenotypic changes, which are more typically found among different species rather than within a single species.

56

In genetic and genomic studies of *C. livia*, linkage analysis is important for identifying genotypes associated with specific phenotypic traits of interest (Domyan and Shapiro 2017); however, short scaffold sizes in the Cliv_1.0 draft reference assembly (Shapiro et al. 2013) hinder computationally-based comparative analyses. Short scaffolds also make

61	it more difficult to identify structural changes, such as large insertions or deletions, that	
62	are responsible for traits of interest (Domyan et al. 2014; Kronenberg et al. 2015).	
63		
64	Here we present the Cliv_2.0 reference assembly and an updated gene annotation set. The	
65	new assembly greatly improves scaffold length over the previous draft reference	
66	assembly, and updated gene annotations show improved concordance with both	
67	transcriptome and protein homology evidence.	
68		

69 Methods & Materials

70 *Genome sequencing and assembly*

Genomic DNA from a female Danish tumbler pigeon (full sibling of the male bird used for the original Cliv_1.0 assembly (Shapiro et al. 2013)) was used to produce long-range sequencing libraries using the "Chicago" (Putnam et al. 2016) method by Dovetail Genomics (Santa Cruz, CA). Two Chicago libraries were prepared and sequenced on the Illumina HiSeq platform to a final physical coverage (1-50 kb pairs) of 390x (see Table 1).

77

Scaffolding was performed by Dovetail Genomics using HiRise assembly software and the Cliv_1.0 assembly as input. Briefly, Chicago reads were aligned to the input assembly to identify and mask repetitive regions, and then a likelihood model was applied to identify mis-joins and score prospective joins for scaffolding. The final assembly was then filtered for length and gaps according to NCBI submission specifications.

84 *Genome annotation*

85	The pre-existing reference Gnomon (Souvorov et al. 2010) derived gene models for the
86	Cliv_1.0 assembly (GCA_000337935.1) were mapped onto the updated Cliv_2.0
87	reference assembly using direct alignment of transcript FASTA entries. This was done
88	using the alignment workflow of the genome annotation pipeline MAKER (Cantarel et al.
89	2008; Holt and Yandell 2011), which first seeds alignments using BLASTN (Altschul et
90	al. 1990) and then polishes the alignments around splice sites using Exonerate (Slater and
91	Birney 2005). Results were then filtered to remove alignments that had an overall match
92	of less than 90% of the original model (match is calculated as percent identity multiplied
93	by percent end-to-end coverage).
94	
95	For final annotation, MAKER was allowed to identify <i>de novo</i> gene models that did not
96	overlap the aligned Gnomon models. Protein evidence sets used by MAKER included
97	annotated proteins from Pterocles gutturalis (yellow-throated sandgrouse) (Zhang et al.
98	2014) and Gallus gallus (chicken) (International Chicken Genome Sequencing 2004)
99	together with all proteins from the UniProt/Swiss-Prot database (Bairoch and Apweiler
100	2000; UniProt 2007). The transcriptome evidence sets for MAKER included Trinity
101	(Grabherr et al. 2011) mRNA-seq assemblies from multiple C. livia breeds and tissues
102	(methods for transcriptome assembly are described below). Gene predictions were
103	produced within MAKER by Augustus (Stanke and Waack 2003; Stanke et al. 2008)
104	trained against the Cliv_1.0 Gnomon gene models. Repetitive elements in the genome
105	were identified using a custom repeat library.
106	

107 *Custom repeat library*

108	A repeat library for C. livia was built by combining libraries from existing avian species
109	(Zhang et al. 2014) together with with repeats identified <i>de novo</i> for the Cliv_2.0
110	assembly. De novo repeat identification was performed using RepeatScout (Price et al.
111	2005) with default parameters (>3 copies) to generate consensus repeat sequences.
112	Identified repeats with greater than 90% sequence identity and a minimum overlap of 100
113	bp were assembled using Sequencher (Yokouchi et al. 1993). Repeats were classified into
114	transposable element (TE) families using multiple lines of evidence, including homology
115	to known elements, presence of terminal inverted repeats (TIRs), and detection of target
116	site duplications (TSDs). Homology-based evidence was obtained using RepeatMasker
117	(Smit et al. 1996), as well as the homology module of the TE classifying tool RepClass
118	(Feschotte et al. 2009). RepClass was also used to identify signatures of transposable
119	elements (TIRs, TSDs). We then eliminated non-TE repeats (simple repeats or gene
120	families), using custom Perl scripts (available at https://github.com/4ureliek/ReannTE).
121	
122	In our custom repeat analysis, using the script ReannTE_FilterLow.pl, consensus
123	sequences were labeled as simple repeats or low complexity repeats if 80% of their length
124	could be annotated as such by RepeatMasker (the library was masked with the option -
125	noint). Next using the ReannTE_Filter-mRNA.pl script, consensus sequences were
126	interrogated against RefSeq (Pruitt et al. 2007) mRNAs (as of March 7th 2016) with
127	TBLASTX (Altschul et al. 1990). Sequences were eliminated from the library when: (i)
128	the e-value of the hit was lower than 1E-10; (ii) the consensus sequence was not
129	annotated as a TE; and (iii) the hit was not annotated as a transposase or an unclassified

130	protein. The script ReannTE_MergeFasta.pl was then used to merge our library with a
131	library combining RepeatModeler (Smit and Hubley 2008) outputs from 45 bird species
132	(Kapusta et al. 2017) and complemented with additional avian TE annotations
133	(International Chicken Genome Sequencing 2004; Warren et al. 2010; Bao et al. 2015).
134	Merged outputs were then manually inspected to remove redundancy, and all DNA and
135	RTE class transposable elements were removed and replaced with manually curated
136	consensus sequences.
137	
138	Transcriptomics Methods
139	RNA was extracted from adult tissues (brain, retina, subepidermis, cochlear duct, spleen,
140	olfactory epithelium) of the racing homer breed, and one whole embryo each of a racing
141	homer and a parlor roller (approximately embryonic stage 25 (Hamburger and Hamilton
142	1951)). RNA-seq libararies were prepared and sequenced using 100-bp paired-end
143	sequencing on the Illumina HiSeq 2000 platform at the Research Institute of Molecular
144	Pathology, Vienna (adult tissues), and the Genome Institute at Washington University, St.
145	Louis (embryos). RNA-seq data generated for the Cliv_1.0 annotation were also
146	downloaded from the NCBI public repository for de novo re-assembly. Accession
147	numbers for the public data are SRR521357 (Danish tumbler heart), SRR521358 (Danish

148 tumbler liver), SRR521359 (Oriental frill heart), SRR521360 (Oriental frill liver),

149 SRR521361 (Racing homer heart), and SRR521362 (Racing homer liver).

150

151 Each FASTQ file was processed with FastQC (http://www.bioinformatics.babraham.ac.
152 uk/projects/fastqc/) to assess quality. When FastQC reported overrepresentation of

153 Illumina adapter sequences, we trimmed these sequences with fastx_clipper from the 154 FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). We used FASTX-Toolkit for 155 two additional functions: runs of low quality bases at the start of reads were trimmed with 156 fastx_trimmer when necessary (quality cutoff of -Q 33), and reads were then trimmed 157 with fastq_quality_trimmer (-Q 33). Finally, each pair of sequence files was assembled 158 with Trinity (Grabherr et al. 2011) version r20131110 using the --jaccard_clip option.

159

160 *Linkage map construction and anchoring to current assembly*

Genotyping by sequencing (GBS) data was generated, trimmed, and filtered as previously described (Domyan et al. 2016). Reads were mapped to the Cliv_2.0 assembly using Bowtie2 (Langmead and Salzberg 2012). Genotypes were called using Stacks (Catchen et al. 2011), with a minimum read-depth cutoff of 10. Thresholds for automatic corrections were set using the parameters -min_hom_seqs 10, --min_het_seqs 0.01, --max_het_seqs 0.15. Sequencing coverage and genotyping rate varied between individuals, and birds with genotyping rates in the bottom 25% were excluded from map assembly.

168

Genetic map construction was performed using R/qtl (www.rqtl.org) (Broman et al. 2003). For autosomal markers, markers showing segregation distortion (Chi-square, p < 0.01) were eliminated. Sex-linked scaffolds were assembled and ordered separately, due to differences in segregation pattern for the Z-chromosome. Z-linked scaffolds were identified by assessing sequence similarity and gene content between pigeon scaffolds and the Z-chromosome of the annotated chicken genome (Ensembl Gallus_gallus-5.0).

176 Pairwise recombination frequencies were calculated for all autosomal and Z-linked 177 markers. Missing data were imputed using "fill.geno" with the method "no dbl XO". 178 Duplicate markers were identified and removed. Within individual scaffolds, R/Otl 179 functions "droponemarker" and "calc.errorlod" were used to assess genotyping error. 180 Markers were removed if dropping the marker led to an increased LOD score, or if 181 removing a non-terminal marker led to a decrease in length of >10 cM that was not 182 supported by physical distance. Individual genotypes were removed if they showed with error LOD scores >5 (Lincoln and Lander 1992). Linkage groups were assembled from 183 184 2960 autosomal markers and 232 Z-linked markers using the parameters (max.rf 0.1, 185 min.lod 6). In the rare instance that single scaffolds were split into multiple linkage 186 groups, linkage groups were merged if supported by recombination frequency data; these instances typically reflected large physical gaps between markers on a single scaffold. 187 188 Scaffolds in the same linkage group were manually ordered based on calculated 189 recombination fractions and LOD scores.

190

191 To compare the linkage map to the prior assembly (Cliv 1.0), each 90-bp locus 192 containing a genetic marker was parsed from the Stacks output file 193 "catalogXXX tags.tsv" and queried to the Cliv 1.0 assembly using Nucleotide-194 Nucleotide blast (v2.6.0+) with the parameters -max target seqs 1 - max hsps 1.3175 of 195 the 3192 loci (99.47%) from the new assembly had a BLAST hit with an E-value < 4e-24 196 and were retained.

197

198 *Data availability*

199	This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under
200	the accession AKCR00000000. The version described in this paper is version
201	AKCR02000000. RNA-seq data are deposited in the SRA database with the BioSample
202	accession numbers SAMN07417936-SAMN07417943. Assembly and RNA-seq data are
203	publicly available in NCBI databases under BioProject PRJNA167554.
204	
205	Results and Discussion
206	The final reference assembly is 1,108,534,737 base pairs in length and consists of 15,057
207	scaffolds (Table 1). A total of 1,015 scaffolds contain a gene annotation. Completion
208	analysis of the assembly using BUSCO (Simao et al. 2015) suggests that Cliv_2.0 is
209	72.9-86.2% complete which is nearly identical to the Cliv_1.0 assembly estimate of 72.3-
210	86.4% (Table 2). Thus, we found no significant changes to assembly completeness
211	between the two assemblies. The major improvement to the Cliv_2.0 assembly is rather
212	an increase in scaffold length (Fig. 1a). Overall, the N50 scaffold length increased to 14.3
213	megabases compared to 3.15 megabases for the previous reference assembly, a greater
214	than 4-fold increase. Recently, Damas et al. (Damas et al. 2017) used computational
215	methods and universal avian bacterial artificial chromosome (BAC) probes to achieve
216	chromosome-level scaffolding using the Cliv_1.0 assembly as input material; however,
217	this assembly is currently unannotated.
218	
219	The new assembly joins scaffolds that we knew were adjacent but were separated
220	previously (see Table S1 for full catalog of positions of the original assembly in the new

assembly, and Table S2 for full catalog of breaks in the original assembly to form the

222	new assembly). For example, we previously determined that Cliv_1.0 Scaffolds 70 and
223	95 were joined based on genetic linkage data from a laboratory cross (Domyan et al.
224	2016). These two sequences are now joined into a single scaffold in the Cliv_2.0
225	assembly (see Table S3 for positions of genetic markers in Cliv_1.0 and Cliv_2.0). At
226	least one gene model (RefSeq LOC102093126), which was previously split across two
227	contigs, has now been unified into a single model on a single scaffold.
228	
229	The updated annotation set contains 15,392 gene models encoding 18,966 transcripts (see
230	Table 3). This represents only a minor update of the reference annotation set as 94.7% of
231	previous models were mapped forward nearly unmodified (90% exact match for 14,898
232	out of 15,724 previous gene models) and only 494 new gene models were added to the
233	Cliv_2.0 annotation set (see Table 4).
234	
235	The updated annotation set shows a modest improvement in concordance with aligned
236	evidence datasets from mRNA-seq and cross species protein homology evidence relative
237	to the Cliv_1.0 set as measured by Annotation Edit Distance (AED) (Eilbeck et al. 2009;
238	Holt and Yandell 2011). As a result, transcript models in the Cliv_2.0 annotation tend to
239	have lower AED values than the Cliv_1.0 set (Figure 2; the CDF curve is shifted to the
240	left). Lower AED values indicate greater model concordance with aligned transcriptome
241	and protein homology data. Furthermore, the Cliv_2.0 dataset displays greater transcript

- counts in every AED bin despite having slightly fewer transcripts overall compared to the
- 243 Cliv_1.0 dataset (Table S4). The higher bin counts indicate that lower AED values are

not solely a result of removing unsupported models from the annotation set, but rathersuggest that evidence concordance has improved overall.

246

-	
247	The improved scaffold lengths as well as updated gene model annotations should further
248	empower ongoing studies to identify genes responsible for phenotypic traits of interest
249	and improve detection of regions under selection due to longer scaffolds. We also expect
250	to be able to better identify large deletions and other structural variants responsible for
251	specific phenotypes now that they can be more clearly mapped to longer scaffolds.
252	Finally, the new transcriptomic data provides tissue-specific expression profiles for
253	several adult tissue types and an important embryonic stage for the morphogenesis of
254	limbs, craniofacial structures, skin, and other tissues.
255	
256	Acknowledgements
257	We thank Dovetail Genomics for their aid in scaffolding the assembly, and Julia
258	Carleton, and Anna Vickrey for technical support. This work was supported by National

259 Science Foundation grant DEB1149160 and National Institutes of Health (NIH) grant

260 R01GM115996 to MDS; NSF EAGER grant IOS 1561337 to MY; a European Research

261 Council starting grant 336724 and Austrian Science Fund (FWF) grant Y726 to DAK;

and European Research Council Consolidator grant 681396 to MTPG. We gratefully

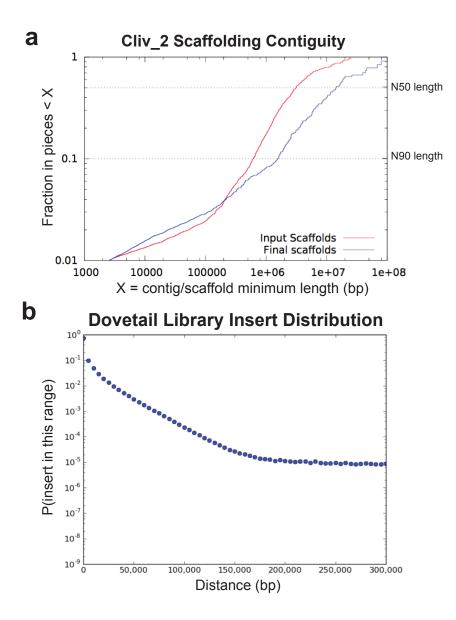
acknowledge research support from Boehringer Ingelheim at the Research Institute of

264 Molecular Pathology, and support and resources from the Center for High Performance

265 Computing at the University of Utah.

266

267


268 References

269	Altschul, S. F., W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. 1990. Basic Local			
270	Alignment Search Tool. Journal of Molecular Biology 215:403-410.			
271	Bairoch, A. and R. Apweiler. 2000. The SWISS-PROT protein sequence database and its			
272	supplement TrEMBL in 2000. Nucl. Acids Res. 28:45-48.			
273	Bao, W., K. K. Kojima, and O. Kohany. 2015. Repbase Update, a database of repetitive			
274	elements in eukaryotic genomes. Mob DNA 6:11.			
275	Broman, K., H. Wu, S. Sen, and G. Churchill. 2003. R/qtl: QTL mapping in experimental			
276	crosses. Bioinformatics 19:889-890.			
277	Cantarel, B. L., I. Korf, S. M. C. Robb, G. Parra, E. Ross, B. Moore, C. Holt, A. Sanchez			
278	Alvarado, and M. Yandell. 2008. MAKER: An easy-to-use annotation pipeline			
279	designed for emerging model organism genomes. Genome Res. 18:188-196.			
280	Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait. 2011.			
281	Stacks: building and genotyping loci de novo from short-read sequences. G3			
282	1:171-182.			
283	Damas, J., R. O'Connor, M. Farre, V. P. E. Lenis, H. J. Martell, A. Mandawala, K.			
284	Fowler, S. Joseph, M. T. Swain, D. K. Griffin, and D. M. Larkin. 2017.			
285	Upgrading short-read animal genome assemblies to chromosome level using			
286	comparative genomics and a universal probe set. Genome Res 27:875-884.			
287	Domyan, E. T., M. W. Guernsey, Z. Kronenberg, S. Krishnan, R. E. Boissy, A. I.			
288	Vickrey, C. Rodgers, P. Cassidy, S. A. Leachman, J. W. Fondon, 3rd, M. Yandell,			
289	and M. D. Shapiro. 2014. Epistatic and combinatorial effects of pigmentary gene			
290	mutations in the domestic pigeon. Curr Biol 24:459-464.			
291	Domyan, E. T., Z. Kronenberg, C. R. Infante, A. I. Vickrey, S. A. Stringham, R. Bruders,			
292	M. W. Guernsey, S. Park, J. Payne, R. B. Beckstead, G. Kardon, D. B. Menke, M.			
293	Yandell, and M. D. Shapiro. 2016. Molecular shifts in limb identity underlie			
294	development of feathered feet in two domestic avian species. eLife 5:e12115.			
295	Domyan, E. T. and M. D. Shapiro. 2017. Pigeonetics takes flight: Evolution,			
296	development, and genetics of intraspecific variation. Dev Biol 427:241-250.			
297	Eilbeck, K., B. Moore, C. Holt, and M. Yandell. 2009. Quantitative measures for the			
298	management and comparison of annotated genomes. BMC Bioinformatics 10:67.			
299	Feschotte, C., U. Keswani, N. Ranganathan, M. L. Guibotsy, and D. Levine. 2009.			
300	Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the			
301	classification of transposable elements in eukaryotic genomes. Genome Biol Evol			
302	1:205-220.			
303	Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X.			
304	Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen,			
305	A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh,			
306	N. Friedman, and A. Regev. 2011. Full-length transcriptome assembly from			
307	RNA-Seq data without a reference genome. Nature biotechnology 29:644-652.			
308	Hamburger, V. and H. L. Hamilton. 1951. A series of normal stages in the development			
309	of the chick embryo. Journal of Morphology 88:49-92.			

310	Holt, C. and M. Yandell. 2011. MAKER2: an annotation pipeline and genome-database
311	management tool for second-generation genome projects. BMC Bioinformatics
312	12:491.
313	International Chicken Genome Sequencing, C. 2004. Sequence and comparative analysis
314	of the chicken genome provide unique perspectives on vertebrate evolution.
315	Nature 432:695-716.
316	Kapusta, A., A. Suh, and C. Feschotte. 2017. Dynamics of genome size evolution in birds
317	and mammals. Proceedings of the National Academy of Sciences 114:E1460-
318	E1469.
319	Kronenberg, Z. N., E. J. Osborne, K. R. Cone, B. J. Kennedy, E. T. Domyan, M. D.
320	Shapiro, N. C. Elde, and M. Yandell. 2015. Wham: Identifying Structural
321	Variants of Biological Consequence. PLoS Comput Biol 11:e1004572.
322	Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat
323	Methods 9:357-359.
324	Levi, W. M. 1986. The Pigeon (Second Revised Edition). Levi Publishing Co., Inc.,
325	Sumter, S.C.
326	Lincoln, S. E. and E. S. Lander. 1992. Systematic detection of errors in genetic linkage
327	data. Genomics 14:604-610.
328	Price, A. L., N. C. Jones, and P. A. Pevzner. 2005. De novo identification of repeat
329	families in large genomes. Bioinformatics 21 Suppl 1:i351-358.
330	Pruitt, K. D., T. Tatusova, and D. R. Maglott. 2007. NCBI reference sequences (RefSeq):
331	a curated non-redundant sequence database of genomes, transcripts and proteins.
332	Nucleic Acids Res:D61 - 65.
333	Putnam, N. H., B. L. O'Connell, J. C. Stites, B. J. Rice, M. Blanchette, R. Calef, C. J.
334	Troll, A. Fields, P. D. Hartley, C. W. Sugnet, D. Haussler, D. S. Rokhsar, and R.
335	E. Green. 2016. Chromosome-scale shotgun assembly using an in vitro method
336	for long-range linkage. Genome Res 26:342-350.
337	Shapiro, M. D., Z. Kronenberg, C. Li, E. T. Domyan, H. Pan, M. Campbell, H. Tan, C. D.
338	Huff, H. Hu, A. I. Vickrey, S. C. Nielsen, S. A. Stringham, H. Hu, E. Willerslev,
339	M. T. Gilbert, M. Yandell, G. Zhang, and J. Wang. 2013. Genomic diversity and
340	evolution of the head crest in the rock pigeon. Science 339:1063-1067.
341	Simao, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov.
342	2015. BUSCO: assessing genome assembly and annotation completeness with
343	single-copy orthologs. Bioinformatics 31:3210-3212.
344	Slater, G. and E. Birney. 2005. Automated generation of heuristics for biological
345	sequence comparison. BMC Bioinformatics 6:31.
346	Smit, A. F. and R. Hubley. 2008. RepeatModeler Open-1.0
347	http://www.repeatmasker.org/.
348	Smit, A. F., R. Hubley, and P. Green. 1996. RepeatMasker Open-3.0
349	http://www.repeatmasker.org/.
350	Souvorov, A., Y. Kapustin, B. Kiryutin, V. Chetvernin, T. Tatusova, and D. Lipman.
351	2010. Gnomon – NCBI eukaryotic gene prediction tool. NCBI.
352	Stanke, M., M. Diekhans, R. Baertsch, and D. Haussler. 2008. Using native and
353	syntenically mapped cDNA alignments to improve de novo gene finding.
354	Bioinformatics 24:637-644.

355	Stanke, M. and S. Waack. 2003. Gene prediction with a hidden Markov model and a new
356	intron submodel. Bioinformatics 19:ii215-225.
357	UniProt, C. 2007. The Universal Protein Resource (UniProt). Nucleic Acids Res:D193 -
358	197.
359	Warren, W. C., D. F. Clayton, H. Ellegren, A. P. Arnold, L. W. Hillier, A. Kunstner, S.
360	Searle, S. White, A. J. Vilella, S. Fairley, A. Heger, L. Kong, C. P. Ponting, E. D.
361	Jarvis, C. V. Mello, P. Minx, P. Lovell, T. A. Velho, M. Ferris, C. N.
362	Balakrishnan, S. Sinha, C. Blatti, S. E. London, Y. Li, Y. C. Lin, J. George, J.
363	Sweedler, B. Southey, P. Gunaratne, M. Watson, K. Nam, N. Backstrom, L.
364	Smeds, B. Nabholz, Y. Itoh, O. Whitney, A. R. Pfenning, J. Howard, M. Volker,
365	B. M. Skinner, D. K. Griffin, L. Ye, W. M. McLaren, P. Flicek, V. Quesada, G.
366	Velasco, C. Lopez-Otin, X. S. Puente, T. Olender, D. Lancet, A. F. Smit, R.
367	Hubley, M. K. Konkel, J. A. Walker, M. A. Batzer, W. Gu, D. D. Pollock, L.
368	Chen, Z. Cheng, E. E. Eichler, J. Stapley, J. Slate, R. Ekblom, T. Birkhead, T.
369	Burke, D. Burt, C. Scharff, I. Adam, H. Richard, M. Sultan, A. Soldatov, H.
370	Lehrach, S. V. Edwards, S. P. Yang, X. Li, T. Graves, L. Fulton, J. Nelson, A.
371	Chinwalla, S. Hou, E. R. Mardis, and R. K. Wilson. 2010. The genome of a
372	songbird. Nature 464:757-762.
373	Yokouchi, Y., M. Yamamoto, T. Toyota, H. Sasaki, and A. Kuroiwa. 1993. Regulatory
374	interaction of positional signalings on coordinate expression of homeobox genes
375	in developing limb buds. Limb Development and Regeneration. Wiley-Liss, Inc.
376	Zhang, G., B. Li, C. Li, M. T. Gilbert, E. D. Jarvis, J. Wang, and C. Avian Genome.
377	2014. Comparative genomic data of the Avian Phylogenomics Project.
378	Gigascience 3:26.

380 FIGURES

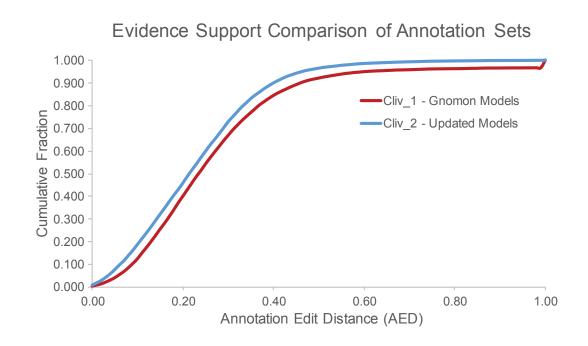

381

Figure 1. Assembly scaffolding contiguity and scaffolding library insert size

distributions. (a) Scaffolding comparison between Cliv_1.0 (input scaffolds) and Cliv_2.0

384 (final scaffolds) assemblies. (b) Distribution of Dovetail Genomics "Chicago" library

385 inserts.

389

390 Figure 2. Evidence support comparison of annotation sets. Annotation edit distance

391 (AED) support for gene models in Cliv_2.0 (red line) is improved over Cliv_1.0 (NCBI

392 Gnomon annotation, blue line).

- 394
- 395
- 396

397 TABLES

Table 1. Assembly statistics for Cliv_2.0

Estimated Physical Coverage	389.7x	-
Total Length	1,108,534,737bp	
Total scaffolds	15,057	
Total scaffolds >1kb	4,062	
Total scaffolds >10kb	848	

398

399

Table 2. Assembly version comparison

	Cliv_1.0	Cliv_2.0
Total Length	1110.8Mb	1110.9Mb
N50 Length	3.15Mb and 82 scaffolds	14.3Mb and 17 scaffolds
N90 Length	0.618Mb and 394 scaffolds	1.56Mb and 113 scaffolds
Completeness Estimate	72.3-86.4%	72.9-86.2%

400

402

403

Table 3. Annotation statistics

	Genes	Transcripts
Total	15,392	18,966
match ^a	14,898	18,472
new	494	494

^a Count that match Cliv 1.0 annotations with a value of at least 90% (match is calculated as %

identity multiplied by % end-to-end coverage)

404

Table 4. Annotation version comparison

	Cliv_1.0	Cliv_2.0
Total Gene Models	15,724	15,392
coding	15,022	14,683
non-coding	702	709
Total Transcripts	19,585	18,966
coding	18,569	18,148
non-coding	1016	818

405 SUPPLEMENTAL TABLES

406	Table S1. Tab-delimited table describing positions of Cliv_1.0 scaffolds in the Cliv_2.0
407	scaffolds. The table has the following format: column 1, Cliv_2.0 scaffold name; column
408	2, Cliv_1.0 sequence name; column 3, starting base (zero-based) of the Cliv_1.0
409	sequence; column 4, ending base of the Cliv_1.0 sequence; column 5, orientation of the
410	Cliv_1.0 sequence in the Cliv_2.0 scaffold, where (-) indicates that the Cliv_2.0 scaffold
411	sequence is reverse complemented relative to the Cliv_1.0 assembly; column 6, starting
412	base (zero-based) in the Cliv_2.0 scaffold; column 7, ending base in the Cliv_2.0
413	scaffold.
414	
415	Table S2. Tab-delimited table describing positions of breaks made in the Cliv_1.0
416	assembly to create the Cliv_2.0 assembly. Data fields follow the same format that is used
417	in Supplemental Table 1.
418	
419	Table S3. Table describing the linkage map assembled from genotype-by-sequencing
420	markers aligned to the Cliv_2.0 assembly, and relative positions of aligned markers
421	within the Cliv_2.0 and Cliv_1.0 genomes. The table has the following format: column 1,
422	Linkage map marker ID; column 2, Linkage group ID; column 3, Linkage map position;
423	column 4, Cliv_2.0 scaffold name; column 5, starting base (zero-based) of the alignment
424	in the Cliv_2.0 scaffold; column 6, alignment orientation in the Cliv_2.0 scaffold;
425	column 7, Cliv_1.0 scaffold name; column 8, starting base (zero-based) of the alignment
426	the Cliv_1.0 scaffold; column 9, alignment orientation in the Cliv_1.0 scaffold.
427	

428	Table S4. Tab-delimited table describing transcript count and CDF binned by Annotation
429	Edit Distance (AED) values. AED is a modified sensitivity/specificity metric used to
430	compare annotation datasets to each other or to aligned transcriptome and protein
431	homology datasets. For calculating AED, sensitivity is defined as the fraction of a given
432	reference overlapping a prediction and measures false negative rates. For our purposes,
433	the prediction is a transcript model and the reference (or truth set) is a set of aligned
434	transcriptome and protein homology evidence. We calculate sensitivity using the formula
435	$SN = p \cap r / r $; where $ p \cap r $ represents the number overlapping nucleotides between the
436	prediction and reference, and r represents the total number of nucleotides in the
437	reference. Specificity is then defined as the fraction of a prediction overlapping a given
438	reference, and it measures false positive rates. We calculate specificity using the formula
439	$SP = p \cap r / p $. We then define concordance to be the average of sensitivity and specificity
440	(C = (SN+SP)/2), and AED is 1 minus the concordance (AED = 1- C). Transcript models
441	that have high AED values then show little concordance to aligned experimental
442	evidence, and models with low AED values show high concordance.