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Figure 3. Examples of cis- and trans-abundant genes. Genes were selected from the sets of 322 cis- and 153 
trans-abundant genes, which were shared by both 1000 Genomes (1000G) and PGP. Top left trans-abundant 
genes, lower right side cis-abundant genes; blue bars indicate the gene-based cis- and trans fractions (%) derived 
from the 184 experimentally haplotype-resolved PGP genomes, red bars the fractions derived from the 1092 
statistically haplotype-resolved genomes from 1000G database. A gene-based cis ratio is defined as the number of 
cis configurations counted in a particular gene in a sample of genomes divided by the total configuration count of 
this gene in the sample; gene-based trans ratios are defined accordingly. 
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of ~60%. Examples include furthermore cis-abundant genes involved in common, complex and 

autosomal recessive diseases such as CYP2D6, ADAM33, ADD1, and PON2, and particularly 

prominent disease genes such as BRCA1 and LRRK2. Examples for trans-abundant genes (Fig. 3) 

include genes involved in immune response, immune and autoimmune diseases, and viral and 

infectious diseases, such as HLA-E, KIR3DL2, TPO and DDX58; genes involved in ECM-organization and 

components such as COL11A2, in (transmembrane) signaling such as P2RX7 and CEP55, and in cancer 

such as MTA1 and NAT2. Some of these trans-abundant genes, too, are members of predominantly 

trans-abundant gene families, such as the histocompatibility complex (P = 2.49x10-03), and collagen 

family (P = 1.26x10-02).  

 

Subsequently we examined the specific positions of protein-altering mutations in cis versus trans 

across the genes. We attempted to identify different distributional patterns of the mutations, not 

only between, but also within the homologues, which could be functionally relevant. In a first step, 

we inspected the mutation genomic coordinates in several cross-validated genes in more detail and 

in fact observed striking differences. Thus, in cis-abundant genes such as for example ZNF546 (Fig. 

4A), or ADAM33, PON2, ZNF626 and KRT83, there existed one pair of mutations that dominated the 

picture. Notably, the two mutations establishing such a ‘major configuration’ nearly always occurred 

together, and only rarely, one of the two protein-altering mutations occurred alone, or in 

combinations with other mutations. In addition to these major configurations, in case, small numbers 

of other pairs or combinations of mutations in cis or trans were observed (Fig. 4A). A much more 

mixed picture was observed in trans-abundant genes, as exemplified by KRT3 (Fig. 4B). This was 

characterized by two or more, apparently less frequent pairs of mutations in trans; in this example, a 

trans pair existed to a small, but visible extent still in cis. To test whether these case observations 

represent a more general picture, we examined the 1,227 cis-abundant and 786 trans-abundant 

genes identified in the global set, as well as the 322 cis and 153 trans-abundant genes shared by both 

1000G and PGP. We determined the proportion of the most frequent pair of mutations relative to 
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A                                       

 

 B                                          

 

 

Figure 4. Typical configurations of pairs of protein-altering mutations in cis- and trans-abundant genes. The specific configurations of pairs of mutations, specified by 
genome positions (bp), are presented as observed in the 1,092 genomes from 1000G and 184 PGP genomes. Each individual pair of mutations is indicated by a pair of 
points, color-coded by source. (A) Distributional pattern of mutations in the cis-abundant ZNF546 gene. The same pair of mutations in cis occurs in numerous individual 
genomes in both 1000G (blue) and PGP (light blue) and therefore appears as two horizontal, parallel lines; a different pair of mutations in cis is observed in 1000G in few 
individuals as well as two pairs of mutations in trans, which share the rightmost mutation; one pair of mutations in trans is observed in PGP. (B) Distributional pattern of 
mutations in the trans-abundant KRT3 gene. Apparently, the pairs of mutations are less frequent; one pair of mutations occurs in trans in both 1000G and PGP (left); another 
pair of mutations (the left mutation shared with the other pair) occurs in trans in 1000G and in one individual in PGP; the same pair also shows a less frequent, though still 
sizable fraction of cis configurations in both 1000G and PGP, exemplifying the change from a cis to a trans configuration over increasing numbers of generations for more 
distant pairs of mutations. 
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A             1000G 1,227 cis-abundant genes

 

B           1000G 322 cis-abundant genes 

 

C           PGP 322 cis-abundant genes 

 

D             1000G 786 trans-abundant genes 

 

E            1000G 153 trans-abundant genes 

 

F            PGP 153 trans-abundant genes 
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Figure 5. Major configuration frequencies in cis- and trans-abundant genes. The ‘major configuration’ of a cis- or trans-abundant gene is defined as the pair of mutations 
that exhibits the highest number of cis, or trans counts, respectively, relative to the total of cis or trans counts observed for this gene in a population sample. This ratio is 
defined as the ‘major configuration frequency’ (MCF) of a gene. The MCFs of defined numbers of genes are binned in 10% intervals. Specifically, they were assessed for 
1,227 cis- and 786 trans-abundant genes in 1,092 genomes from the 1000 Genomes (1000G) database, and for the cross-validated sets of 322 cis- and 153 trans-abundant 
genes which were shared by both 1000G and PGP. (A) The blue bars indicate the numbers of cis-abundant genes (y-axis left) of a total of 1,227 cis-abundant genes, which 
have a major configuration with a frequency (%) as specified by given bins (x-axis). For example, referring to the highest blue bar on the right, 383 cis-abundant genes have a 
major configuration with a frequency between > 90 and 100% of total cis count. The black graph represents the cumulative percentage (%) of the number of these genes (y-
axis right). (B) Accordingly, MCFs binned for 322 cis-abundant genes from 1000G and (C) for the identical 322 cis-abundant genes assessed in the 184 experimentally 
phased PGP genomes. The corresponding results for trans-abundant genes (red bars) are presented in (D), (E), and (F).   
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the entirety of configurations in each of the genes, across the genomes. Then we binned the genes 

by percentage of their major configuration count. As demonstrated in Fig. 5A, a substantial fraction 

(31.2%) of the 1,227 cis-abundant genes exhibited one major pair of protein-altering mutations 

accounting for > 90 up to 100% of all cis configurations, and 42% one major pair accounting for > 80% 

of all cis configurations. This result was confirmed in the cross-validated genes (Fig. 5B, C). 12–20% of 

the genes had major pairs of mutations with frequencies of 20% or less; thus, these genes have 

mostly more frequent combinations of 3 and more mutations, such as BRCA1. A strikingly different 

picture was observed for trans-abundant genes, characterized by the absence of a major 

configuration which would be present in sizable fractions (Fig. 5D–F). In sum, significant cis-

abundance essentially results from a considerable fraction of cis-abundant genes, which have highly 

frequent pairs of mutations co-occurring on the same homologue. Thus, we have traced cis-

abundance back to specific, potentially ancient pairs of protein-altering mutations in cis. Attempting 

to interpret this finding, we considered epistatic interactions between these pairs of mutations, a 

potential role as compensatory mutations, or co-evolution. In order to explore whether these major, 

closely spaced mutation pairs could in fact indicate potential interactions between the mutations, we 

have mapped them onto protein tertiary structures using the Protein Data Bank (PDB) (Rose et al. 

2013). Indeed, for some proteins, for example ESYT2 (Extended Synaptotagmin 2), a membrane-

related protein, we found that the corresponding residue pairs existed in close physical distance (~9 

Å) (Fig. 6). This could suggest possibility of physical interaction and/or functional interdependence, 

for instance indicating coevolution (Anishchenko et al. 2017). Rounding up, we have obtained first, 

very preliminary evidence for potential functional implications of major mutation pairs in cis, the 

hallmark of cis-abundance. 
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Figure 6. Major pair of mutations in a cis-abundant gene mapped onto protein tertiary 
structure.  

Two neighboring mutations (S584P and S610G) in the protein ESYT2 (Extended Synaptotagmin 2) 
are shown. Both mutations fall in the C2 domain that targets the protein to the cell membrane. 
Mutations are located within a physical distance of ~9 Å, suggesting potential contact between the 
residue pair. Tertiary structure was taken from the PDB database (ID: 4P42). Mapping was generated 
with the MuPIT web server (Niknafs et al. 2013). Residue distance was computed with the Chimera 
software (Pettersen et al. 2004). 

d ~9 Å
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Discussion  

 

This work represents the first large scale analysis of both statistically and experimentally haplotype-

resolved genomes, 1,276 in total from different populations, allowing establishment of common 

patterns of phase as key characteristics of diploid human genomes. Virtually all genomes showed 

significant abundance of cis configurations of protein-altering mutations, at an overall cis/trans ratio 

of about 60:40. Nearly all genes exhibited either cis, or trans configurations in significant excess, 

allowing distinction of cis- and trans-abundant genes as major categories of autosomal genes. These 

patterns were largely constituted by a common, global set of phase-sensitive genes that exist in 

either cis or trans configurations. The potential functional importance of these patterns was 

suggested by significant enrichment of this global set with gene sets indicating its involvement in 

adaptation and evolution; further by distinction of the functional classes concerned into those that 

are primarily mediated by cis-, or trans-abundant genes.  

 

It is unlikely that these patterns represent an artifact due to bias in phasing. This statement is 

supported by (i) the high quality of 1000G statistical haplotype data and their strong validation by 

analysis of a substantial number of experimentally phased genomes; and (ii) the robustness of the 

experimental phasing method, ensured by an exceedingly low phasing error rate (Peters et al. 2012). 

Thus, additional steps to eliminate potential artifacts as causes of the cis and trans patterns of 

heterozygous variants, such as independent calculation of LD values from un-phased data, do not 

appear warranted. While some variation in the absolute numbers of cis and trans configurations of 

mutations has been observed, possibly due to differences in population structures and size, or 

annotation and validation procedures, the relative fractions of cis and trans configurations proved to 

be quite stable. Moreover, it appears unlikely that the cis/trans ratios of mutations predicted to alter 

the protein were biased by the annotation algorithms used (Hicks et al. 2011; Tennessen et al. 2012;  

Fu et al. 2013), as entirely different wet lab and bioinformatics pipelines, as well as control analyses 
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of all AA exchanges and sSNPs produced highly similar ratios. Thus, the overall consistency of our 

data suggests that the key results can be considered robust and not an artifact of the specific 

algorithms and settings employed, or the parameters used.  

 

This work represents an advance in the field of haplotype analysis in that an established 

experimental phasing method (Peters et al. 2012) has been applied at the population level to address 

‘higher order questions’ concerning the diploid nature of the human genome (Wu and Dunlap 2002;  

Hoehe 2003; Suk et al. 2011; Tewhey et al. 2011). Recent efforts have mainly focused on refining and 

improving technologies for the efficient haplotyping of individual genomes. On the other hand, large 

scale efforts inferring haplotypes statistically from populations, like the HapMap and 1000 Genomes 

Project are primarily based on genetic marker concepts, i.e. using LD to infer the position of disease 

variants, while providing a catalogue of functional variants to help to prioritize candidate disease 

variants (Abecasis et al. 2012; Auton et al. 2015). In contrast, this work attempts to address the 

distributional patterns of mutations across genes, between and within the two homologous 

chromosomes and their potential functional consequences, to help to understand diploid gene and 

genome function. Cis-abundance of protein-altering mutations and coding variants as a whole, 

represent yet another face of LD in the human genome, and the relationship between the extended 

haplotype blocks established by the HapMap or 1000 Genomes Project, and the phased exonic 

sequences remains to be determined. Essentially, our work shows how the patterns of LD in the 

human genome (Gabriel et al. 2002; Ardlie et al. 2002) affect the distribution of genetic variants 

between the two homologous chromosomes of autosomal genes. In this context, it is important to 

note that due to existing LD a ~50:50 cis/trans ratio of the remaining classes of coding variants could 

not necessarily be expected in order to support functional significance of cis-abundance of protein-

altering mutations. This issue is related to the challenge of distinguishing the causative variants from 

those in LD in the context of disease gene identification. Importantly, analogous analyses which we 
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performed solely with AA exchanges other than those predicted to alter protein function, and sSNPs, 

failed to generate the results obtained with the protein-altering mutations.  

 

Moreover, this work represents a first phase-informed analysis of protein-coding variation in the 

diploid human exome. Recent exome studies (Li et al. 2010; Tennessen et al. 2012; Fu et al. 2013;  

Lek et al. 2016; Telenti et al. 2016), in an effort to facilitate identification of potential disease-causing 

variants, have mainly focused on characterizing the functional spectrum of allelic variation in human 

genes and the underlying demographic and evolutionary forces that generated this variation. Issues 

of phase have yet remained unaddressed. Considering a total of 18,121 autosomal genes (RefSeq), 

phase may be of relevance for 6,284 genes, which have ≥ 2 protein-altering mutations in at least one 

of 1,092 genomes, while 6,797 genes have at most one mutation and 5,040 autosomal genes not any 

protein-altering mutations at all. Nearly half of all mutations predicted to functionally alter the 

protein in a genome (and over 60% of all AA exchanges) were found to exist in either cis or trans 

configurations and therefore require phase information. An overwhelming majority of all variable 

autosomal genes with ≥ 2 protein-altering mutations are either cis- or trans-abundant, and so are all 

genes with AA exchanges and sSNPs. Knowledge of phase is also indispensable in human exomes as 

there are many genes with mono-allelic or allele-specific expression, especially those modulated by 

epigenetic phenomena (Gimelbrant et al. 2007; Leung et al. 2015). In this case, the unique 

distribution of mutations across the two chromosomal homologues affects which mutations will 

ultimately have functional consequences. Thus, phase is an important link to differentially expressed 

transcriptomes and proteomes. Future questions to be addressed are which of the two homologues 

of cis-, and trans-abundant genes are expressed, in spatial and temporal context. The global set of 

phase-sensitive genes and with it, cis- and trans-abundant genes putatively encode two functionally 

distinct homologues, which particularly in combination with mono-allelic expression (MAE) have the 

potential to preserve functional flexibility, suggesting an important role of these genes for adaptation 

and evolution (see also Wu and Dunlap 2002; Chess 2012; Hoehe et al. 2014; Savova et al. 2016). 
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These genes were found significantly enriched for functional categories such as cell-cell 

communication and cell-environment interactions, membrane-related processes, immune response, 

and metabolism and biosynthesis, supporting their importance for adaptation of organisms to 

changes in internal and external environment. Future studies will have to address the role of 

diplotypic genes in transcriptome, proteome, and phenotype diversity within and between cells, 

tissues, individuals, populations, species, at various developmental and physiological stages, as well 

as health and disease. Finally, the unprecedented nature of our cross-validated set of haplotype-

resolved genomes provides a resource which allows linking each of the protein-coding homologues 

to transcriptional regulatory motifs and any non-coding elements that regulate their expression.  

 

This work has introduced two major categories of variable autosomal genes: cis- and trans-abundant 

genes. The more frequent cis-abundant genes are characterized by common pairs of closely spaced 

protein-altering mutations. Thus, these may represent ‘evolutionary signals’ which trace back to 

ancient populations. Reasons for their preservation could be epistatic or compensatory interactions 

between these mutations, maintaining or enhancing the functionality of the protein (Kondrashov et 

al. 2002; DePristo et al. 2005; Ferrer-Costa et al. 2007; Baresic et al. 2010), co-evolution 

(Anishchenko et al. 2017), or hitchhiking effects (Slatkin 2008). Evidence for potential physical 

interaction between such mutation pairs in cis has been obtained in preliminary analyses at the 

example of ESYT2 (Fig. 6). Once the (available) 3D structures in protein databases are more complete, 

these seemingly old, co-occurring pairs of protein-altering mutations discovered in this work, may 

provide valuable information for the study of protein evolution and functionality (DePristo et al. 

2005). Trans-abundant genes, on the other hand, apparently result from a mixture of mechanisms, 

such as the recombination of more distantly spaced mutations (exemplified by mutation pairs, which 

exist to a small percentage still in cis, while to a larger extent in trans), the occurrence of mutations, 

or positive selection such as in the case of HLA genes (Bustamante et al. 2005). This latter example 

referring to the relatively short HLA genes illustrates that configuration status is not significantly 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 17, 2017. ; https://doi.org/10.1101/221085doi: bioRxiv preprint 

https://doi.org/10.1101/221085
http://creativecommons.org/licenses/by/4.0/


35 

 

influenced by gene length. While trans-abundant genes are on average longer than cis-abundant 

genes (primary transcript lengths 35,969 bp versus 25,859 bp, P = 3.9x10-08; AA sequence lengths 

1,012 versus 875; P = 0.001), corresponding with their much larger inter-mutation genomic distances, 

the overall correlation between gene-based trans fractions and primary transcript as well as AA 

length was not significant. Although there is an overall tendency for genes to reside in trans with 

increasing numbers of mutations, the opposite was true for the highly diverse OR genes. These were 

largely cis-abundant, their diversity being preserved by positive selection (Bustamante et al. 2005). 

Taken together, configuration status on the whole is neither the result of gene length nor the 

number of mutations. Furthermore, significant overlaps between both cis- and trans-abundant genes 

and MAE genes were found. First, with regard to the specific (functional) classes they were enriched 

for and then with regard to the shift of allele frequency distributions in these genes towards those 

consistent with common variation (i.e. greater allelic age on average (Savova et al. 2016)). Thus, 

these genes may encode common functional variation in the populations, generating wide-spread 

cell-to-cell, organismal, and phenotypic diversity. Their significant enrichment with functional classes 

involved in cell-cell and cell-environment interactions, in all populations examined, supports their 

general adaptive role (Savova et al. 2016). Moreover, the mutations constituting the common phase 

configurations might not represent disease mutations, but instead modulate the effect of individual, 

rare, or disease variants on gene function. To further characterize cis- and trans-abundant genes, 

that is, genes with either one or two altered homologues, novel approaches to the analysis of 

sequence-structure-function relationships will be required. These must account for the two different 

homologues a diploid gene possesses, including new (in vitro) paradigms to both separately and 

jointly express and characterize the two different gene products. This should also help to elucidate 

the differential influence of these two gene categories in functional context.  

 

How could we explain the phenomena described? Preliminary results pointed in principle to two 

major mechanisms. Firstly, cis-abundance, with ~60:40 cis/trans ratios being observed for all types of 
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coding variants, could arise from ancestral admixture as the common underlying mechanism. Further 

investigations tracing human evolutionary history and population genetic processes will be required 

to elucidate the apparently ancient origins of cis-abundance and the specific admixture processes 

generating it. Moreover, the observation that all populations showed approximately the same 

cis/trans ratios (with some decay of LD in AFR leading to a ~55:45 ratio) suggests that genetic 

admixture between two ancient populations must have occurred before dispersal of modern humans 

out of Africa and their population expansion worldwide (Nielsen et al. 2017; McEvoy et al. 2011). 

Secondly, a significant overrepresentation of particular functional categories in the global sets of 

phase-sensitive, and cis- and trans-abundant, genes was observed. With ≥ 2 protein-altering 

mutations, these genes featured an increased mutational load. As preliminary results indicated, 

processes of ancient balancing selection may have contributed to their higher genetic diversity to 

preserve their functional flexibility as an adaptive advantage (Wu and Dunlap 2002; Sellis et al. 2011;  

Hoehe et al. 2014; Savova et al. 2016). Moreover, the observation that all populations had the same 

distributional patterns of protein-altering mutations and functional enrichment suggests that these 

selective processes must have occurred before ancestral admixture. Thus, this conserved, potentially 

functionally important ‘phase-sensitive part’ of the diploid human genome may have very ancient 

origins. This applies particularly also to the common pairs of co-occurring mutations characterizing 

cis-abundant genes. These could serve as ‘evolutionary signals’ that could contribute to further 

elucidate the evolutionary history of the phenomena described. In sum, processes of ancient 

selection followed by admixture may have shaped the overall picture observed.  

 

This work represents a basis for diploid genomics, or ‘diplomics’ (Tewhey et al. 2011), a ‘dual’ view of 

biological processes. It identifies, and focuses on, those sets of genes, the homologues of which are 

potentially functionally different (Wu and Dunlap 2002), and divides those further into two 

categories, cis- and trans-abundant genes (i.e., diploid genes with either one, or two altered 

homologues). Thus, it sets the stage for a diploid biology which inherently is allelically biased at all 
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levels: chromatin organization, epigenomes, transcriptomes including transcriptional regulation, and 

proteomes (Dixon et al. 2015; Leung et al. 2015). Diploid biology will need to be described and 

understood with reference to the two homologues of the genes and regulatory sequences an 

individual possesses. In this context it should be pointed out what a challenge it is to currently 

describe the diploid nature of human genomes in words and terms that have been shaped by 

working with un-phased, i.e. ‘mixed diploid’ sequences leading to the perception and interpretation 

of a ‘one genome world’. Towards diploid genomics, major questions to be addressed in the future 

are, for example, whether, and how, biology could change with cis/trans ratios, or how phenotype 

could change with configuration status, and whether cis-abundance could represent a general 

phenomenon in all diploid species.   

 

METHODS 

 

Use of 1000 Genomes (1000G) Consortium data 

Haplotype data from 1,092 genomes (Abecasis et al. 2012) were downloaded from 

ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/shapeit2_phased_haplotypes/. Phase 

configurations were assessed in the total of 1,092 genomes and separately in the four ancestry 

groups contained therein (EUR n=379, EAS n= 286, admixed AMR n = 181, AFR n = 246) and their 14 

populations. Phased data were available across all 1,092 genomes, with ‘no call’ rates between 2.1 

and 6% and routine use of imputation in the case of missing data. Regarding the accuracy of inferred 

haplotypes at common SNPs, a phasing (switch) error every 300–400 kb on average has been 

deduced. Specifically, exome data had a substantially higher coverage (50–100X) due to the 

integration of additional, targeted deep exome sequence data (for all details see Abecasis et al. 

(2012).  
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Use of 184 experimentally haplotype-resolved genomes from the Personal Genome Project (PGP) 

database  

Individuals were recruited as part of PGP (Ball et al. 2012). Participants enrolled in the PGP gave full 

consent to have their genotypic and phenotypic data made freely and publically available. 

Documents reviewed and signed by each participant can be found at 

http://www.personalgenomes.org/harvard/sign-up. Each participant provided a blood sample, self-

reported ethnicity, and detailed phenotype information. High molecular weight DNA was isolated, as 

previously described (Peters et al. 2012), for haplotype-resolved whole genome analysis using 

Complete Genomics’ Long Fragment Read technology (Peters et al. 2012). This enabled > 98% of all 

heterozygous SNPs to be placed into contigs with an average N50 of 800 kb (Mao et al. 2016). 

Importantly, a large number of technical replicate samples were generated to measure phasing error 

rates. As demonstrated previously (Peters et al. 2012), these error rates were exceedingly low (Mao 

et al. 2016) with ~86% of overlapping blocks between replicate samples completely error-free. Data 

from these samples was projected onto a principle component analysis using four populations from 

the HapMap project. This confirmed that the self-reported ethnicities from each participant matched 

their genetic profile. Importantly, for analyses in this study, a contig filter was applied to ensure that 

phase configurations were determined only for those protein-altering mutations and coding variants 

that were contained within the same contig.  

 

Annotation of mutations, assessment of cis and trans configurations, evaluation of cis/trans ratios 

RefSeq genes were downloaded from UCSC table browser (Hg19). All transcripts belonging to an 

autosomal gene were merged and the coordinates defining the entire gene region determined, 

resulting in a final set of 18,121 autosomal genes. For analysis of the 1,092 genomes, the annotation 

of AA exchanges, sSNPs, and mutations predicted to functionally alter the protein, was provided by 

the 1000G database. Annotation of AA exchanges and sSNPs in PGP data were provided by the PGP 

database (Mao et al. 2016). For annotation of protein-altering mutations, a combination of PolyPhen-
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2 (Adzhubei et al. 2010) and SIFT (Ng and Henikoff 2001) (see also Hoehe et al. 2014) as well as GERP 

conservation scores (Cooper et al. 2005) were applied to ensure comparability with 1000G 

annotation and detect all mutations that potentially alter gene function. Default threshold values for 

PolyPhen-2 and SIFT were used as well as GERP scores > 2.  

 

The 1,092 genomes were filtered for genes with mutations predicted to alter the protein, and the 

other types of coding variants under investigation, and intermediate output files prepared: The 

mutations, i.e. alleles different from the reference sequence (or ‘minor alleles’), were designated ‘1’, 

and the alleles identical with the reference sequence ‘0’. The specific combinations of mutations 

representing ‘Haplotype 1’ and ‘Haplotype 2’ were contained in two adjacent columns, with the rows 

representing the heterozygous coordinates and their gene IDs (see also Hoehe et al. 2014). For the 

analysis of PGP data, we applied PolyPhen-2 and SIFT in combination with GERP (as described above) 

to the PGP output files generated from each of the 184 experimentally phased genomes and 

prepared the intermediate output files accordingly. 

  

To assess the concrete phase configurations of all ‘phase-sensitive’ autosomal genes with ≥ 2 

mutations in each of the genomes, we applied and automated the following approach: Examine 

column 1 representing ‘Haplotype 1’ by moving 5’ to 3’ from cell to cell, each containing allele 1 or 0 

assigned to a genomic coordinate and gene ID. Remove all genes that have only one protein-altering 

mutation, i.e. only one cell assigned to a gene ID, to ensure that only those mutations are included 

that require phasing. (Upon removal of genes with one mutation, the number of different gene IDs is 

equivalent to the number of phase-sensitive genes in the individual genome under investigation.) 

Store the series of alleles across all cells (within column 1) assigned to the same gene ID as units and 

subject these to the assessment of phase configurations: where all stored alleles in column 1 are 

exclusively 1s or 0s, a cis configuration is scored, otherwise a trans configuration (see also Hoehe et 
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al. 2014). Thus, for each genome, a result file was generated, which contained the gene IDs with an 

assignment of cis or trans.  

 

This allowed immediate calculation of the cis fraction (%) of an individual genome as the number of 

genes with cis configurations divided by total number of genes with ≥ 2 mutations, i.e. total 

configuration count (equivalent to 100%), and of the trans fraction (%) per genome as 100% - cis (%). 

To determine the cis/trans ratio for totals of 1,092 or 184 genomes, or any population sample, the 

median values of the cis, and the trans fractions were calculated across all genomes.  

 

To evaluate the significance of a given cis/trans ratio in an individual genome, we derived the 

composite probability of a cis, or trans configuration across all genes. We can model the probability 

of an observed cis, or trans configuration in a gene with i mutations with a Bernoulli experiment 

𝑃𝑖(𝑋 = 1) where 𝑋 = 1 denotes a cis configuration and 𝑋 = 0 a trans configuration. Thus, we have 

𝑃𝑖(𝑋 = 1) =
1

2𝑖−1  and 𝑃𝑖(𝑋 = 0) = 1 −
1

2𝑖−1. Among the number of genes with ≥ 2 mutations that 

have either cis or trans configurations, let 𝑤𝑖 be the relative frequency of genes with exactly i 

mutations. Thus, we have ∑ 𝑤𝑖𝑖≥2 = 1. The probability of observing a cis configuration among all 

phase-sensitive genes in a genome is then given by the weighted sum of the above defined Bernoulli 

probabilities:  𝑃(𝑋 = 1) = ∑ 𝑤𝑖𝑖≥2 𝑃𝑖(𝑋 = 1). Thus, inserting the relative observed frequencies, 𝑤𝑖, 

yielded an expected probability of ~0.4 for a cis configuration to occur. The significance of the 

observed cis/trans ratio for a given genome was then computed with an exact Binomial test with P = 

0.4. To assess the significance values for a cis/trans ratio which was calculated in a population 

sample, such as the 1,092 or 184 genomes, we derived the median values for both cis and trans 

configurations across all genomes, quasi a ‘median genome’. This was then treated as an individual 

genome as described above, in order to calculate a significance value for a given population sample. 

Thus, the significance values estimated for global cis/trans ratios most likely represent an 

underestimation.  
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Simulation of phased genomes, derivation of expected cis/trans ratios 

To verify the theoretical assumptions on the composite probability of a cis or trans configuration, 

simulations of phase were performed assuming that the mutations are distributed randomly 

between the two homologues of a gene. Accordingly, a virtual set of 1,092 phased genomes was 

generated as follows: for each virtual genome, random numbers of mutations were drawn in the 

range observed in the 1,092 genomes data set (~2,500–3,500). The mutations were sampled from 

the total of ~300,000 protein-altering mutations annotated in this data set. Phase was simulated 

assigning to every single mutation in a gene a 50:50 chance to exist on either homologue 1 or 2. 

Practically this was achieved by randomly drawing with each mutation a phase, i.e. ‘homologue 1’ or 

‘homologue 2’ attached, from the 1000G database. Accordingly, a random distribution of all nsSNPs 

between the two homologues was simulated, drawing randomly between ~5,500 and ~7,500 nsSNPs 

with either homologue 1 or 2 attached from the entire pool of ~1.5 Mio nsSNPs annotated in the 

1,092 ‘real’ genomes, thus generating a second virtual set of 1,092 phased genomes. To test the 

validity of our approach to simulate phase, we assessed the cis/trans ratios separately for 2 up to 5 

variants in both virtual data sets, and compared these ratios to the probabilities P for these numbers 

of variants to occur in cis under conditions of random distribution, which is 1/2n-1, with n the number 

of variants. Comparative evaluation showed that the cis/trans ratios which were simulated for 

defined numbers of variants were essentially identical to those expected. Thus, the simulated data 

were considered valid and the (composite) expected cis/trans ratios across all genomes in both 

virtual data sets were derived. The expected cis/trans ratios provided the basis for the estimation of 

the significance values of the observed cis/trans ratios.  

 

The two virtual sets of 1,092 phased genomes also provided the basis to simulate the highly 

proportional relationships between the number of mutations per genome and the numbers of genes 

with 1 mutation, ≥ 2 mutations, cis and trans configurations (as mentioned in the chapter on ‘a global 
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set of phase-sensitive genes’; see also Supplemental Table S7) as the result of a random distribution 

of mutations onto existing exome structure.  

 

Distinction of cis- and trans-abundant genes 

To identify cis or trans-abundant genes, that is, genes with ≥ 2 mutations exhibiting either 

configuration in significant excess, we examined the ratio of cis to trans configurations for each single 

gene (the ‘gene-based’ cis/trans ratio) across all genomes in a defined population sample. Significant 

abundance of either configuration was evaluated with a Binomial test: Given a phase-sensitive gene, 

let X be a random variable that describes the number of k (out of n) genomes for which a cis-

configuration consisting of two or more mutations has been found (n = 1,092 or any other sample 

size specified), we computed the corresponding P-value of the Binomial test with null hypothesis that 

cis and trans configurations were equally likely:  

𝑃(𝑋 ≥ 𝑘) =  1 − ∑ (
𝑛
𝑖

) 0.5𝑖0.5𝑛−𝑖𝑘−1
𝑖=0 . 

In contrast to the calculations above we used the more stringent assumption of P = 0.5 for a cis 

configuration as null hypothesis in order to identify cis-abundance for genes in the majority of 

genomes. Genes with P-value ≤ 0.05 were defined as cis-abundant. Likewise, genes with P-value ≤ 

0.05 when counting the trans configurations were defined as trans-abundant.  

 

Over-representation analysis  

In order to assess significance of over-representation of gene lists in pre-annotated gene sets (for 

example pathways, gene ontology (GO) terms, pre-defined gene lists, etc.) we used the hyper-

geometric distribution. For each annotation set, the P-value is calculated as: 

𝑃(𝑥|𝑛, 𝑚, 𝑁) =  1 − ∑
(𝑚

𝑖 )(𝑁−𝑚
𝑛−𝑖 )

(𝑁
𝑛)

𝑥−1
𝑖=0 , 

where x is the number of entities in the respective gene list that overlap with the entities in the 

annotation set, n is the total number of entities in the annotation set, m is the total number of 
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entities in the gene list and N is the total number of genes (background). Since many annotation sets 

were tested, we routinely corrected for multiple hypothesis testing using the False Discovery Rate 

procedure within each type of annotation set (Benjamini and Hochberg 1995). For functional testing, 

we used the ConsensusPathDB tool (version 32) which holds 5,068 pre-defined pathway gene sets 

along with the latest GO terms (Herwig et al. 2016). Pre-defined gene lists from literature included 

genes that were found monoallelically (4,227 genes) and biallelically (6,006) expressed across 

multiple cell lines, 226 genes reported to evolve under balancing selection (BS), 104 genes with 

ancient derived protein-coding polymorphisms or haplotypes predating the human-Neanderthal split 

(HNS) and 60 genes with any evidence of human-chimpanzee trans-species polymorphisms or 

haplotypes (TSPs), as described in Savova et al. (2016). As input gene lists we have used the global set 

of 2,402 phase-sensitive genes as well as the global set of 7,524 genes with ≥ 1 protein-altering 

mutations, and, additionally, the 5,040 genes without any mutations. Furthermore, we investigated 

over-representation with respect to the sets of 1,227 cis- and 786 trans-abundant genes. These gene 

lists were computed from the 2,402 phase-sensitive genes as described above.  

 

Data Access 

Read and mapping data for all genomes reported here are available at the database of Genotypes 

and Phenotypes (dbGaP) under study accession number phs000905.v1.p1.  In addition, the full data 

package minus reads and mappings are accessible through GigaDB as part of Mao et al. (2016). 
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