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ABSTRACT 29 

 30 

Principles derived from recent studies have begun to converge and point to a 31 

consensus for the neural basis of economic choice. These principles include the idea that 32 

evaluation is limited to the option within the focus of attention and that we accept or 33 

reject that option relative to the entire set of alternatives. Rejection leads attention to a 34 

new option, although it can later switch back to a previously rejected one. The referent of 35 

a value-coding neuron is dynamically determined by attention and not stably by labeled 36 

lines. Comparison results not from explicit competition between discrete representations, 37 

but from value-dependent changes in responsiveness. Consequently, comparison can 38 

occur within a single pool of neurons rather than by competition between two or more 39 

neuronal populations. Comparison may nonetheless occur at multiple levels (including 40 

premotor levels) simultaneously through a distributed consensus. This framework 41 

suggests a solution to a set of otherwise unresolved neuronal binding problems that result 42 

from the need to link options to values, comparisons to actions, and choices to outcomes.  43 
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 45 

INTRODUCTION 46 

 47 

Economic choice, the selection of options based on their value, is a core process 48 

in the repertoire of intelligent organisms (Pearson et al., 2014; Rushworth et al., 2011; 49 

Rangel and Hare, 2010). Neuroeconomic research has successfully identified some of the 50 

major brain regions associated with valuation and choice, especially the orbitofrontal 51 

cortex (OFC), ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex 52 

(dACC), and ventral striatum (VS). These regions are activated by the values of offers 53 

and outcomes and show correlations with comparison-related processes (Wallis, 2007, 54 

Bartra et al., 2013, Haber and Behrens, 2014; Rushworth et al., 2011). Lesion studies 55 

support the idea that these regions have a direct causative role in choice (e.g. Noonan et 56 

al., 2010, Kennerley et al., 2006; Camille et al., 2011). All measures point to some degree 57 

of specialization within these regions, although their respective roles remain debated 58 

(Rushworth et al., 2011). While the locations of value-related processing are now 59 

established, the mechanisms of choice are not. Nonetheless, we believe that a series of 60 

recent studies have begun to limn something of a consensus view – if not a model, at least 61 

a framework for one. 62 

A common proposal is that value comparison is implemented by direct 63 

competition, via mutual inhibition, between discrete sets of neurons whose responses 64 

correspond to the value of particular options (e.g. Rustichini and Padoa-Schioppa, 2015; 65 

Chau et al., 2014; Hunt et al., 2015; Louie et al., 2011; Hunt et al., 2012; Soltani et al., 66 

2006; Padoa-Scioppa, 2011). From this perspective, value representations are aligned to 67 

neuron identity by a labeled line code: a neuron’s firing rate indicates a value and its 68 

identity (its notional label) indicates which option has that value. This stable relationship 69 

makes implementing choice straightforward: the two populations compete for control of a 70 

third set of neurons and whichever set of neurons wins the competition determines the 71 

chosen option. However, this approach introduces several problems. First, it necessitates 72 

redundant reduplication of circuitry for computing value for each offer. Second it 73 

requires precise wiring to implement it (or else a well-informed supervisory system that 74 

dynamically creates that wiring.) Third, it does not readily scale up to more than two 75 
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offers, nor does it deal well with newly introduced or novel offers. Fourth, it introduces 76 

the need to coordinate a flexible linkage between offers, values, actions, and positions in 77 

space; we call these problems the neuroeconomic binding problems. While these 78 

problems are undoubtedly surmountable, we wondered instead whether an alternative 79 

approach could provide a better framework for models of economic choice.  80 

Several recent findings have, in our view, begun to bring into focus an alternative 81 

picture of how choice works. Here, we first review that evidence, with a focus on primate 82 

single unit recoding studies. First, we describe six major research trends that, together, 83 

point towards our integrated framework. We then describe a framework that is consistent 84 

with, and supported by, these research trends. This framework is also directly motivated 85 

by principles of foraging theory that, in our view, constructively interact with the 86 

principles of neuroeconomics to guide our understanding of reward-based choice 87 

(Pearson et al., 2014; Hayden, 2017). Finally, we provide a speculative discussion of the 88 

ways that our framework points towards novel solutions to old problems, especially the 89 

neuroeconomic binding problems. 90 

 91 

 92 

  93 

Figure 1. Illustration of core ideas of one- and two-pool models. A. Left: One 94 

approach to modeling choice is the labeled line approach. Each neuron is associated 95 

with a specific option and these neurons compete, typically through mutual inhibition, for 96 

control of behavior. Center: Another take on the labeled line approach has three classes 97 

of neurons, one for each option and a third for comparison. Right: An alternative 98 

attentionally aligned approach (supported by recent work reviewed here) eschews 99 

labeled lines, but instead involves alternations between states corresponding to just one 100 
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offer. When attention shifts, the inputs to the value neurons change to reflect the 101 

attended option. Because only one option is attended, value sensitive neurons do not 102 

need to have information about which option their value signals. B. When attention shifts 103 

from one option to another, a labeled line system will switch which neurons are strongly 104 

activated; an attentionally aligned system does not. Nor will tuning functions change. 105 

Thus, measuring which neurons are involved in signaling the values of the two offers, 106 

and their tuning, can test between two-pool and one-pool models. 107 

 108 

 109 

  110 
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PART I: Empirical findings 111 

 112 

1. We evaluate only one option at a time 113 

Attention has a narrow bandwidth. While the spotlight of attention can in 114 

principle be split, it is difficult to do so; it is much easier to simply attend items serially 115 

(Treisman and Gelade, 1980; Egeth and Yantis, 1997). Some features of the visual scene, 116 

such as color, can be analyzed in parallel, but serial processing is greatly preferred for 117 

complex feature extraction. Value, which is typically determined by the combination of 118 

multiple features, seems likely to be the type of complex feature that requires unitary 119 

focal attention.   120 

It is not surprising, then, that when two options are presented in the visual field, 121 

our eyes naturally shift back and forth between them to evaluate them (Krajbich et al., 122 

2010; Orquin and Mueller Loose, 2013). When gaze is held fixed by the experimenter the 123 

spotlight of attention may nonetheless covertly shift between the two options. And when 124 

they are not presented visually, there may still be a shifting covert mental focus of 125 

attention that selects one at a time for processing. The limitation of evaluation to a single 126 

option is also consistent with ideas developed by foraging theory (Stephens and Krebs, 127 

1986; Kacelnik et al., 2011; Kolling et al, 2012; Shapiro et al., 2008; Hayden, 2017). 128 

Specifically, foraging theorists generally point out that evolution has shaped the 129 

development of a system that will accept or reject a single option, and that when faced 130 

with multiple options, we likely perform multiple more-or-less independent accept-reject 131 

decisions (Kacelnik et al., 2011).  132 

This gaze-dependent fixational model is supported by studies of the relationship 133 

between fixation patterns and choices (Krajbich et al, 2010; Krajbich et al., 2011). Neural 134 

evidence supports, or is consistent with, the idea that the core value regions, vmPFC, 135 

OFC, and VS encode the value of the attended option (Lim et al., 2011; Strait et al., 2014; 136 

Strait et al., 2015; Blanchard et al., 15; Xie et al., 2017; Rudebeck et al., 2013; McGinty 137 

et al., 2016). In a recent study of the OFC, ensembles of neurons alternated between 138 

encoding only one of the two available options rather than encoding both at the same 139 

time (Rich and Wallis, 2016). Notably, these coding states did not track the locus of gaze, 140 

but presumably tracked the focus of attention, suggesting that it is attention, not gaze 141 
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direction per se, that determines which option is evaluated. The underlying foraging 142 

models that support these ideas have also proven quite useful in explaining a great deal of 143 

brain activity (Kolling et al., 2012; Kolling et al., 2014; Hayden, 2017; Blanchard and 144 

Hayden, 2014; Boorman et al., 2011, Boorman, et al., 2013, Boorman et al., 2009). 145 

Implications for the framework: If we can only attend one offer at a time, then 146 

processing of the two offers in a binary choice must occur serially, not in parallel (Figure 147 

2). (The same is true for choices with more than two offers, see below). Relative to 148 

parallel models, serial processing poses a new problem and solves an old one. The new 149 

problem is that it requires a working memory buffer so that the value of a previously 150 

attended option can be maintained in order for any comparison to occur. The solved 151 

problem is the option-value binding problem. Because attention is limited to one option, 152 

there is no ambiguity about the reference of value-related neural responses. As long as 153 

the decoder knows where the focus of attention is, the referent of the value signal is 154 

unambiguous (that focus need not be spatial; it may be abstract and conceptual.) 155 

 156 

 157 

2. We decide whether to accept or reject that option 158 

If only one option is attended at a time, it is natural that the decision will be 159 

simply to accept or reject that one. Rejection would be favored, even for very good 160 

options, when the cost of inspecting the next one is low and there is no cost to returning 161 

to the first one (as in most laboratory binary choice tasks, although not necessarily as in 162 

natural contexts). In the laboratory, then, we would therefore expect a period of 163 

inspection before a period of choice. As noted, foraging theory has long emphasized the 164 

idea that preys are naturally encountered alone, and thus our brain’s evolved choice 165 

strategy is to either accept or reject a single offer (Stephens and Krebs, 1986; Charnov, 166 

1976; Krebs et al., 1977). This decision is made relative to an estimate of the value of 167 

rejection (i.e. the opportunity cost of accepting), known as the background value.  168 

From this accept-reject perspective, ostensibly binary choices involve two largely 169 

distinct accept-reject decisions, one for each offer (Kacelnik et al., 2011). These two 170 

decisions may be implemented by separate, possibly interacting, diffusion-to-bound 171 

processes. These ideas are somewhat well-supported by reaction time data (Freidin et al., 172 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/221135doi: bioRxiv preprint 

https://doi.org/10.1101/221135
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

2009; Shapiro et al., 2008). Another implication of this idea is that in choice, options are 173 

given special status: default (the currently attended one) and alternative (the other one). A 174 

good deal of evidence supports the idea that cortical choice processes adopt this framing 175 

(Kolling et al., 2012; Boorman et al., 2009; Boorman et al., 2013; Kolling et al., 2014; 176 

Azab and Hayden, 2017).  177 

Implications for the framework: If we attend single offers in turn and accept or 178 

reject each one, direct comparison of values per se need not occur (Kacelnik et al., 2011). 179 

Comparison may instead result indirectly from the fact that we cannot choose both 180 

options if both options are favored for an ‘accept’ decision. A form of value comparison 181 

may sneak in via the accept-reject process if the accept-reject decision is made relative to 182 

the background, and the background consists of the other option (or best of others in the 183 

case of more-than-two-option choice). As a consequence, we do not need separate pools 184 

of neurons for representing the two offers, nor do we need additional neurons to perform 185 

the comparison (Figure 1). Getting rid of comparator neurons avoids the difficult binding 186 

problem by which the offer-selective neurons are dynamically configured to converge on 187 

specific comparator neurons. One advantage of using a single pool is that the brain can 188 

use all its resources to the difficult problem of value estimation, which requires sensory 189 

information, memory and prospection, rather than using anatomically separate 190 

computational resources for every option that is (or even that can be) available. The 191 

disadvantage, of course, is that the serial nature of value estimation can slow down the 192 

decision-making process and requires memory.  193 

 194 

 195 

 196 

Figure 2. Illustration of basic framework of models. A. In simultaneous choice (“tug of 197 

war”) there is one decision variable that drifts between two bounds, corresponding to 198 
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choice of option 1 and 2, respectively. B. In independent choice (“sequential choice” or 199 

horse race) models there are two decision variables drifting between two potentially 200 

similar sets of bounds. They may interact or they may not; generally one threshold hit 201 

stops the deliberation process and the second one is halted. C. Some recent evidence is 202 

consistent with a pair of single diffusion processes, only one of which occurs at a time, 203 

as determined by the focus of attention. The threshold in the single diffusion process is 204 

likely influenced by the background value (estimate of the value of rejecting), which in 205 

turn can be determined by the value of the other option and by the value of further 206 

exploration.     207 

 208 

3. Attention, not labeled lines, determines how value is bound to options  209 

When attention shifts from one option to another, value-coding neurons in several 210 

regions switch from encoding the value of the first option to encoding the value of the 211 

second. Often, neuronal responses are consistent with use of the same format to encode 212 

offer values across shifts in attention. That is, a neuron positively tuned for the value of 213 

the first considered offer will remain positively tuned for the value of the second and vice 214 

versa. We introduce the term attentionally aligned coding to refer to this response 215 

pattern, which can be distinguished from labeled line coding, where neuron will change 216 

value polarity depending on the option (Azab and Hayden, 2017). Specifically, the term 217 

attentionally aligned means that the referent of a value neuron’s firing rate is not 218 

consistently aligned to a single option, but rather is aligned to the value of any option 219 

within the focus of attention. Attentionally aligned coding is convenient if attention is 220 

limited to a single option at a time, but becomes unwieldy if multiple options can be 221 

attended at once. 222 

This pattern was anticipated in neuroimaging studies (Lim et al., 2011), and in 223 

careful studies of behavior (Krajbich et al., 2010). An attentional alignment has been 224 

reported in neurons in vmPFC, VS, OFC, dACC, and subgenual ACC (sgACC) 225 

(Rudebeck et al., 2013; Blanchard et al., 2015; Xie et al, 2017; Rich and Wallis, 2016; 226 

Azab and Hayden, 2016; Azab and Hayden, 2017; Strait et al., 2014; Strait et al., 2015), 227 

and is consistent with another recent OFC study (McGinty et al., 2016.) Evidence for 228 

attentional alignment is illustrated in Figure 3. As will be discussed below, attentional 229 
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alignment is not a novel idea, but rather the same basic principle by which feature coding 230 

in the ventral stream works (Desimone and Duncan, 1995). 231 

Implications for the framework: If value coding is attentionally aligned, then the 232 

framework can have a set of value-sensitive units that are ignorant of the details of the 233 

input stimuli. Specific value-sensitive units in the network have an organizational 234 

advantage: they will not need to be precisely wired with offer layer neurons. This 235 

arrangement gives the system much more flexibility to deal with rapidly changing 236 

options, new options, and more than two options. One disadvantage is that if an ensemble 237 

of attentionally aligned neurons uses the same format to encode the value of two different 238 

options, a decoder cannot know, without some additional information (specifically, which 239 

option is attended), to which option a neuron firing rate refers. By contrast, in a labeled 240 

line coding system, there is no ambiguity about which option a neuron’s firing rate 241 

indicates: after all, the line is labeled. On the other hand, if the decoder knows the status 242 

of attention, then the referent of the neuron’s firing rate is unambiguous. Thus, the 243 

option-value binding problem can be solved without need for any supervisory system 244 

other than the one that controls attention. 245 

 246 

 247 

Figure 3. Neurons use a similar ensemble coding format (signed regression 248 

coefficient) for the values of offer 1 and offer 2 when they are attended in sequence. In 249 

this illustration, options were presented and thus attended asynchronously, and 250 

regression coefficients for each neuron were estimated in the appropriate epochs. Each 251 

dot indicates a single neuron; its x and y position indicate the linear component of its 252 

tuning function for each option. The positive correlation between the two indicates a 253 

preservation of tuning, as predicted by a single-population model. A labeled line model 254 

would predict that points would cluster around the anti-diagonal and produce an anti-255 
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correlation. Data from VS are shown (Strait et al., 2015); similar patterns were observed 256 

in other core value regions (see text). 257 

 258 

4. One pool of neurons, not two 259 

When attention shifts, and the value code shifts with it, a good deal of evidence 260 

indicates (or at least is consistent with the idea) that it is the same neurons activated for 261 

the previous option that are activated for the next one (Rudebeck et al., 2013; Azab and 262 

Hayden, 2017; Blanchard et al., 2016; Blanchard et al., 2015; Xie et al., 2017; Rich and 263 

Wallis, 2016). In other words, the brain may use only one pool of neurons to encode the 264 

two different values at different times, not two separate ones. At least one study indicates 265 

that some of these regions use a single pool of neurons to encode offered and chosen 266 

values as well (Blanchard et al., 2016).  267 

A simple test for separate populations is to compare unsigned regression 268 

coefficients (this is similar to, but more statistically sensitive than, performing a Venn 269 

Diagram analysis, Figure 4). This method reveals evidence in favor of a single 270 

population in OFC, vmPFC, VS, and dACC (Azab and Hayden, 2016; Blanchard et al., 271 

2015; Strait et al., 2014; Straight et al., 2015; Wang and Hayden, 2017). A more sensitive 272 

method uses Bayesian statistics to ask whether the tuning functions for the two variables 273 

supports a single or dual clusters (Blanchard et al., 2016). This method rejects any 274 

option-specific clustering 4 brain regions (VS, vmPFC, OFC, and dACC). It also rejects 275 

clustering for offer and chosen values. 276 

Note that the case here is not definitive; there is a good deal of ostensibly 277 

contradictory empirical support for two pools, and several papers for data consistent with 278 

a two pool model (Padoa-Schioppa, 2011) The question of how many pools there are is 279 

difficult to answer because the brain may in principle divide up the two offers in any of a 280 

number of ways, perhaps arbitrarily and perhaps randomly from trial to trial. Methods 281 

that average across multiple trials may then therefore average across the two pools 282 

making two look like one. Our analyses so far suggest that neurons do not consistently 283 

align to the first/second offer or the left/right offer in asynchronous left-right choices 284 

(Azab and Hayden, 2017; Blanchard et al., 2017; Blanchard et al., 2015). Perhaps the 285 

strongest evidence so far comes from datasets with simultaneously recorded cells, 286 
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allowing robust single trial analysis, which still fail to indicate separate pools of cells 287 

(Rich and Wallis, 2016). 288 

Implications for the framework: The one-pool finding, if true, goes hand in glove 289 

with the attentional alignment hypothesis. Specifically, if there is a single pool of 290 

neurons, its firing rates must somehow be linked with an option. The most 291 

straightforward way would be to limit reference to a single possible option, defined by 292 

attention. That system would allow the set of neurons to flexibly encode the value of any 293 

offer, and would free the system from having to have a rigid linkage for offers and 294 

values. The narrow restriction of attention to a single option would thereby resolve the 295 

option-value binding problem. This logic also works for the tentative finding that offered 296 

and chosen values are encoded by the same neurons: presumably the chosen offer is 297 

attended around and immediately after the time it is chosen, and so it should be encoded 298 

in the same neurons that encoded its value at offer time. 299 

 300 

Figure 4. Some evidence for a one-pool model. A. In a simple gambling task with two 301 

offers presented asynchronously, neurons selective for the value of the first offer are 302 

more likely to be selective for the value of the second as well. Selectivity here is 303 

measured by the absolute value of the regression coefficient of firing rate against the 304 

value of the offer. The positive correlation between the variables indicates that a neuron 305 

driven by the value of the first offer is more, not less, likely, to be driven by the value of 306 

the second one. We see no evidence of separate populations of cells, as would be 307 

predicted by a labeled line model. Illustrative data from dACC shown (Azab and Hayden, 308 

2016); similar patterns were observed in other regions (see text). B. Evidence for a 309 

single population encoding offered values and chosen values. Illustrative data from 310 

dACC shown (Azab and Hayden, 2016); C. Aligned encoding of attended offer values. 311 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/221135doi: bioRxiv preprint 

https://doi.org/10.1101/221135
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

Values of attended offers are encoded in correlated formats across time, in contrast to 312 

two-pool model predictions of mutual inhibition through time (Azab and Hayden, 2017). 313 

 314 

5. Opposed tuning for offer pairs at the time of choice 315 

At the time the second offer is attended (and the value of the first is available in 316 

working memory), the decision-maker can begin comparing their values. At this time, 317 

firing rates of neurons in several regions encode the difference in values of the two offers. 318 

Specifically, individual neurons tend to show opposing tuning functions for their values. 319 

These regions include vmPFC (Strait et al. 14), VS (Strait et al., Figure 5), dACC (Azab, 320 

2017), and sgACC (Azab and Hayden 2016), as well as the PMd (Pastor-Bernier Neuron) 321 

and SEF (Chen and Stuphorn, 2016). These signals are observed in the same neurons that 322 

encode the values of the individual offers and not a separate class of neurons. This pattern 323 

is broadly consistent with the finding that several brain regions show coding for the 324 

difference in the values of the two offers (Basten 2010; Boorman et al., 2009; Fitzgerald 325 

et al., 2009; Hunt et al. 2012). The value difference is the key decision variable for 326 

economic choice – a simple threshold applied to value difference will produce a choice. It 327 

is thus, arguably, a signature of value comparison. 328 

Implications for the framework: Putative value comparison signals, in the same 329 

neurons that encode values of offers, indicate these neurons do not specialize in encoding 330 

the value of the attended offer. Instead, they have a more sophisticated and flexible role 331 

in choice. Specifically, they can encode the difference (or a function thereof) between the 332 

the attended and the remembered values. Doing so requires them to have some kind of 333 

working memory store (whether active or passive) and raises the question of what form it 334 

takes (see model below). Note also that the presence of value comparison signals in 335 

multiple regions suggests that the comparison occurs simultaneously in multiple regions 336 

(see Discussion).  337 

 338 
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 339 

Figure 5. Neurons use inverted tuning formats (reversed regression coefficients) to 340 

encode the values of the two offers during choice. Each point indicates a single neuron. 341 

The x- and y- positions of the dots indicate the linear term of the regression coefficient 342 

for the firing rate of that neuron at the time of choice against the values of the two 343 

different (and uncorrelated) offers. The negative correlation indicates that these 344 

coefficients are anti-correlated and thus that the population encodes the difference in the 345 

values of the two offers. Illustrative data from VS shown (Strait et al., 2015); similar 346 

patterns were observed in other core reward regions. 347 

 348 

6. Activation of motor plans during deliberation 349 

When we evaluate options, and before we choose, the anticipated motor plans of 350 

both option are encoded in premotor and parietal cortices (Cisek and Kalaska, 2005; 351 

Scherberger and Anderson, 2007; Baumann and Scherberger, 2009; McPeek and Keller, 352 

2002). When the action is clear and overt, that action plan is called an affordance (Cisek, 353 

2007). We use the more generic term action plan here to mean pretty much the same 354 

thing as affordance, but to include contexts in which the action plan is not clear (imagine 355 

for example you are asked which entrée you wish to order, but there is no menu to point 356 

at). As evidence accumulates in favor of one option, its corresponding action plan gets 357 

stronger and the other one gets weaker, until the decision threshold is reached (Cisek and 358 

Kalaska, 2005; Cisek, 2006). The intensity of a given action plan is positively correlated 359 

with its value relative to the other one (Pastor-Bernier 2011; Cisek, 2012). The gradual 360 

evolution of these processes, in turn, gives rise to decisional commitment (Thura and 361 

Cisek, 2014). Together, these findings support a biased competition model for economic 362 
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choice, which extends classic ideas of biased competition from the perceptual system to 363 

the motor system (Cisek, 2005; Cisek and Kalaska, 2010; Pastor-Bernier 2011). 364 

Implications for the framework: These results suggest that attending to one offer 365 

will activate its action plan and that switching to the other will suppress its action plan 366 

and enhance the other’s. During deliberation, these modulations will not trigger an action, 367 

but they will be critical for the process of selection and commitment that occur when 368 

deliberation ends. These findings also raise the possibility of a solution to the action 369 

binding problem as well: if the attended offer activates its corresponding representation in 370 

the premotor system, then there is no ambiguity about which option that action code 371 

corresponds to. 372 

 373 

 374 

 375 

  376 
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PART II. A proposed framework for the neural basis of economic 377 

choice 378 

 379 

The recent empirical findings provide important new constraints for any proposed 380 

mechanisms for the neural basis of choice. These constraints, in turn, point towards the 381 

following general framework, which accounts for the major threads of data described 382 

above. The goal of this review is to sketch out this framework. We do not pretend the 383 

framework is complete. It will need to be developed and revised with new, more detailed 384 

exploration and data. 385 

 We assume that the brain’s decision-making system can be thought of in the 386 

following manner (Figure 6). Sensory inputs activate specific populations of units that 387 

represent complex features, and thus the activation of those features in the so-called offer 388 

layer defines the identity and characteristics of the offer under the scrutiny of attention.  389 

Thus, the offer layer has a distributed representation of offer in the visual field, including 390 

their locations. Each unit in the offer layer corresponds to one or more (in the likely case 391 

of mixed selectivity) features of possible options. These offer-layer units then activate a 392 

representation of the option’s value in units in a separate value layer. Responses from the 393 

value layer convey no information about the identity of the option; they simply signal the 394 

value of the currently attended option. (Note that we use the term value for convenience. 395 

The variable could be any variable or set of variables that correlates with choosing the 396 

attended option, such as “evidence in favor,” or signals that reflect the values of 397 

individual object features). 398 

The activation of the offer layer will also activate the option’s action plan in a 399 

premotor layer. The action plan is the specific action that would be used to select the 400 

option, and can be as specific as a reach or as abstract as the concept of “select this option 401 

using the appropriate action when that action is later identified.” The premotor units get 402 

signals from both the offer and the value layer. The option information activates the 403 

associated action; the value information activates all output actions non-specifically 404 

(arrows are not displayed but they are understood as present), providing a general drive to 405 

act. The interaction between the value units and the offer units allows for only the 406 

attended action to be selected. Finally, the framework allows for additional non-specific 407 
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modulatory inputs to all action units, which lets extraneous factors such as urgency to 408 

affect the likelihood that an action will be triggered (not shown).  409 

Within the context of a choice task, units in the value layer take on the property of 410 

response-dependent suppression (although this property can in principle be in other 411 

layers of the circuit, meaning its response to the first attended offer attenuates its 412 

response to the second one in proportion to its response to the first (or a function thereof, 413 

more generally). Suppression is not necessary per se, as response-dependent enhancement 414 

or any other time of temporal dependence of past responses could certainly work as well. 415 

However, response-dependent suppression is a prominent feature of the inferotemporal 416 

cortex (IT, e.g. Miller 1991) and may be observed in the reward system as well (e.g. 417 

Barron et al., 2013) and dependence on previous outcomes is commonly observed in the 418 

reward system (e.g. Kennerley et al., 2011; Hayden et al., 2011), reasons for which we 419 

favor that neuronal implementation of our framework . This response-dependent 420 

suppression will serve the purpose of a within-cell memory (i.e. doesn’t require an 421 

additional external memory buffer and thus can occur within one pool) that will produce 422 

value comparisons. There are many possible neuronal mechanisms that could implement 423 

response-dependent suppression; we use a simple one for concreteness, one for which 424 

there is ample evidence in different domains and thus can be a computational motive: 425 

divisive normalization (Carandini and Heeger, 2012; Reynolds and Heeger, 2009). 426 

Note that the idea of repetition suppression, regardless of its specific neuronal 427 

implementation, makes a specific novel prediction in asynchronous choice contexts: that 428 

regression weights for the second offer computed in the second epoch will be reduced 429 

relative to regression weights for the first offer computed in the first epoch. To test this 430 

prediction, we performed a new analysis on the relevant datasets we have collected (Strait 431 

et al., 2014; Strait et al, 2015; Azab and Hayden, 2016; Blanchard et al., 2015a). 432 

Consistent with our prediction, we found that the average unsigned regression weight for 433 

the second offer in the second epoch was lower than the weight for the first offer in the 434 

first epoch (vmPFC: β1=0.0049, β2=0.0029; VS: β1=0.016, β2=0.010; OFC: β1=0.040, 435 

β2=0.021; dACC: β1=0.02, β2=0.0139; sgACC: β1=0.0136, β2=0.0121). These 436 

differences are statistically significant in all cases (p<0.001 for vmPFC, OFC, and dACC; 437 

p=0.004 for VS; p=0.012 for sgACC). Thus, although the assumptions of the model 438 
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would need to be revised in the future, at least there is some compelling evidence in its 439 

support and concedes further exploration of its implications.  440 

 441 

First fixation: value and action plan for first option  442 

Given this general description of the framework, we next walk through the steps 443 

of choice. We propose that in practice, consideration of options is nearly always 444 

asynchronous. That is, even when multiple options are presented simultaneously, 445 

attention selects one of them for scrutiny first, possibly covertly (Krajbich et al., 2010). 446 

When the first offer is attended, the units responsive to its features and/or identity in the 447 

offer (feature) layer are activated; these units proceed to activate corresponding value and 448 

action units. The action will not yet be triggered. In most cases, assuming the need to 449 

decide is not extremely urgent, the first option is likely to be automatically rejected in 450 

order to consider the second option; this would be implemented by the global modulatory 451 

inputs. Specifically, we can say it would be rejected because the background benefit-cost 452 

ratio is quite high: it includes the informational value of the second offer at the very low 453 

time and energetic costs of simply looking at it. 454 

 455 
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 456 

Figure 6. Our proposed framework in practice. When the first offer appears, its feature 457 

detectors are excited, which define the distributed response in the offer layer. These 458 

activate the appropriate value units in the appropriate manner to signal the value of the 459 

first offer. They also activate the corresponding premotor layer units (gray arrows). 460 

Those are the units that, if the action they signal is released, the animal will choose the 461 

offer. When the second offer appears, its feature detectors are excited. They active the 462 

appropriate value units, which are likely the same ones that were activated by the first 463 

offer, and with the same tuning function. They also activate their appropriate premotor 464 

units. Finally, following choice, the chosen offer is attended and so its features, value, 465 

and action units are activated. This activation allows for credit assignment processes to 466 

know the appropriate elements to sculpt for learning.  467 
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 468 

Second fixation: relative value and action plan for second option 469 

When attention shifts to the second offer, its corresponding offer-layer units will 470 

be activated. These units then activate the corresponding value-layer units – which will 471 

be the same ones that signaled the value of the first offer; they will also use the same 472 

format to do so (e.g. a unit with positive tuning for offer 1 will have positive tuning for 473 

offer 2). However, when the second offer is processed, the value-layer units will continue 474 

to show response-dependent suppression for the value of the first offer. If the first offer 475 

was particularly good, the response to even a good second offer will be attenuated. If the 476 

first offer was poor, the response to the second will be less attenuated. The value-coding 477 

units will therefore exhibit simultaneous and anti-correlated tuning for the values of both 478 

offers (as in Strait et al., 2014). Notably, the value of the second offer will not be encoded 479 

per se. It will only ever be encoded relative to the value of the first. The second offer will 480 

also lead directly to the activation of its action plan, just as the first offer did. The action 481 

plan for offer 2 will be more strongly activated than the one for offer 1, because attention 482 

enhances the action plan. However, we anticipate the action plan for offer 1 will be 483 

moderately activated, due to system hysteresis. Both action plans will therefore be 484 

activated simultaneously (as in Cisek et al., 2005).  485 

Subsequent to the second fixation, subjects may select it or they may return to the 486 

first offer. A return to the first offer will lead the value-layer units to encode its value 487 

relative to the value of the second. (This hypothesis has not yet been tested, but follows 488 

naturally from our framework). Its action plan will be also be enhanced. This process can 489 

continue back and forth until an option is selected (as in Rich and Wallis, 2016). Why 490 

would a decision-maker come back a second time rather than just decide immediately? 491 

We hypothesize that additional bouts of consideration provide a more accurate estimate 492 

of the value of the offers to due accumulated response-suppression of the value unit, 493 

allowing for fine discrimination of closely valued options. 494 

 495 

Choice and outcome periods: relative value and action plan of chosen option 496 

An option is selected when the activation in the action layer crosses some 497 

threshold. The threshold is determined by several factors that combine to determine the 498 
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value of rejection. There is very little data on the process of threshold computation (but 499 

see Kolling et al., 2014). However, we assume that rejection has a high value following 500 

the first offer (because of the informational benefit and low cost of inspecting the second 501 

one.) The value of rejection will decrease as time increases and the opportunity cost of 502 

further deliberation rises. Once one action plan crosses a threshold, commitment occurs 503 

and the selected action inhibits other activated actions, so as to ensure only one action 504 

plan is implemented (Thura and Cisek, 14.) The selection process leads the chosen option 505 

into the focus of attention. As such, its offer units are preferentially activated and value-506 

layer units encode its value. Note that there are no chosen value units; the units encoding 507 

the chosen value are the same value-selective units that were involved in choice.  508 

 509 

After selection 510 

After selection, the reward is received, the chosen option will be attended, and its 511 

corresponding offer, value, and action units will be correspondingly activated (or 512 

reactivated). In addition, post-reward processes will come into play. These post-reward 513 

processes include monitoring, learning, adjustment, and updating of priors, as well as 514 

possibly switching to new strategies or rules. These processes are unique to the post-515 

reward period, and will therefore create patterns that are not observed in the offer period, 516 

but that will be superimposed on the standard offer-related signals (Wang and Hayden, 517 

2017; Nogueira et al, Nat Comm, 2017).  518 

 519 

Extending the framework to more than two options 520 

Our framework deals well with binary choices, but they need an additional feature 521 

to handle choices with more than two options (which we call multi-option choices for 522 

convenience). Our model here will be more speculative since we do not have unit data 523 

from multi-option choices, although relevant lesion (Noonan et al., 2010), neuroimaging 524 

(Boorman et al., 2011; Boorman et al., 2013) and perceptual decision-making 525 

(Churchland et al., 2008) data exist. We propose that when attention falls on the third 526 

option, the brain encodes its value relative to the value of the best of the first two options 527 

(Boorman et al., 2013). The brain could maintain a separate buffer to store the value of 528 
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the best-so-far option, but we propose a simpler alternative with a single unlabeled value 529 

buffer. 530 

Specifically, we propose that the brain maintains an active salience buffer – a 531 

representation of the entire option space (both the visual scene and some abstract set of 532 

options could be included). The buffer tracks the location of the most valued option so far 533 

– but not its value, nor its identity or action plan. The computational framework described 534 

above can also be extended to account for multi-option choices using the idea of the 535 

salience buffer. The basic idea is that only the offer with the highest value so far is 536 

actively remembered, causing divisive normalization on the current stimulus being 537 

attended (cf. Louie et al., 2011). Finally, based on the current response, a choice needs to 538 

be made between the new stimulus and the past stimulus with the highest value. This 539 

pairwise comparison can be made in the same way as described in the previous section.  540 

 541 

 A possible neuronal implementation 542 

The key element of our computational model is the presence of a memory 543 

mechanism that affects the response of the value layer to the second option and depends 544 

on the value of the first option. We propose that this computation is implemented by 545 

repetition suppression, via divisive normalization (Carandini and Heeger, 2012; Reynolds 546 

and Heeger, 2009). Note that repetition suppression per se is not necessary; similar 547 

effects can be obtained if neurons exhibit repetition enhancement. We focus here on 548 

repetition suppression because it is strongly supported empirically (e.g., firing rate 549 

adaptation).  550 

We assume that the attended option encoded in the offer layer delivers 551 

information to the value-encoding layer (see Figure 7). In response to the first offer, with 552 

value ��, the firing rate of neuron � �� � 1 … �	 in the value layer is 553 

 554 


� �  ���� , 
 555 

where ��  is a positive coefficient. We consider for simplicity only positive values, 556 

although this framework can be naturally extended to negative values too, and to any 557 

arbitrary form of tuning curves (e.g., non-linear). 558 
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When the second offer appears, the response of the value-encoding neurons will 559 

be diminished because of repetition suppression in the value (or even in the offer) layer. 560 

We assume here that repetition suppression in the value layer is caused by divisive 561 

normalization of the neuronal response to the second option in proportion to the strength 562 

of the first response. Specifically, the response of neuron � in the value layer to the 563 

second offer becomes  564 

 565 


� �  ����
1  ���� , #�1	  

 566 

where ��is a small positive number (0 � �� � 1 ). As a consequence, responses to the 567 

second offer will be reduced even if the values of the two options are identical, consistent 568 

with the experimental data provided above.  569 

 Finally, a choice between the first and second options needs to be made based on 570 

the responses that are available in the final stage, that is, the responses to the second offer 571 

in Eq. (1). The choice cannot be done with a homogeneous layer of value-encoding 572 

neurons, but it can be done with a heterogeneous layer where the sensitivity parameters 573 

��  and �� differ across neurons. This is because setting a threshold to Eq. (1) with 574 

identical parameter values for all neurons causes biases in the choice by preferring the 575 

first offer over the second one, or vice versa. However, this bias can be avoided by 576 

simply linearly combining the responses of a heterogeneous population of N neurons to 577 

make it approximately equal to the difference of values of the first and second stimuli:   578 

 579 

� ��
�
�

���

� �� � ��.  #�2	  

 580 

This linear combination can deliver a very good approximation of the actual difference if 581 

neurons are heterogeneous and the population is sufficiently large, as we will see in a 582 

neuronal implementation of this basic algorithm (see Figure 8). This is because if the 583 

divisive normalization parameter �� in Eq. (1) is small, the firing rates can be expanded 584 

approximately as linear function of both values. Combining several of those 585 
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approximately linear functions, it is possible to compute the value difference, which is 586 

again a linear function. Therefore, a layer of value neurons with repetition suppression 587 

has all necessary information to perform a sequential comparison of two offers, and this 588 

information can be extracted by a simple linear readout. 589 

What kind of signals in the brain could carry information from the past to the 590 

present in a format that allows also comparing values of sequentially attended stimuli? 591 

One such potential candidate is synaptic depression (Tsodyks and Markram, 1997; 592 

Abbott, 1997). Synaptic depression acts on the inputs to a neuronal population in such a 593 

way that continuous stimulation causes synaptic resources, such as number of vesicles 594 

and amount of neurotransmitter, to be depleted. Due to its slow decay, depressing 595 

synapses can hold information in working memory for several seconds (Mongillo et al., 596 

2008; Miller and Desimone, 1994; Miller et al., 1991). Thus, synaptic depression is a 597 

potential mechanism for facilitating the comparison between the values of two offers 598 

presented asynchronously through repetition suppression. It is possible that there are 599 

multiple mechanisms with similar effects working together, for instance, firing rate 600 

adaptation in the offer and value layers. Here we show simply that synaptic depression is 601 

a good starting point, although we acknowledge that, due to its rigidity in the slow time 602 

scales involved, it will insufficient to accommodate the large variations of timing in 603 

which decision making can occur. This proposal then should be seen as a workable 604 

example of how these changes may occur, illustrating the viability of our framework. 605 

 We consider a value layer comprised of N independent neurons described by their 606 

temporally modulated averaged firing rate, 
���	 �� � 1 … �	 receiving inputs subject to 607 

synaptic depression. Each neuron � in the value layer receives the external input ����	, 608 

modeled as a time-varying signal weighted by the value of the stimulus plus background 609 

activity, ����	 � ��  �� � ���	. We assume that the value of the attended stimulus ���	 610 

is computed as a linear combination of activities in the offer layer (see Figure 6), 611 

although of course non-linear function beyond linear can be achieved by multi-layer 612 

networks. The net input into each neuron is computed as ��
��	 � ����	, where ����	 is the 613 

synaptic depression variable for the inputs for neuron i, with takes lower values the 614 

higher the activity was in the recent past. Therefore, the net input into each neuron is not 615 

simply the external current, but a normalized version of it with a normalization factor that 616 
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depends on the previous history of attended options and their values. Further details for 617 

the models are described in the Methods section. The dynamics of a neuron in the value 618 

layer is shown in Figure 7 for three relevant scenarios. The external input to the neuron 619 

is shown in the top panel, while the response and the synaptic depression variables are 620 

shown in the middle and bottom panels respectively.  621 

In the first scenario (tuning to EV1-EV2; Figure 7A), the external input alternates 622 

between a high and a low value offers (black, top panel), two intermediate value offers 623 

(blue) and one low and a high value offers (red). The response of the neurons follows the 624 

same trend as the input (middle panel), while the synaptic depression variables displays 625 

the reversed trend (lower panel). Note the response to the intermediate values (blue, 626 

middle panel) in the first and second epochs: the response is reduced during the second 627 

stimulation epoch compared to that in the first epoch, even though the stimulus value is 628 

identical in the two conditions. This phenomenon corresponds to repetition suppression, 629 

as implemented by divisive normalization (Methods, Eq. 4).  630 

This can be understood by looking at the temporal evolution of synaptic 631 

depression variable. Initially, this variable has a relatively large value due to low 632 

spontaneous firing rate (around one half). However, during attention to the first option, 633 

the external input increases and as a consequence the depression variable decays to a 634 

lower value (blue, lower panel). Right after offer offset, the depression variable starts to 635 

recover and increase towards the basal value. However, the increase is slow due to the 636 

long recovery time constant of synaptic resources, and thus the depression variable does 637 

not have time to reach the basal value. Indeed, when the second offer is attended, the 638 

depression variable has a value that is lower than the basal value. This difference leads to 639 

a response to the second offer that depends on the value of the first offer. 640 

 641 

 642 

 643 
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  644 

 645 

Figure 7. A neuron in the value layer has similar tuning to the values of the first 646 

and second offers, and shows repetition suppression. A. The tuning to the difference 647 

between offer values (tuning to EV1-EV2), B. to the first value (tuning to EV1) and C. the 648 

second value (tuning to EV2) are shown. In B and C, the values of the first or second 649 

offers are fixed, respectively. The input (top row), the response (middle row) and the 650 

depression variable (bottom row) are displayed as a function of time. The input, encoded 651 

in the projections from the offer to the value layers, is proportional to the expected 652 

values of the two offers, presented at times 2 sec and 3 sec, respectively. Three different 653 

conditions are used (black, blue and gray lines), see text.  654 

 655 

 656 

In the second scenario (tuning to EV1, Figure 7B), the value of the first offer 657 

ranges from high (black, top panel) to intermediate (blue) and low (red), while the value 658 

of the second attended offer is fixed at an intermediate value. During the presentation of 659 

the first offer, the response of the neuron increases with its value (middle panel), 660 

indicating that this neuron has a positive encoding of the first offer value. What it is 661 

interesting to observe is that during the presentation of the second offer, this cell is still 662 
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tuned to the value of the offer attended in the first place. However, the tuning is reversed: 663 

higher responses are obtained for the lower value in the first attended offer. Also the 664 

tuning to the value of the first attended option during the second epoch is reduced 665 

compared to the tuning during the first epoch. These two patterns reproduce the 666 

experimental results from our lab in vmPFC, VS, and dACC (Strait et al, 2014; Strait et 667 

al., 2015; Azab and Hayden, 2016) and echo those of Pastor-Bernier and Cisek (2011). 668 

In the final scenario (tuning to EV2), the value of the first offer is fixed, while the 669 

value of the second offer varies. Consistent with experimental results (Strait et al, 2014; 670 

Strait et al., 2015; Azab and Hayden, 2016), the tuning of this cell to the value of the 671 

second offer is positive. Thus, the neuron tends to keep the same polarity towards 672 

stimulus value regardless of stimulus identity or presentation timing.  673 

 674 

Decoding choices 675 

    We next asked whether a downstream decoder can make an accurate choice based 676 

on the activity of the neurons in the value layer during the second offer epoch. As noted, 677 

the response to the second attended option is inverted relative to the first. This inverted 678 

tuning allows the system to compare the values. How can this information be extracted? 679 

As with the computational framework, it is not possible to read out this information if 680 

only one type of neuron is present in the value layer. This is because the firing rate of a 681 

neuron during the second epoch depends on the values of both first and second attended 682 

offers and does not necessarily compute a value difference between the two. Our strategy 683 

is then to create a heterogeneous population of neurons in the value layer, which is a 684 

realistic feature throughout the brain architecture. Heterogeneity can be introduced by 685 

choosing neuron and depression parameters randomly (Methods).  686 

With a value layer consisting of just four neurons, it is possible to estimate the 687 

value difference approximately (Figure 8, blue points; max error = 0.97). With ten 688 

neurons, it is possible to estimate value difference with high precision (Figure 8, red 689 

points; max error = 0.08). Although these simulations are based on deterministic 690 

dynamics, the presence of response variability can be partially alleviated simply by using 691 

larger populations if differential correlations are weak (Moreno-Bote et al., 2014). 692 

Therefore, it is possible to compare values of sequentially presented offers by linearly 693 
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reading out the activity of a small neuronal population in the value layer during attention 694 

to the second offer.  695 

 696 

 697 

 698 

Figure 8. A heterogeneous population of neurons in the value layer can faithfully 699 

encode the value difference between first and second offers. A. The response of a 700 

representative neuron in the value layer during the second epoch increases with the 701 

value of the offer in that epoch, EV2, but it is also negatively modulated by the value of 702 

the offer previously presented, EV1. This mixed encoding makes impossible to read the 703 

value difference from just a single neuron. B. Decoded value difference as a function of 704 

the real value difference for a population of four (blue) and ten (red) neurons. The 705 

decoded values get closer to the actual values (unit slope line, black) as the population 706 

is larger. The decoder is based on a linear readout of the population using the responses 707 

at 100 ms after second offer onset, trained using linear regression, Eq. (2).  708 
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   DISCUSSION 709 

 710 

Here we review recent discoveries about the neuronal correlates of economic 711 

choices and propose a novel guiding framework for future models of how that choice 712 

occurs. In this framework, only one option is attended at a time and processing of that 713 

option leads to either acceptance or rejection. Rejection often leads to consideration (and 714 

sometimes choice) of the next option. During deliberation, attention to an option activates 715 

a representation of its value and of the action plan associated with choosing it. This action 716 

plan can be specific or it can be abstract, that is, it can in principle be a commitment to a 717 

proposition (Shadlen and Kiani, 2013). Our framework requires a single pool of value-718 

sensitive units whose responses encode the value of the attended option relative to the 719 

value of previously attended options. It does not involve two pools or more of cells that 720 

use labeled-line coding and that compete for control of action. Comparison is 721 

accomplished through a value normalization process that can occur simultaneously at 722 

multiple levels and that may involve a response-dependent suppression of future 723 

responding. As such the evaluation, comparison and the selection are made by the same 724 

pool of neurons. 725 

The proposal is not meant to be a formal model for choice, but is, rather, to be a 726 

general framework that can guide the development of such models in the future. One 727 

particular limitation of the framework is that it does not correspond to the unit level. For 728 

example, the strict division into an offer layer, a value layer, and an action layer is not 729 

supported by current data. Instead, individual cells are likely to have multiple 730 

contributions in multiple layers simultaneously. These functions may even change and 731 

adjust with task context (e.g. Hunt et al., 2013). Another example is that value-sensitive 732 

neurons, such as those in orbitofrontal cortex may be stimulus-specific, and thus not 733 

directly analogous to our value layer (e.g. Schoenbaum et al, 1998). A third example of a 734 

limitation of our framework is that value comparison is likely to occur not within a single 735 

region, but rather through a distributed consensus process that includes ostensibly motor 736 

and association regions both (Cisek, 2012 ; Chen and Stuphorn, 2016; Hunt and Hayden, 737 

2017). Ultimately, we propose that our framework may be a description of the 738 

algorithmic level, but not the implementation level, of choice. 739 
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 740 

Relation to models of sensory memory-guided decisions. Our framework is 741 

partially inspired by well-known models of memory-guided perceptual decisions (Miller, 742 

et al., 1991; Miller and Desimone, 1993; Lui and Pasternak, 2011; Hayden and Gallant, 743 

2013; Mirabella et al., 2007; Machens et al., 2005; Romo et al., 2002; Romo and Salinas, 744 

2001; Romo and Salinas, 2003). Typically in memory-guided perceptual decisions, a 745 

memorandum is presented to the subject followed by a delay and then a probe. The 746 

subject is then asked to perform a perceptual discrimination on the relationship between 747 

the memorandum and the probe (e.g., do they match? Which has higher frequency?). One 748 

approach to modeling these decisions is to allow the memorandum to modify the sensory 749 

tuning properties of neurons so that their response to the probe makes the correct 750 

classification automatically (Miller et al., 1991, Machens et al., 2005). This general 751 

approach has been successful in modeling mid/high-level and prefrontal responses (with 752 

visual memoranda) and prefrontal responses (with somatosensory memoranda.) Indeed, 753 

we propose that binary economic and mnemonic decisions may function through similar 754 

brain mechanisms.  755 

The overlap between our proposed framework and the framework used for 756 

perceptual decisions is not limited to its relationship with memory-guided decisions. The 757 

attentionally aligned coding scheme we propose is shared with perceptual systems. For 758 

example, neurons in the ventral visual system have large receptive fields that often 759 

contain multiple stimuli competing for attention. Focusing attention on a particular 760 

stimulus causes the neurons to behave as if the attended option were the only one present. 761 

Thus, the identity of the attended option is identified only by the status of attention. 762 

When attention shifts (within the receptive field), the tuning stays the same but the 763 

response changes to one that is based on the newly attended stimulus.  764 

This principle, known as biased competition, has proven successful at explaining 765 

responses of neurons in the ventral visual stream and offers a basis for theorizing about 766 

memory, attention, and learning (Desimone and Duncan, 1995; Moran and Desimone, 767 

1985; Chelazzi et al., 1998). Our framework is, in essence, an extension of these ideas 768 

past the temporal pole, along the uncinate fasciculus, and into the orbital and medial 769 

regions of the prefrontal cortex. We are not the first to make this analogy. From the motor 770 
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side, Cisek and colleagues have argued that biased competition principles also apply to 771 

representation and choice signals in motor and premotor regions (Cisek 2007; Cisek and 772 

Kalaska, 2010; Pastor-Bernier and Cisek, 2011). We agree with this idea and propose that 773 

it extends backwards. One appealing feature of this idea is that it allows the brain to make 774 

use of a single principle to make both perceptual and economic decisions, rather that use 775 

a completely different architecture for the two types of choices. 776 

 777 

The neuroeconomic binding problems. One virtue of our framework is that it 778 

offers a solution to three important neuroeconomic binding problems that are difficult to 779 

avoid with labeled-line models. They concern how values are bound to options, to 780 

actions, and to choices (Akaishi and Hayden, 2016; Strait et al., 2016; Hare et al., 2011; 781 

Cai and Padoa-Schioppa, 2014.) Values must be linked to their corresponding options 782 

(the value binding problem, Akaishi and Hayden, 2016; Strait et al., 2016). Then, to 783 

select that option, we need to link the result of a comparison with the action that will be 784 

used to select it (the action binding problem, Hare et al., 2011; Strait et al., 2016; Cai and 785 

Padoa-Schioppa, 2014). Finally, once the choice is resolved, we need to link the 786 

experienced value with the choice that produced it (the outcome binding problem). This is 787 

one example of the broader class known as credit assignment problems (Sutton and 788 

Barto, 1998; Schultz, 2006). 789 

These binding problems can be understood by analogy to the feature binding 790 

problem (Treisman and Gelade, 1980; Shadlen and Movshon, 1999; Engel and Singer, 791 

2001). Imagine seeing a red square and a blue circle; how does your brain know that it is 792 

not seeing a red circle and a blue square? Neuronal activity encoding each option 793 

dimension must be somehow coordinated. This coordination is unlikely to come through 794 

specialized neurons that are sensitive to any combination of multiple features – this 795 

would lead to a problem of a combinatorial explosion (Von der Malsburg, 1981; Shadlen 796 

and Movshon, 1999; Plaut and McClelland, 2010). One possibility is that this problem is 797 

solved by the degeneracy introduced by attention: if only one option is attended at a time, 798 

then the dimensions can be assumed to be related to the same single object. The same 799 

principle may apply for value as well. 800 
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These binding problems are difficult to solve in a labeled-line system. If line 801 

labels are stable, our brains would need neurons for all possible options; this is 802 

unrealistic. If a new option is added to the mix, new neurons would have to be added. 803 

Would they be kept in reserve just in case a new option appears? What if ten new options 804 

appear at once? This approach would require complex and specific wiring, ready to go 805 

for any possible choice. If the labels are assigned dynamically, then in situations with 806 

dozens of choices – such as when choosing cereals at the grocery store – we would need 807 

competition between dozens of neuron types. This approach would also require an as yet 808 

unidentified supervisory system to assign labels and implement the assignment. More 809 

importantly, it would not solve the binding problem: how would the decoders know 810 

which options had been assigned to which neurons? How could they know which action 811 

to perform to select the option? The costs of such coordination are daunting. 812 

In our model, option identity and value / action / choice can be decoded by the 813 

principle of degeneracy: if there are only one option, value, and action within the focus of 814 

attention, then they can be assumed to correspond. Thus, in our framework, binding is 815 

implemented by attention, and is determined solely by temporal context, not by stable 816 

labeled lines. By doing so, the potential combinatorial explosion is contained (Von Der 817 

Malsburg, 1981; Shadlen and Movshon, 1999). Thus, in our view, the strict bottleneck 818 

imposed by limited attentional capacity is a feature, not a bug.  819 

 820 

Unification of stopping and economic choice literature  821 

The neuroscience of economic choice has tended, by and large, to borrow ideas 822 

from the neuroscience of perceptual decision-making (e.g. Rorie et al., 2010; Pais et al., 823 

2013; Krajbich et al., 2010; Louie et al., 2011; Hunt et al., 2015). By contrast, it has 824 

tended to bypass the equally important literature on stopping and inhibition (Hampshire 825 

and Sharpe, 2015; Schall, 2001; Aron et al., 2004). This literature deals with the question 826 

of how we plan and prepare actions and how the brain’s supervisory system regulates 827 

their expression.  828 

A stopping decision has some conceptual similarities with an accept-reject 829 

decision. Both involve a decision about whether to pursue a single action plan or to 830 

refrain from it. Neither involves direct comparison of action plans. In a serial choice 831 
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model, each option is either pursued (accepted) or ignored (rejected). For this reason, 832 

serial choice can be likened to as a pair of accept-reject decisions (Kacelnik et al., 2011). 833 

We could equally call each accept-rejection decision a stopping decision: accept is go and 834 

reject is stop (or withhold from accepting the option). This change in terminology would 835 

raise the possibility that economic decisions are, at least in some cases, implemented in 836 

fundamentally the same way as stopping decisions.  837 

The benefit of this interpretation is that we already know a great deal about the 838 

neuroscience, the pharmacology, the psychology, and even the psychiatry of stopping. It 839 

would be extremely powerful if we could import these ideas wholesale into the field of 840 

neuroeconomics, and thus gain a good deal of insight in one fell swoop. Thus, for 841 

example, the roles of several cortical and subcortical structures are relatively well-known 842 

in stopping; if we could predict and test their corresponding roles in economic choice, 843 

that would lead to rapid advance in our understanding of choice. For example, the dACC 844 

is part of both the canonical economic and the canonical stopping circuitry (Heilbronner 845 

and Hayden, 2016). Are these two roles entirely distinct, or are they aspects of a single 846 

function? If we can conceptually unify economics and stopping, then we can more 847 

adequately answer this question and others like it. 848 

  849 
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METHODS 850 

Description of the neuronal model 851 

The dynamics of the firing rate and synaptic depression variables follow, 852 

respectively, the equations 853 

 854 

 �
�� 
� � � 
�

��   !������	"#�3	  

 855 

 �
�� �� � 1 � ��

�� � $�������	#�4	  

 856 

where   �&	 is the rectified linear function (that is,  �&	 � & if & ' 0 and  �&	 � 0 if 857 

& ( 0) (Tsodyks and Markram, 1997; Abbott et al., 1997). The time constants for the 858 

firing rate and synaptic depression dynamics are chosen to be long, �� � 500*+ and 859 

�� � 2+, to allow keeping a memory of the previous stimulus over the interval between 860 

stimuli presentation (Mongillo et al., 2008). Long firing rate effective time constants can 861 

also be obtained through recurrent dynamics. The firing rate of the neuron in Eq. (3) 862 

tracks the total input current with the time constant ��. The synaptic depression variable 863 

in Eq. (4) depresses whenever the synapse is strongly stimulated, and recovers to its 864 

maximum value of one with time constant �� if there is no stimulation. How fast the 865 

synapse depresses depends on the value of the parameter $� . 866 

Heterogeneity of the neuronal populations used in Figure 8 was generated by 867 

selecting at random from a normal distribution the tuning parameters �� , ��  and the 868 

depression parameter $�  (means: [0.5, 1, 1]; standard deviations: [0.05 0.1 0.1], 869 

respectively).  870 

  871 
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