1 Improved genome assembly and annotation for the rock pigeon (*Columba livia*)

- 2
- 3 Carson Holt^{*,†}, Michael Campbell^{*,1}, David A. Keays[‡], Nathaniel Edelman^{‡,2}, Aurélie
- 4 Kapusta^{*,†}, Emily Maclary[§], Eric Domyan^{§,**}, Alexander Suh^{††}, Wesley C. Warren^{‡‡},
- 5 Mark Yandell^{*,†}, M. Thomas P. Gilbert^{§§,***}, Michael D. Shapiro[§]
- 6 * Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- 7 † USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
- 8 **‡** Research Institute of Molecular Pathology, Vienna, Austria
- 9 § Department of Biology, University of Utah, Salt Lake City, UT, USA
- 10 ** Department of Biology, Utah Valley University, Orem, UT, USA
- 11 ⁺⁺ Department of Evolutionary Biology (EBC), University of Uppsala, Uppsala, Sweden
- 12 ‡‡ Genome Institute at Washington University, St. Louis, MO, USA
- 13 §§ Natural History Museum of Denmark, University of Copenhagen, Copenhagen,
- 14 Denmark
- 15 *** Norwegian University of Science and Technology, University Museum, 7491
- 16 Trondheim, Norway
- 17 1 Current address: Division of Plant Biology, Cold Spring Harbor Laboratory, Cold
- 18 Spring Harbor, NY, USA
- 19 2 Current address: Department of Organismic and Evolutionary Biology, Harvard
- 20 University, Cambridge, MA, USA

22 **Running title:**

23 "HiRise genome assembly of rock pigeon"

24

25 Keywords:

26 Columba livia, rock pigeon, HiRise assembly, MAKER annotation

27

- 28 Author for Correspondence:
- 29 Michael D. Shapiro, Department of Biology, University of Utah, 257 S 1400 E, Salt Lake
- 30 City, UT 84108, <u>shapiro@biology.utah.edu</u>, +1 801 581 5690

2	2
.)	L
-	

ABSTRACT

33	The domestic rock pigeon (Columba livia) is among the most widely distributed and
34	phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics,
35	physiology, behavior, and evolutionary biology, and has recently emerged as a model for
36	understanding the molecular basis of anatomical diversity, the magnetic sense, and other
37	key aspects of avian biology. Here we report an update to the C. livia genome reference
38	assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated
39	reference assembly, along with an updated annotation set, provide improved tools for
40	evolutionary and functional genetic studies of the pigeon, and for comparative avian
41	genomics in general.
42	
43	INTRODUCTION
44	Intensive selective breeding of the domestic rock pigeon (Columba livia) has resulted in
45	more than 350 breeds that display extreme differences in morphology and behavior (Levi
46	1986; Domyan and Shapiro 2017). The large phenotypic differences among different
47	breeds make them a useful model for studying the genetic basis of radical phenotypic
48	changes, which are more typically found among different species rather than within a
49	single species.
50	
51	In genetic and genomic studies of C. livia, linkage analysis is important for identifying
52	genotypes associated with specific phenotypic traits of interest (Domyan and Shapiro
53	2017); however, short scaffold sizes in the Cliv_1.0 draft reference assembly (Shapiro et
54	al. 2013) hinder computationally-based comparative analyses. Short scaffolds also make

55	it more difficult to identify structural changes, such as large insertions or deletions, that
56	are responsible for traits of interest (Domyan et al. 2014; Kronenberg et al. 2015).
57	
58	Here we present the Cliv_2.1 reference assembly and an updated gene annotation set. The
59	new assembly greatly improves scaffold length over the previous draft reference
60	assembly, and updated gene annotations show improved concordance with both
61	transcriptome and protein homology evidence.
62	
63	MATERIALS & METHODS
64	Genome sequencing and assembly
65	Genomic DNA from a female Danish tumbler pigeon (full sibling of the male bird used
66	for the original Cliv_1.0 assembly (Shapiro et al. 2013)) was extracted from blood using
67	a modified "salting out" protocol (Miller et al. 1988; modifications from
68	http://www.protocol-online.org/prot/Protocols/Extraction-of-genomic-DNA-from-whole-
69	blood-3171.html, accessed 06 February 2018)). Blood was frozen immediately after
70	collection and stored at -80°C, and purified DNA was resuspended in 10 mM Tris-HCl.
71	The sample went through 2 freeze-thaw cycles before being used to construct the libraries
72	described below.
73	
74	Extracted DNA was used to produce long-range sequencing libraries using the "Chicago"
75	method (Putnam et al. 2016) by Dovetail Genomics (Santa Cruz, CA). Two Chicago
76	libraries were prepared and sequenced on the Illumina HiSeq platform to a final physical
77	coverage (1-50 kb pairs) of 390x.

78

79	Scaffolding was performed by Dovetail Genomics using HiRise assembly software and
80	the Cliv_1.0 assembly as input. Briefly, Chicago reads were aligned to the input assembly
81	to identify and mask repetitive regions, and then a likelihood model was applied to
82	identify mis-joins and score prospective joins for scaffolding. The final assembly was
83	then filtered for length and gaps according to NCBI submission specifications.

84

85 Custom repeat library

86 A repeat library for *C. livia* was built by combining libraries from existing avian species 87 (Zhang et al. 2014a) together with repeats identified *de novo* for the Cliv 2.1 assembly. 88 De novo repeat identification was performed using RepeatScout (Price et al. 2005) with 89 default parameters (>3 copies) to generate consensus repeat sequences. Identified repeats 90 with greater than 90% sequence identity and a minimum overlap of 100 bp were 91 assembled using Sequencher (Yokouchi et al. 1993). Repeats were classified into 92 transposable element (TE) families using multiple lines of evidence, including homology 93 to known elements, presence of terminal inverted repeats (TIRs), and detection of target 94 site duplications (TSDs). Homology-based evidence was obtained using RepeatMasker 95 (Smit et al. 1996), as well as the homology module of the TE classifying tool RepClass 96 (Feschotte et al. 2009). RepClass was also used to identify signatures of transposable 97 elements (TIRs, TSDs). We then eliminated non-TE repeats (simple repeats or gene 98 families) using custom Perl scripts (available at https://github.com/4ureliek/ReannTE). 99

100	Our custom repeat analysis used the script ReannTE_FilterLow.pl to label consensus
101	sequences as simple repeats or low complexity repeats if 80% of their length could be
102	annotated as such by RepeatMasker (the library was masked with the option -noint).
103	Next, we used the ReannTE_Filter-mRNA.pl script to compare consensus sequences to
104	RefSeq (Pruitt et al. 2007) mRNAs (as of March 7th 2016) with TBLASTX (Altschul et
105	al. 1990). Sequences were eliminated from the library when: (i) the e-value of the hit was
106	lower than 1E-10; (ii) the consensus sequence was not annotated as a TE; and (iii) the hit
107	was not annotated as a transposase or an unclassified protein. The script
108	ReannTE_MergeFasta.pl was then used to merge our library with a library combining
109	RepeatModeler (Smit and Hubley 2008) outputs from 45 bird species (Kapusta et al.
110	2017) and complemented with additional avian TE annotations (International Chicken
111	Genome Sequencing 2004; Warren et al. 2010; Bao et al. 2015). Merged outputs were
112	manually inspected to remove redundancy, and all DNA and RTE class transposable
113	elements were removed and replaced with manually curated consensus sequences, which
114	were either newly (DNA elements) or previously generated (RTEs) (Suh et al. 2016).
115	
110	

116 **Repeat landscape**

- 117 We used RepeatMasker software v4.0.7 (Smit et al. 2015) and our custom library to
- 118 annotate the repeats in Cliv_2.1. RepeatMasker was run with the NCBI/RMBLAST
- 119 v2.6.0+ search engine (-e ncbi), the sensitive (-s) option, the -a option in order to obtain
- 120 the alignment file, and without RepeatMasker default libraries. We then used the
- 121 parseRM.pl script v5.7 (available at <u>https://github.com/4ureliek/Parsing-RepeatMasker-</u>
- 122 <u>Outputs</u> (Kapusta et al. 2017)), on the alignment files from Repeat Masker, with the -l

123	option and a substitution rate of 0.002068 substitutions per site per million years (Zhang
124	et al. 2014b). The script collects the percentage of divergence to the consensus for each
125	TE fragment, after correction for higher mutation rate at CpG sites and the Kimura 2-
126	Parameter divergence metric (provided in the alignment files from RepeatMasker).
127	The percentage of divergence to the consensus is a proxy for age (the older the TE
128	invasion, the more mutations will accumulate in TE fragments), to which the script
129	applies the substitution rate in order to split TE fragments into bins of 1 My.
130	
131	Transcriptomics
132	RNA was extracted from adult tissues (brain, retina, subepidermis, cochlear duct, spleen,
133	olfactory epithelium) of the racing homer breed, and one whole embryo each of a racing
134	homer and a parlor roller (approximately embryonic stage 25 (Hamburger and Hamilton
135	1951)). RNA-seq libararies were prepared and sequenced using 100-bp paired-end
136	sequencing on the Illumina HiSeq 2000 platform at the Research Institute of Molecular
137	Pathology, Vienna (adult tissues), and the Genome Institute at Washington University, St.
138	Louis (embryos). RNA-seq data generated for the Cliv_1.0 annotation were also
139	downloaded from the NCBI public repository for <i>de novo</i> re-assembly. Accession
140	numbers for these public data are SRR521357 (Danish tumbler heart), SRR521358
141	(Danish tumbler liver), SRR521359 (Oriental frill heart), SRR521360 (Oriental frill
142	liver), SRR521361 (Racing homer heart), and SRR521362 (Racing homer liver).
143	
144	Each FASTQ file was processed with FastQC (http://www.bioinformatics.babraham.ac.

145 uk/projects/fastqc/) to assess quality. When FastQC reported overrepresentation of

146	Illumina adapter sequences, we trimmed these sequences with fastx_clipper from the
147	FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). We used FASTX-Toolkit for
148	two additional functions: runs of low quality bases at the start of reads were trimmed with
149	fastx_trimmer when necessary (quality cutoff of -Q 33), and reads were then trimmed
150	with fastq_quality_trimmer (-Q 33). Finally, each pair of sequence files was assembled
151	with Trinity (Grabherr et al. 2011) version r20131110 using thejaccard_clip option.
152	
153	Genome annotation
154	The pre-existing reference Gnomon (Souvorov et al. 2010) derived gene models for the
155	Cliv_1.0 assembly (GCA_000337935.1) were mapped onto the updated Cliv_2.1
156	reference assembly using direct alignment of transcript FASTA entries. This was done
157	using the alignment workflow of the genome annotation pipeline MAKER (Cantarel et al.
158	2008; Holt and Yandell 2011), which first seeds alignments using BLASTN (Altschul et
159	al. 1990) and then polishes the alignments around splice sites using Exonerate (Slater and
160	Birney 2005). Results were then filtered to remove alignments that had an overall match
161	of less than 90% of the original model (match is calculated as percent identity multiplied
162	by percent end-to-end coverage).
163	
164	For final annotation, MAKER was allowed to identify de novo gene models that did not

165 overlap the aligned Gnomon models. Protein evidence sets used by MAKER included

annotated proteins from *Pterocles gutturalis* (yellow-throated sandgrouse) (Zhang et al.

167 2014a) and *Gallus gallus* (chicken) (International Chicken Genome Sequencing 2004)

168 together with all proteins from the UniProt/Swiss-Prot database (Bairoch and Apweiler

- 169 2000; UniProt 2007). The transcriptome evidence sets for MAKER included Trinity
- 170 mRNA-seq assemblies from multiple C. livia breeds and tissues (methods for
- 171 transcriptome assembly are described above). Gene predictions were produced within
- 172 MAKER by Augustus (Stanke and Waack 2003; Stanke et al. 2008). Augustus was
- trained using 1000 Cliv_1.0 Gnomon gene models that were split using the
- 174 randomSplit.pl script into sets for training and evaluation. We followed a semi-automatic
- 175 training protocol
- 176 (https://vcru.wisc.edu/simonlab/bioinformatics/programs/augustus/docs/tutorial2015/train
- 177 <u>ing.html</u>, accessed 9 February 2018). Repetitive elements in the genome were identified
- 178 using the custom repeat library described above.
- 179

180 Linkage map construction and anchoring to current assembly

- 181 Genotyping by sequencing (GBS) data was generated, trimmed, and filtered as previously
- 182 described (Domyan et al. 2016). Reads were mapped to the Cliv_2.1 assembly using
- 183 Bowtie2 (Langmead and Salzberg 2012). Genotypes were called using Stacks (Catchen et
- al. 2011), with a minimum read-depth cutoff of 10. Thresholds for automatic corrections
- 185 were set using the parameters -min_hom_seqs 10, -min_het_seqs 0.01, -max_het_seqs
- 186 0.15. Sequencing coverage and genotyping rate varied between individuals, and birds
- 187 with genotyping rates in the bottom 25% were excluded from map assembly.
- 188
- 189 Genetic map construction was performed using R/qtl v1.41-6 (<u>www.rqtl.org</u>) (Broman et
- 190 al. 2003). For autosomal markers, markers showing segregation distortion (Chi-square, p
- (0.01) were eliminated. Sex-linked scaffolds were assembled and ordered separately,

due to differences in segregation pattern for the Z-chromosome. Z-linked scaffolds were
identified by assessing sequence similarity and gene content between pigeon scaffolds
and the Z-chromosome of the annotated chicken genome (Ensembl Gallus_gallus-5.0).

196 Pairwise recombination fractions were calculated for all autosomal and Z-linked markers. 197 Missing data were imputed using "fill.geno" with the method "no dbl XO". Duplicate 198 markers were identified and removed. Within individual scaffolds, R/qtl functions 199 "droponemarker" and "calc.errorlod" were used to assess genotyping error. Markers were 200 removed if dropping the marker led to an increased LOD score, or if removing a non-201 terminal marker led to a decrease in length of >10 cM that was not supported by physical 202 distance. Individual genotypes were removed if they showed with error LOD scores >5 203 (Lincoln and Lander 1992). Linkage groups were assembled from 2960 autosomal 204 markers and 232 Z-linked markers using the parameters (max.rf 0.1, min.lod 6). In the 205 rare instance that single scaffolds were split into multiple linkage groups, linkage groups 206 were merged if supported by recombination fraction data; these instances typically 207 reflected large physical gaps between markers on a single scaffold. Scaffolds in the same 208 linkage group were manually ordered based on calculated recombination fractions and 209 LOD scores.

210

To compare the linkage map to the original genome assembly (Cliv_1.0), each 90-bp
locus containing a genetic marker was parsed from the Stacks output file

213 "catalogXXX_tags.tsv" and queried to the Cliv_1.0 assembly using BLASTN (v2.6.0+)

with the parameters -max_target_seqs 1 -max hsps 1. 3175 of the 3192 loci (99.47%)

215 from the new assembly had a BLAST hit with an E-value < 4e-24	24 and	and were retained	d.
---	--------	-------------------	----

216

217 Assembly comparisons

- 218 FASTA files from the Cliv 2.1 and colLiv2 (Damas et al. 2017) genome assemblies were
- 219 hard masked using NCBI WindowMasker (Morgulis et al. 2006) and genome-wide
- alignments were calculated with LAST (Kielbasa et al. 2011). From these alignments, a
- 221 genome-scale dotplot indicating syntenic regions was generated using SynMap (Lyons
- and Freeling 2008; Lyons et al. 2008).

223

224 The colLiv2 assembly is currently unannotated. Therefore, to compare gene content

between assemblies, we estimated the number of annotated Cliv_2.1 genes absent from

colLiv2 based on gene coordinates. Based on the length of LAST alignments, we

227 calculated the percent of each Cliv_2.1 scaffold aligning to colLiv2. Scaffolds were

divided into four groups based on alignments: Cliv_2.1 scaffolds that did not align to

colLiv2, Cliv_2.1 scaffolds where LAST alignments to colLiv2 covered less than 50% of

230 the total scaffold length, Cliv_2.1 scaffolds where LAST alignments to colLiv2 covered

between 50% and 75% of the total scaffold length, and Cliv_2.1 scaffolds where LAST

alignments to colLiv2 covered 75% or more of the total scaffold length. For each of these

233 groups, the number of scaffolds containing genes was quantified. Many of these scaffolds

are small, and some may be partially or completely missing from the alignment due to

235 masking of repetitive elements. If annotated gene coordinates from Cliv_2.1 scaffolds fell

236 partially or entirely within a region aligned to colLiv2, these genes were considered

237 "present" in colLiv2. Thus, the number of genes marked as "absent" in colLiv2 might be

a conservative estimate.

240	To compare the linkage map to colLiv2, each 90-bp locus containing a genetic marker
241	was parsed from the Stacks output file "catalogXXX_tags.tsv" and queried to the colLiv2
242	assembly using BLASTN (v2.6.0+) with the parameters -max_target_seqs 1 -max hsps
243	1.
244	
245	Data availability
246	This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under
247	the accession AKCR00000000. The version described in this paper is version
248	AKCR02000000. The Cliv_2.1 assembly, annotation, and associated data are available at
249	ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/337/935/GCA_000337935.2_Cliv_2.1.
250	RNA-seq data are deposited in the SRA database with the BioSample accession numbers
251	SAMN07417936-SAMN07417943, and sequence accessions SRR5878849-
252	SRR5878856. Assembly and RNA-seq data are publicly available in NCBI databases
253	under BioProject PRJNA167554. File S1 contains Tables S1-S7. Files S2 and S3 contain
254	recombination fraction data used to construct Figures 5a and 5b, respectively.
255	
256	RESULTS AND DISCUSSION
257	Genome assembly
258	The final Cliv_2.1 reference assembly is 1,108,534,737 base pairs in length and consists
259	of 15,057 scaffolds (Table 1). A total of 1,015 scaffolds contain a gene annotation.
260	Completion analysis of the assembly using BUSCO v2 and the odb9 Vertebrata ortholog

261	dataset (Simao et al. 2015) suggests that Cliv_2.1 is 72.9 (assembly) to 86.2%
262	(annotation) complete. These statistics are nearly identical to the Cliv_1.0 assembly
263	estimate of 72.3-86.4% (Table 2); therefore, we found no significant changes in
264	completeness between the two assemblies. Because the Chicago libraries and HiRise
265	assembly were designed to improve scaffolding of the original assembly, not to fill gaps,
266	we did not expect substantial improvement to assembly completeness in Cliv_2.1.
267	Instead, the major improvement to the Cliv_2.1 assembly is a substantial increase in
268	scaffold length (Fig. 1a). The N50 scaffold length for Cliv_2.1 increased to 14.3
269	megabases, compared to 3.15 megabases for Cliv_1.0, a greater than 4-fold increase.
270	
271	The new assembly joins scaffolds that, based on linkage mapping evidence (Domyan et
272	al. 2016), we knew were physically adjacent but were still separated in Cliv_1.0 (see
273	Table S1 for full catalog of positions of the original assembly in the new assembly, and
274	Table S2 for full catalog of breaks in the original assembly to form the new assembly).
275	For example, we previously determined that Cliv_1.0 Scaffolds 70 and 95 were joined
276	based on genetic linkage data from a laboratory cross (Domyan et al. 2016). These two
277	sequences are now joined into a single scaffold in the Cliv_2.1 assembly (see Table S6
278	for positions of genetic markers in Cliv_1.0 and Cliv_2.1). At least one gene model
279	(RefSeq LOC102093126), which was previously split across two contigs, has now been
280	unified into a single model on a single scaffold.
281	
202	

283 Repeat landscape

284	Using our	custom library,	we identified	8.04% (89.1 Mb	Table S3) of the genome

- assembly as repeats, which is slightly higher than the previously published estimates of
- 286 7.25% (Zhang et al. 2014b) and 7.83% (Kapusta and Suh 2017). To illustrate the
- temporal dynamics of TE accumulation (see Methods), we split the amount of DNA of
- each TE class by bins of 1 million years (My) (Fig. 2). This landscape shows that TE
- accumulation has been consistent throughout time, with some potentially recently active
- 290 elements. This includes CR1 LINEs (part of the non-LTR fraction), which are presumed
- to be inactive in most birds (Kapusta and Suh 2017), but comprise over 0.1 Mb of CR1
- copies in the youngest bin (0-1 My) in the Cliv_2.1 assembly (Table S4).

293

294 Transcriptome assemblies

A total of 1,936,543 transcripts were assembled from the 14 RNA-seq data sets. Numbers of assembled transcripts from each tissue are listed in Table 3. BUSCO analysis indicated 85.6% completeness of the union of transcriptome assemblies compared to the Vertebrata ortholog set.

299

300 Annotation

- 301 The updated annotation set contains 15,392 gene models encoding 18,966 transcripts
- 302 (Table 4). This represents a minor update of the reference annotation set as 94.7% of
- 303 previous models were mapped forward nearly unmodified (90% exact match for 14,898
- 304 out of 15,724 previous gene models) and 494 new gene models were added to the

305 Cliv_2.1 annotation set (Table 5).

306

307	The updated annotation set shows a modest improvement in concordance with aligned
308	evidence datasets from mRNA-seq and cross species protein homology evidence relative
309	to the Cliv_1.0 set as measured by Annotation Edit Distance (AED) (Eilbeck et al. 2009;
310	Holt and Yandell 2011). As a result, transcript models in the Cliv_2.1 annotation tend to
311	have lower AED values than the Cliv_1.0 set (Fig. 3; the cumulative distribution function
312	(CDF) curve is shifted to the left). Lower AED values indicate greater model
313	concordance with aligned transcriptome and protein homology data. Furthermore, the
314	Cliv_2.1 dataset displays greater transcript counts in every AED bin despite having
315	slightly fewer transcripts overall compared to the Cliv_1.0 dataset (Table S5). The higher
316	bin counts indicate that lower AED values are not solely a result of removing
317	unsupported models from the annotation set, but rather suggest that evidence
318	concordance has improved overall.
319	
320	Linkage map
321	The linkage map consists of 3,192 markers assembled into 48 autosomal linkage groups
322	and a single Z-chromosome linkage group (Table S6). The map contains markers from

323 236 scaffolds. Together, these scaffolds encompass 1,048,536,443 bp (94.6%) of the

324 Cliv 2.1 assembly, and include 13,026 of 15,392 (84.6%) annotated genes. Cliv 2.1

325 scaffolds are strongly supported by linkage data. For 235 out of 236 scaffolds included in

- 326 the linkage map, all GBS markers mapped to that scaffold form a single contiguous block
- 327 within one linkage group (only scaffold ScoHet5_252 was split between two linkage

- 328 groups). Additionally, within-scaffold marker order was largely supported by calculated
- 329 pairwise recombination fractions.
- 330

331 Comparison with colLiv2 genome assembly

- 332 Recently, Damas et al. (2017) used computational methods and universal avian bacterial
- 333 artificial chromosome (BAC) probes to achieve chromosome-level scaffolding using the
- 334 Cliv_1.0 assembly as input material. This assembly, named colLiv2 (GenBank assembly
- accession GCA_001887795.1; 1,018,016,946 bp in length), is approximately 8% smaller
- than the Cliv_2.1 assembly.
- 337
- Based on genome-wide pairwise alignments using LAST (Fig. 4) (Kielbasa et al. 2011), a
- 339 substantial number of regions of Cliv_2.1 that do not align to colLiv2 genome contain
- both unique sequence and annotated genes. Based on gene coordinates, 1184 annotated
- 341 Cliv_2.1 genes were absent from colLiv2 (Table 6).
- 342

343 Of the 3,192 GBS makers mapped to Cliv_2.1, 2,940 markers (92.1%) mapped to

344 colLiv2 with an E-value <4e-24. Of the remaining markers, 7 mapped to colLiv2 with an

E-value >4e-24, and 245 markers (7.67%) failed to map to colLiv2 entirely. We assessed

346 the agreement between marker and linkage data by calculating pairwise recombination

347 fractions for the 2940 markers, then plotted these recombination fractions in the order in

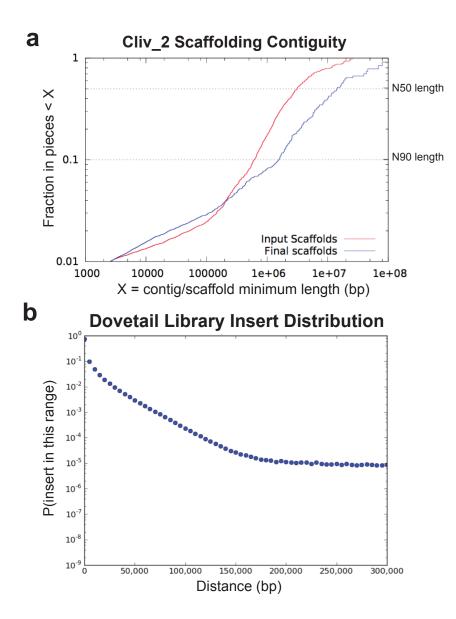
348 which markers appear on the colLiv2 chromosome-level scaffolds. Overall, the marker

349 order largely agrees with calculated recombination fractions; however, we identified a

350 number of locations where pairwise recombination fractions suggest that portions of the

351 colLiv2 chromosomes are not ordered properly, as exemplified in Fig. 5. We also 352 identified 42 markers for which the location with the best sequence match in colLiv2 353 appears to be incorrect based on recombination fraction estimates; these markers are 354 summarized in Table S7. 355 356 Conclusions 357 The improved scaffold lengths and updated gene model annotations of Cliv 2.1 will 358 further empower ongoing studies to identify genes responsible for phenotypic traits of 359 interest. In addition, longer scaffolds will improve detection of regions under selection, 360 including large deletions and other structural variants responsible for interesting traits in 361 C. livia. Finally, our new transcriptomic data provide tissue-specific expression profiles for several adult tissue types and an important embryonic stage for the morphogenesis of 362 363 limbs, craniofacial structures, skin, and other tissues. 364 365 **ACKNOWLEDGEMENTS** 366 We thank Dovetail Genomics for their aid in scaffolding the assembly; Julia Carleton and 367 Anna Vickrey for technical support; and Elena Boer for comments on the manuscript. 368 This work was supported by National Science Foundation grant DEB1149160 and 369 National Institutes of Health (NIH) grant R01GM115996 to MDS; NSF EAGER grant 370 IOS1561337 to MY; a European Research Council starting grant 336724 and Austrian 371 Science Fund (FWF) grant Y726 to DAK; and European Research Council Consolidator 372 grant 681396 to MTPG. We gratefully acknowledge research support from Boehringer

373	Ingelheim at the Research Institute of Molecular Pathology, and support and resources
374	from the Center for High Performance Computing at the University of Utah.
375	
376	
377	REFERENCES
378	Altschul, S. F., W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. 1990. Basic Local
379	Alignment Search Tool. Journal of Molecular Biology 215:403-410.
380	Bairoch, A. and R. Apweiler. 2000. The SWISS-PROT protein sequence database and
381	its supplement TrEMBL in 2000. Nucl. Acids Res. 28:45-48.
382	Bao, W., K. K. Kojima, and O. Kohany. 2015. Repbase Update, a database of repetitive
383	elements in eukaryotic genomes. Mob DNA 6:11.
384	Broman, K., H. Wu, S. Sen, and G. Churchill. 2003. R/qtl: QTL mapping in
385	experimental crosses. Bioinformatics 19:889-890.
386	Cantarel, B. L., I. Korf, S. M. C. Robb, G. Parra, E. Ross, B. Moore, C. Holt, A. Sanchez
387	Alvarado, and M. Yandell. 2008. MAKER: An easy-to-use annotation pipeline
388	designed for emerging model organism genomes. Genome Res. 18:188-196.
389	Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait. 2011.
390	Stacks: building and genotyping loci de novo from short-read sequences. G3
391	1:171-182.
392	Damas, J., R. O'Connor, M. Farre, V. P. E. Lenis, H. J. Martell, A. Mandawala, K. Fowler,
393	S. Joseph, M. T. Swain, D. K. Griffin, and D. M. Larkin. 2017. Upgrading short-
394	read animal genome assemblies to chromosome level using comparative
395	genomics and a universal probe set. Genome Res 27:875-884.
396	Domyan, E. T., M. W. Guernsey, Z. Kronenberg, S. Krishnan, R. E. Boissy, A. I. Vickrey,
397	C. Rodgers, P. Cassidy, S. A. Leachman, J. W. Fondon, 3rd, M. Yandell, and M. D.
398	Shapiro. 2014. Epistatic and combinatorial effects of pigmentary gene
399 400	mutations in the domestic pigeon. Curr Biol 24:459-464.
400	Domyan, E. T., Z. Kronenberg, C. R. Infante, A. I. Vickrey, S. A. Stringham, R. Bruders,
401	M. W. Guernsey, S. Park, J. Payne, R. B. Beckstead, G. Kardon, D. B. Menke, M.
402	Yandell, and M. D. Shapiro. 2016. Molecular shifts in limb identity underlie
403	development of feathered feet in two domestic avian species. eLife 5:e12115.
404	Domyan, E. T. and M. D. Shapiro. 2017. Pigeonetics takes flight: Evolution,
405	development, and genetics of intraspecific variation. Dev Biol 427:241-250.
406	Eilbeck, K., B. Moore, C. Holt, and M. Yandell. 2009. Quantitative measures for the
407	management and comparison of annotated genomes. BMC Bioinformatics
408	10:67. Fassbatta C. I. Kaswani N. Banganathan M. L. Cuibatay and D. Lavina 2000
409	Feschotte, C., U. Keswani, N. Ranganathan, M. L. Guibotsy, and D. Levine. 2009.
410	Exploring repetitive DNA landscapes using REPCLASS, a tool that automates
411	the classification of transposable elements in eukaryotic genomes. Genome
412	Biol Evol 1:205-220.


413	Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis,
414	L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke,
415	N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman,
416	and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data
417	without a reference genome. Nature biotechnology 29:644-652.
418	Hamburger, V. and H. L. Hamilton. 1951. A series of normal stages in the
419	development of the chick embryo. Journal of Morphology 88:49-92.
420	Holt, C. and M. Yandell. 2011. MAKER2: an annotation pipeline and genome-
421	database management tool for second-generation genome projects. BMC
422	Bioinformatics 12:491.
423	International Chicken Genome Sequencing, C. 2004. Sequence and comparative
424	analysis of the chicken genome provide unique perspectives on vertebrate
425	evolution. Nature 432:695-716.
426	Kapusta, A. and A. Suh. 2017. Evolution of bird genomes-a transposon's-eye view.
427	Ann N Y Acad Sci 1389:164-185.
428	Kapusta, A., A. Suh, and C. Feschotte. 2017. Dynamics of genome size evolution in
429	birds and mammals. Proc Natl Acad Sci U S A 114:E1460-E1469.
430	Kielbasa, S. M., R. Wan, K. Sato, P. Horton, and M. C. Frith. 2011. Adaptive seeds tame
431	genomic sequence comparison. Genome Res 21:487-493.
432	Kronenberg, Z. N., E. J. Osborne, K. R. Cone, B. J. Kennedy, E. T. Domyan, M. D.
433	Shapiro, N. C. Elde, and M. Yandell. 2015. Wham: Identifying Structural
434	Variants of Biological Consequence. PLoS Comput Biol 11:e1004572.
435	Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2.
436	Nat Methods 9:357-359.
437	Levi, W. M. 1986. The Pigeon (Second Revised Edition). Levi Publishing Co., Inc.,
438	Sumter, S.C.
439	Lincoln, S. E. and E. S. Lander. 1992. Systematic detection of errors in genetic linkage
440	data. Genomics 14:604-610.
441	Lyons, E. and M. Freeling. 2008. How to usefully compare homologous plant genes
442	and chromosomes as DNA sequences. Plant J 53:661-673.
443	Lyons, E., B. Pedersen, J. Kane, M. Alam, R. Ming, H. Tang, X. Wang, J. Bowers, A.
444	Paterson, D. Lisch, and M. Freeling. 2008. Finding and comparing syntenic
445	regions among Arabidopsis and the outgroups papaya, poplar, and grape:
446	CoGe with rosids. Plant physiology 148:1772-1781.
447	Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure for
448	extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215.
449	Morgulis, A., E. M. Gertz, A. A. Schaffer, and R. Agarwala. 2006. WindowMasker:
450	window-based masker for sequenced genomes. Bioinformatics 22:134-141.
451	Price, A. L., N. C. Jones, and P. A. Pevzner. 2005. De novo identification of repeat
452	families in large genomes. Bioinformatics 21 Suppl 1:i351-358.
453	Pruitt, K. D., T. Tatusova, and D. R. Maglott. 2007. NCBI reference sequences
454	(RefSeq): a curated non-redundant sequence database of genomes,
455	transcripts and proteins. Nucleic Acids Res:D61 - 65.
456	Putnam, N. H., B. L. O'Connell, J. C. Stites, B. J. Rice, M. Blanchette, R. Calef, C. J. Troll,
457	A. Fields, P. D. Hartley, C. W. Sugnet, D. Haussler, D. S. Rokhsar, and R. E.

458	Green. 2016. Chromosome-scale shotgun assembly using an in vitro method
459	for long-range linkage. Genome Res 26:342-350.
460	Shapiro, M. D., Z. Kronenberg, C. Li, E. T. Domyan, H. Pan, M. Campbell, H. Tan, C. D.
461	Huff, H. Hu, A. I. Vickrey, S. C. Nielsen, S. A. Stringham, H. Hu, E. Willerslev, M.
462	T. Gilbert, M. Yandell, G. Zhang, and J. Wang. 2013. Genomic diversity and
463	evolution of the head crest in the rock pigeon. Science 339:1063-1067.
464	Simao, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov.
465	2015. BUSCO: assessing genome assembly and annotation completeness with
466	single-copy orthologs. Bioinformatics 31:3210-3212.
467	Slater, G. and E. Birney. 2005. Automated generation of heuristics for biological
468	sequence comparison. BMC Bioinformatics 6:31.
469	Smit, A. F. and R. Hubley. 2008. RepeatModeler Open-1.0
470	http://www.repeatmasker.org/.
471	Smit, A. F., R. Hubley, and P. Green. 1996. RepeatMasker Open-3.0
472	http://www.repeatmasker.org/.
473	Smit, A. F., R. Hubley, and P. Green. 2015. RepeatMasker Open-4.0.2013-2015
474	http://www.repeatmasker.org/.
475	Souvorov, A., Y. Kapustin, B. Kiryutin, V. Chetvernin, T. Tatusova, and D. Lipman.
476	2010. Gnomon – NCBI eukaryotic gene prediction tool. NCBI.
477	Stanke, M., M. Diekhans, R. Baertsch, and D. Haussler. 2008. Using native and
478	syntenically mapped cDNA alignments to improve de novo gene finding.
479	Bioinformatics 24:637-644.
480	Stanke, M. and S. Waack. 2003. Gene prediction with a hidden Markov model and a
481	new intron submodel. Bioinformatics 19:ii215-225.
482	Suh, A., C. C. Witt, J. Menger, K. R. Sadanandan, L. Podsiadlowski, M. Gerth, A.
483	Weigert, J. A. McGuire, J. Mudge, S. V. Edwards, and F. E. Rheindt. 2016.
484	Ancient horizontal transfers of retrotransposons between birds and
485	ancestors of human pathogenic nematodes. Nature communications 7:11396.
486	UniProt, C. 2007. The Universal Protein Resource (UniProt). Nucleic Acids Res:D193
487	
488	Warren, W. C., D. F. Clayton, H. Ellegren, A. P. Arnold, L. W. Hillier, A. Kunstner, S.
489	Searle, S. White, A. J. Vilella, S. Fairley, A. Heger, L. Kong, C. P. Ponting, E. D.
490	Jarvis, C. V. Mello, P. Minx, P. Lovell, T. A. Velho, M. Ferris, C. N. Balakrishnan,
491	S. Sinha, C. Blatti, S. E. London, Y. Li, Y. C. Lin, J. George, J. Sweedler, B.
492	Southey, P. Gunaratne, M. Watson, K. Nam, N. Backstrom, L. Smeds, B.
493	Nabholz, Y. Itoh, O. Whitney, A. R. Pfenning, J. Howard, M. Volker, B. M.
494	Skinner, D. K. Griffin, L. Ye, W. M. McLaren, P. Flicek, V. Quesada, G. Velasco, C.
495	Lopez-Otin, X. S. Puente, T. Olender, D. Lancet, A. F. Smit, R. Hubley, M. K.
496 407	Konkel, J. A. Walker, M. A. Batzer, W. Gu, D. D. Pollock, L. Chen, Z. Cheng, E. E.
497 408	Eichler, J. Stapley, J. Slate, R. Ekblom, T. Birkhead, T. Burke, D. Burt, C. Scharff,
498 400	I. Adam, H. Richard, M. Sultan, A. Soldatov, H. Lehrach, S. V. Edwards, S. P.
499 500	Yang, X. Li, T. Graves, L. Fulton, J. Nelson, A. Chinwalla, S. Hou, E. R. Mardis, and R. K. Wilson, 2010. The genome of a conchird Nature 464:757,762
500 501	and R. K. Wilson. 2010. The genome of a songbird. Nature 464:757-762.
501 502	Yokouchi, Y., M. Yamamoto, T. Toyota, H. Sasaki, and A. Kuroiwa. 1993. Regulatory
502	interaction of positional signalings on coordinate expression of homeobox

503	genes in developing limb buds. Limb Development and Regeneration. Wiley-
504	Liss, Inc.
505	Zhang, G., B. Li, C. Li, M. T. Gilbert, E. D. Jarvis, J. Wang, and C. Avian Genome. 2014a.
506	Comparative genomic data of the Avian Phylogenomics Project. Gigascience
507	3:26.
508	Zhang, G., C. Li, Q. Li, B. Li, D. M. Larkin, C. Lee, J. F. Storz, A. Antunes, M. J. Greenwold,
509	R. W. Meredith, A. Odeen, J. Cui, Q. Zhou, L. Xu, H. Pan, Z. Wang, L. Jin, P.
510	Zhang, H. Hu, W. Yang, J. Hu, J. Xiao, Z. Yang, Y. Liu, Q. Xie, H. Yu, J. Lian, P.
511	Wen, F. Zhang, H. Li, Y. Zeng, Z. Xiong, S. Liu, L. Zhou, Z. Huang, N. An, J. Wang,
512	Q. Zheng, Y. Xiong, G. Wang, B. Wang, J. Wang, Y. Fan, R. R. da Fonseca, A.
513	Alfaro-Nunez, M. Schubert, L. Orlando, T. Mourier, J. T. Howard, G. Ganapathy,
514	A. Pfenning, O. Whitney, M. V. Rivas, E. Hara, J. Smith, M. Farre, J. Narayan, G.
515	Slavov, M. N. Romanov, R. Borges, J. P. Machado, I. Khan, M. S. Springer, J.
516	Gatesy, F. G. Hoffmann, J. C. Opazo, O. Hastad, R. H. Sawyer, H. Kim, K. W. Kim,
517	H. J. Kim, S. Cho, N. Li, Y. Huang, M. W. Bruford, X. Zhan, A. Dixon, M. F.
518	Bertelsen, E. Derryberry, W. Warren, R. K. Wilson, S. Li, D. A. Ray, R. E. Green,
519	S. J. O'Brien, D. Griffin, W. E. Johnson, D. Haussler, O. A. Ryder, E. Willerslev, G.
520	R. Graves, P. Alstrom, J. Fjeldsa, D. P. Mindell, S. V. Edwards, E. L. Braun, C.
521	Rahbek, D. W. Burt, P. Houde, Y. Zhang, H. Yang, J. Wang, E. D. Jarvis, M. T.
522	Gilbert and J. Wang. 2014b. Comparative genomics reveals insights into avian
523	genome evolution and adaptation. Science 346:1311-1320.
524	

525

FIGURES

526

527 Figure 1. Assembly scaffolding contiguity and scaffolding library insert size

528 distributions. (a) Scaffolding comparison between Cliv_1.0 (input scaffolds) and Cliv_2.1

529 (final scaffolds) assemblies. (b) Distribution of Dovetail Genomics "Chicago" library

530 inserts.

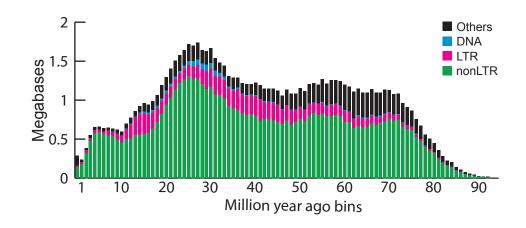
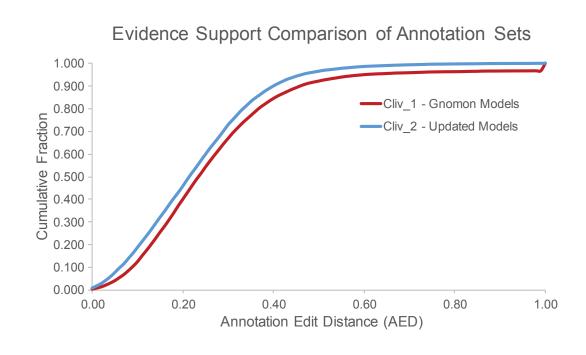
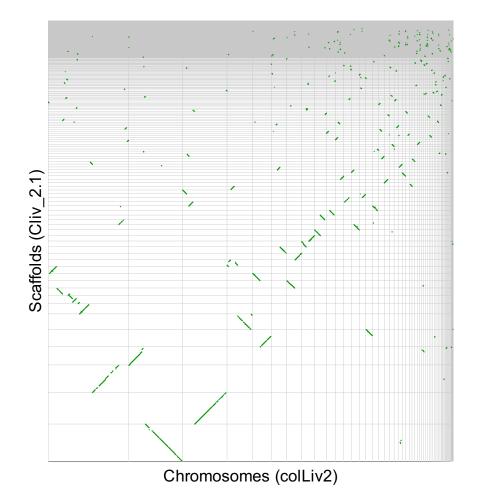
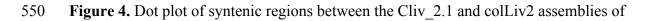



Figure 2. Temporal landscape of transposable elements. The amounts of DNA of each TE class were split into bins of 1 My, shown on the x axis (see Methods). We note that the lower detection of older elements (right of the graph) comes from a combination of lack of detection and TE removal, and that the amount of DNA corresponding to recent elements may be underestimated (recent copies are often collapsed in assemblies). The "Others" category primarily includes unclassified repeats.

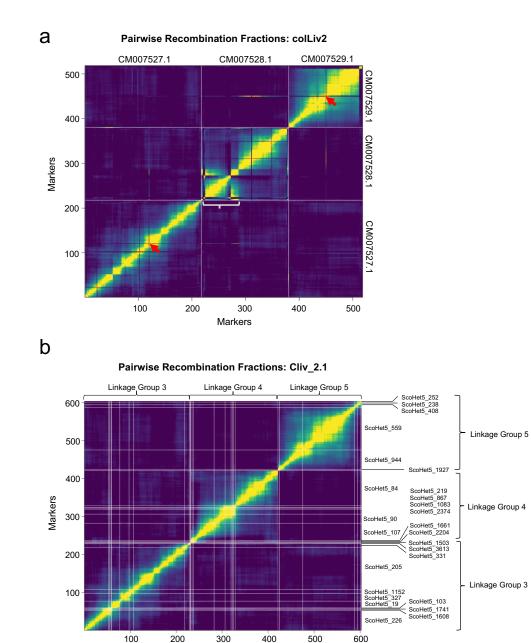
541



543


544 Figure 3. Evidence support comparison of annotation sets. Annotation edit distance

545 (AED) support for gene models in Cliv_2.1 (blue line) is improved over Cliv_1.0 (NCBI


546 Gnomon annotation, red line).

548

- the *C. livia* genome. Each segment of the X axis represents a single colLiv2 scaffold
- ordered from largest (left) to smallest (right), while each segment of the Y axis represents
- a scaffold of the Cliv_2.1 assembly, ordered from largest (bottom) to smallest (top).
- 554 Green dots indicate aligned regions of synteny.

555

Markers

and Cliv_2.1 assemblies. (a) Representative plot of pairwise recombination fractions for

558 GBS markers, ordered based on best alignment to colLiv2 assembly, for chromosomes

- 559 CM007527.1, CM007528.1, and CM007529.1. X and Y axes show individual markers,
- ordered as they map to the colLiv2 chromosomes CM007527.1, CM007528.1, and
- 561 CM007529.1. White lines mark the boundaries between chromosomes. Yellow indicates

5()	1		1 .	· ·	c	(1. 1 1	1 1	1 . 1	1	• 1• 4	1 • 1
562	low r	bairwise.	recombin	nation	traction	Linked	l markers)	while i	nurnie i	indicates	nign
502	10 11		recomon	iution	machon	(IIIIICO	maineisj	, , , , , , , , , , , , , , , , , , , ,	puipie	indicates	mon

- 563 pairwise recombination fraction (unlinked markers). Red arrows highlight two markers,
- one mapped to chromosome CM007527.1 and one mapped to CM007529.1, for which
- 565 recombination fractions suggest that these markers should instead be located on
- 566 chromosome CM007528.1. A white bracket indicates a region on chromosome
- 567 CM007528.1 where portions of the chromosome appear to be assembled in the wrong
- order. (b) Plot of pairwise recombination fractions for the Cliv_2.1 scaffolds that make
- up linkage groups 3, 4, and 5. In (a), colLiv2 CM007527.1 largely corresponds to linkage
- group 3, CM007528.1 to linkage group 4, and CM007529.1 to linkage group 5. White
- 571 lines mark the boundaries between individual scaffolds, with scaffold IDs indicated on
- 572 the right side.

TABLES

Table 1. Assembly statistics for Cliv_2.1

Estimated Physical Coverage	389.7x	
Total Length	1,108,534,737 bp	
Total scaffolds	15,057	
Total scaffolds >1kb	4,062	
Total scaffolds >10kb	848	

Table 2. Assembly version comparison

	Cliv_1.0	Cliv_2.1
Total Length	1110.8 Mb	1110.9 Mb
N50 Length	3.15 Mb and 82 scaffolds	14.3 Mb and 17 scaffolds
N90 Length	0.618 Mb and 394 scaffolds	1.56 Mb and 113 scaffolds
Completeness Estimate	72.3-86.4%	72.9-86.2%

Table 3. Transcriptome assembly summary

			# assembled
SRA accession	Tissue	Breed	transcripts
SRR521357	Heart	Danish tumbler	79473
SRR521358	Liver	Danish tumbler	35691
SRR521359	Heart	Oriental frill	71078
SRR521360	Liver	Oriental frill	74180
SRR521361	Heart	racing homer	80034
SRR521362	Liver	racing homer	80642
SRR5878849	Embryo	racing homer	208682
SRR5878850	Embryo	parlor roller	344735
SRR5878851	Spleen	racing homer	156415
SRR5878852	Olfactory epithelium	racing homer	112632
SRR5878853	Subepidermis	racing homer	185484
SRR5878854	Cochlear duct	racing homer	189438
SRR5878855	Brain	racing homer	131999
SRR5878856	Retina	racing homer	186060

584

Table 4. Annotation statistics for Cliv_2.1

	Genes	Transcripts
Total	15,392	18,966
match ^a	14,898	18,472
new	494	494

^a Count that match Cliv_1.0 annotations with a value of at least 90% (match is calculated as

% identity multiplied by % end-to-end coverage)

585

Table 5. Annotation version comparison

	Cliv_1.0	Cliv_2.1
Total Gene Models	15,724	15,392
coding	15,022	14,683
non-coding	702	709
Total Transcripts	19,585	18,966
coding	18,569	18,148
non-coding	1016	818

586

588 Table 6. Summary of Cliv_2.1 alignment to colLiv2 chromosome-level scaffolds. Overall,

- 589 colLiv2 appears to exclude 1,184, or approximately 7.7%, of the 15,392 annotated genes from the
- 590 Cliv_2.1 assembly; this is consistent with the overall decrease in genome size.
- 591

						Genes
					Genes in	missing
Cliv_2.1			Scaffolds		LAST	from LAST
scaffold	# of	Scaffold length	with	# of	alignment	alignment
representation	scaffolds	range	genes	genes	to colLiv2	to colLiv2
Missing	14,189	200-393,647	147	164	NA	164
≤50% aligned	251	318-2,545,801	183	506	369	137
50-75%						
aligned	183	581-5,717,624	251	638	550	88
≥75% aligned	434	259-94,473,889	434	14,084	13,289	795

592

594	SUPPLEMENTAL TABLES
595	
596	Table S1. Positions of Cliv_1.0 scaffolds in the Cliv_2.1 scaffolds. The table has the
597	following format: column 1, Cliv_2.1 scaffold name; column 2, Cliv_1.0 sequence name; column
598	3, starting base (zero-based) of the Cliv_1.0 sequence; column 4, ending base of the Cliv_1.0
599	sequence; column 5, orientation of the Cliv_1.0 sequence in the Cliv_2.1 scaffold, where (-)
600	indicates that the Cliv_2.1 scaffold sequence is reverse complemented relative to the Cliv_1.0
601	assembly; column 6, starting base (zero-based) in the Cliv_2.1 scaffold; column 7, ending base in
602	the Cliv_2.1 scaffold.
603	
604	Table S2. Positions of breaks made in the Cliv_1.0 assembly to create the Cliv_2.1
605	assembly. Data fields follow the same format that is used in Supplemental Table 1.
606	
607	Table S3. Summary of transposable element fragments, parsed into 1 My bins based on
608	substitution rate
609	
610	Table S4. Summary information of repeat masking, by class and by family
611	
612	Table S5. Transcript count and cumulative distribution function (CDF) binned by
613	Annotation Edit Distance (AED) values. AED is a modified sensitivity/specificity metric used to
614	compare annotation datasets to each other or to aligned transcriptome and protein homology
615	datasets. For calculating AED, sensitivity is defined as the fraction of a given reference
616	overlapping a prediction and measures false negative rates. For our purposes, the prediction is a
617	transcript model and the reference (or truth set) is a set of aligned transcriptome and protein
618	homology evidence. We calculate sensitivity using the formula SN = $ p \cap r / r $; where $ p \cap r $
619	represents the number overlapping nucleotides between the prediction and reference, and $ \mathbf{r} $
620	represents the total number of nucleotides in the reference. Specificity is then defined as the
621	fraction of a prediction overlapping a given reference, and it measures false positive rates. We

- 622 calculate specificity using the formula SP = $|p \cap r|/|p|$. We then define concordance to be the
- 623 average of sensitivity and specificity (C = (SN+SP)/2), and AED is 1 minus the concordance (AED
- 624 = 1- C). Transcript models that have high AED values then show little concordance to aligned
- 625 experimental evidence, and models with low AED values show high concordance.
- 626
- 627 Table S6. Linkage map assembled from genotype-by-sequencing markers aligned to the
- 628 Cliv_2.1 assembly, and positions of aligned markers within the Cliv_2.1, Cliv_1.0, and
- 629 colLiv2 assemblies.
- 630
- Table S7. Summary of GBS markers for which best BLAST alignment to colLiv2 is
- 632 **discordant with linkage data.** Columns describe marker position in the linkage map, the best
- 633 BLAST hit within the colLiv2 assembly, and the marker position in the Cliv_2.1 assembly. For
- 634 each marker, the colLiv2 chromosome to which the marker appears to be linked is also indicated.