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Abstract  
Identification of co-expressed gene clusters can provide evidence for genetic or physical interactions 

between genes. Thus, co-expression clustering is a routine step in large-scale analyses of gene 

expression data. We show that commonly used clustering methods produce results that substantially 

disagree with each other, and do not match the biological expectations of co-expressed gene clusters. 

Furthermore, these clusters can contain up to 50% unreliably assigned genes. Consequently, 

downstream analyses of these clusters (e.g. functional term enrichment analysis) suffer from high error 

rates. We present clust, an automated method that solves these problems by extracting clusters that 

match the biological expectations of co-expressed genes. Using 100 datasets from five model 

organisms we demonstrate that clusters generated by clust are better than those produced by other 

methods, both numerically and for use in functional analysis. Finally, we show that clust can 

simultaneously cluster multiple datasets, enabling users to leverage the large quantity of public 

expression data for novel comparative analysis. 

Keywords: clustering, gene expression data 

Introduction 
Gene transcription is dynamically and coordinately regulated in all living organisms. Such coordinate 

regulation is manifest as concordant changes in the transcript abundance of genes in time series and 
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perturbation-response datasets. Gene transcription is regulated by the binding of transcription factors 

to DNA/chromatin elements located in promoter or enhancer regions of genes. Typically, transcription 

factors comprise ~10% of the total number of genes in a genome, and complex spatio-temporal patterns 

of transcription are achieved through the combinatorial action of these genes in regulatory networks 1. 

The combinatorial nature of these networks means that their behaviour is inherently conditional. That 

is, genes that appear co-expressed under one condition are not necessarily co-expressed under all 

conditions. A corollary of this is that within any one experimental context (e.g. time series spanning 

some biological process or perturbation-response experiment) not all genes will be behaving 

coordinately. Instead, subsets of genes have the right combination of regulators to behave coordinately 

during the experimental context while others are following patterns of regulation that are independent of 

the experimental design. Thus, within a given observation window (i.e. experimental context) it is not 

expected that all genes can be assigned to a limited set of coordinate behaviours 2,3. 

Given that only subsets of genes are likely to be co-expressed within a particular context, it follows that 

identification of these subsets is a data extraction problem and not a data partitioning problem. That is, 

the aim is to identify and extract the cohorts of genes that are behaving coordinately from the complete 

set of genes that are detected within a particular context, and is not to partition the complete set of genes 

into a set of gene clusters. In practice, clustering methods have been widely applied to gene expression 

data with the expectation that they will identify the complete set of discrete cohorts of genes that have 

co-ordinated behaviours (i.e. the clusters of co-expressed genes), and that all of genes that exhibit those 

behaviours will be assigned to the correct cluster. However, the vast majority of methods that aim to 

identify cohorts of co-expressed genes are based on data partitioning (e.g. Markov clustering 4, k-means 

5, hierarchical clustering 6, and self-organising maps 7). These approaches attempt to assign all genes 

to a finite set of clusters, with the number of clusters determined by numerical optimisation of a data 

partitioning metric 8. Thus, genes that are not co-expressed in the context under investigation are also 

assigned to their “best-fitting” cluster such that the majority of clusters will contain both co-expressed 
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and non-co-expressed genes. This result does not adhere to the expectation of the biological properties 

of a co-expressed gene cluster, i.e. that each cluster contains only those genes that exhibit co-ordinate 

behaviour in the experimental or biological context under question and that no two clusters should have 

an identical profile. 

Here we show through analysis of 100 real biological datasets from five model organisms that 

application of data partitioning-based clustering methods to gene expression data generates clusters 

that include substantial numbers of unreliably assigned genes, i.e. genes that should have been 

excluded. Such unreliable content comprises up to about 50% of these clusters. To address this problem 

we provide a novel method called “clust” for cluster extraction from gene expression data. Clust is 

designed to extract co-expressed clusters of genes that satisfy the biological expectations of a co-

expressed gene cluster. We show that clust satisfies these expectations by extracting co-expressed 

clusters with lower levels of dispersion than any data partitioning method. We also show that the clusters 

produced by Clust do not contain unreliably clustered genes typical of data partitioning methods. 

Furthermore, we show that the clusters extracted by clust are well enriched with functional terms, 

indicating their biological relevance. Finally, we demonstrate the ability of clust to extract clusters of 

consistently co-expressed genes in multiple datasets simultaneously, a feature that allows researchers 

with multiple datasets relating to the same biological question to analyse them collectively. 

 

Results 

Problem definition, aim and approach 
Gene expression datasets (RNA-seq and microarray) contain quantitative estimates (observations) of 

mRNA abundance for a set of genes at multiple experimentally, spatially, or temporally discrete 

conditions. Across these conditions, it is expected that the mRNA abundance of transcriptionally co-

regulated genes will exhibit coordinate behaviour. These co-regulated cohorts of genes include those 

that are inherent modules of the system being studied, as well as those that may be conditional on 
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applied experimental perturbations. The observations also include transcript abundance estimates for 

genes that are behaving independently in the experimental series. Furthermore, for genes that are 

transcriptionally co-regulated, variance in RNA processing and mRNA half-life cause fluctuations in 

transcript abundance such that abundance estimates are inherently noisy. Thus, the goal of gene 

expression clustering is to identify and extract the discrete cohorts of genes whose transcripts are 

behaving coordinately (albeit with biological noise) across the observations under consideration. 

Fig. 1 presents simulated gene expression data to illustrate the problem of extracting distinct cohorts of 

co-expressed genes. Each simulated dataset contains 500 genes, with 100 genes in each of three 

distinct clusters and 200 genes that do not belong to any cluster. Fig. 1a shows the same clusters 

simulated with increasing levels of biological noise (D1 to D4) and Fig. 1b shows the desired results. 

That is, to extract three distinct clusters of genes (C1 to C3) while discarding the genes that behave 

independently. In conflict with the desired goal, data partitioning methods require all genes to be 

included in one of the clusters. For example, application of k-means (the most commonly used method 

for analysing gene expression datasets) recovers the three simulated profiles. However, each cluster 

also contains a large cohort of genes that do not share the same expression profile. This inclusion 

results in clusters with high levels of dispersion and high levels of inter-cluster similarity, violating the 

expectations of co-expressed gene clusters, and producing clusters whose gene assignment is 

unreliable. Clust is designed to address this problem by extracting the largest and least dispersed set 

of clusters whose profiles are distinct and exclude those genes that do not belong to these clusters. 

That is, to identify and extract the complete set of genes that are exhibiting coordinate behaviour in the 

experimental series under consideration. The results of applying clust to these demonstrative datasets 

are included in Supplementary Figure S1. 

Data sources and comparative methods 
To demonstrate the performance characteristics of clust on real biological datasets, the method was 

applied to 100 different gene expression datasets (Supplementary Table S1). These datasets comprised 
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ten microarray datasets and ten RNA-seq datasets from each of five different model organisms; Homo 

sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana, and Saccharomyces 

cerevisiae. To put these performance characteristics in context, five of the most commonly used co-

expression clustering methods (k-means, Markov clustering (MCL), hierarchical clustering (HC), 

WGCNA, and self-organising maps (SOMs)) were also applied to these datasets. For each of these 

additional methods, the best-practice operating procedures were followed as described in Methods. 

Clust robustly extracts tight and non-overlapping clusters 
As clust is a cluster extraction method, it does not necessarily assign all genes to clusters. On average 

across the 100 test datasets clust assigned 50% of the input genes to clusters (Fig. 2a), and produced 

sets of clusters that have significantly lower dispersion than those produced by MCL (p-value 2.5×10-

31), k-means (p-value 4.6×10-7), HC (p-value 2.4×10-13), WGCNA (p-value 7.7×10-11), or SOMs (p-value 

4.8×10-24) (Fig. 2b). Clusters produced by clust are discrete, such that genes assigned to one cluster do 

not fit within the profile boundaries of any other cluster (JI = 0 for all clusters, Fig. 2c). This is not the 

case for data partitioning methods, where 10% to 50% of the genes that are included in a given cluster 

also fit within the boundaries of at least one other cluster (Fig. 2c). Thus, application of data partitioning 

methods to gene expression data produces clusters that are not discrete and contain between 10% and 

50% unreliably assigned genes (Supplementary Table S2). 

In addition to producing datasets that are both lower in dispersion and discrete, the distribution of the 

properties of clust clusters is also unimodal (Fig. 2d-f and Supplementary Table S3). In contrast, cluster 

dispersion is multimodal for MCL, k-means, HC, and SOMs (Fig. 2d); cluster overlap is multi-modal or 

uniformly distributed for MCL, KM, HC and SOMs (Fig. 2e); cluster size is biased towards small clusters 

for MCL and WCGNA (Fig. 2f). Thus, the individual clusters returned by data partitioning methods are 

inconsistent and vary considerably in their quality. In contrast, the quality of clusters produced by clust 

is unimodal such that all clusters can be considered to be drawn from a single population of clusters. 

This property of clust clusters is independent of the number of genes in a given cluster (Supplementary 
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Figures S3 and S4). In contrast, the properties of clusters returned by data partitioning methods display 

a significant dependency on cluster size, such that larger clusters have both higher dispersion and a 

higher proportion of genes that fit within the boundaries of other clusters (Supplementary Figures S3 

and S4). 

Fig. 3 shows a comparative example of the clusters produced by each one of the six clustering methods 

when applied to one of the 100 datasets (D82, Supplementary Tables S1 and S2). This dataset was 

chosen as it is the one with the most similar results across all the tested methods and a similar figure 

showing the first up to 14 clusters produced by each method for all 100 datasets are provided for 

download from the Zenodo repository at 10.5281/zenodo.1169191. The reduced MSE and JI of clust in 

comparison to other methods is readily apparent from visual inspection of the gene expression profiles 

of genes assigned to each cluster in Fig. 3. Importantly, this is not at the expense of the clusters’ sizes. 

For instance, cluster C1 produced by clust is less dispersed and contains more genes than the most 

similar cluster generated by k-means, HC, or WGCNA (also labelled C1). 

None of the six methods, including clust, behaves differently on datasets from different species 

(Supplementary Figures S5 and S6). Therefore, the species from which the data was produced is not a 

factor that affects the performance of any of these clustering methods. However, the dispersion of 

clusters produced by k-means, HC, WGCNA, and SOMs, is dependent on the number conditions under 

consideration such that the more conditions being considered the worse the results of the clustering 

(Supplementary Figure S7). In contrast, the behaviour of clust is unaffected by the number of genes or 

the number of conditions that are under consideration (Supplementary Figures S7, S8, S9, and S10). 

Thus, unlike all of the other tested methods the behaviour of clust is consistent for different types or 

quantities or input data. 

Clusters extracted by clust have reliable enriched functional terms 
One of the most commonly applied tests to co-expressed clusters of genes is functional term 

enrichment, as a cluster of co-expressed genes is expected to be enriched with genes that have related 
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biological roles. As clust assigns on average 50% of genes to clusters, it was investigated how this 

reduction in gene number affects the detection of functional term enrichment. To do this, each of the 

methods were evaluated for their ability to detect enrichment of GO terms in the Arabidopsis thaliana 

and Saccharomyces cerevisiae gene expression datasets. These datasets were selected because of 

the well-developed GO term annotation of these two species genomes, and the consistent gene name 

annotation between datasets. The fewest terms enriched in the results of any of the methods were in 

the results of SOMs. Thus, to simplify visualisation, the GO term enrichment results from SOMs were 

excluded from the diagrams in Fig. 4 and can be found in Supplementary Tables S4 and S5. 

Of the 6,864 significantly enriched GO terms detected by all methods (excluding SOMs), 3,854 (56%) 

were detected by two or more methods and 916 GO terms (13%) were detected by all methods (Fig. 

4a). Given that the results were considerably different between methods, it is reasonable to assume that 

GO terms detected by two or more methods for a given input dataset are those that are more likely to 

be correct, however there was no significant difference between most of the methods in their ability to 

recover these GO terms (Fig. 4b and Supplementary Table S4 (A)). Thus, while clust only assigns 50% 

of genes to clusters, this reduction in gene content does not reduce the number of detected enriched 

functional terms compared to other methods. 

To determine the effect of the inclusion or the exclusion of unreliably assigned genes on GO term 

enrichment, the clusters produced by the data partitioning methods we further analysed both with all of 

the unreliably assigned genes removed (the stringent set), and with all genes that fit within the 

boundaries of the cluster included (the expanded set) (Supplementary Figure S11). Those functional 

terms that remained significantly associated with a cluster irrespective of whether the stringent or 

expanded version of the cluster was analysed were deemed robust to unreliable gene content. On 

average for the data partitioning methods, between 10% and 80% of GO terms are not robust to this 

perturbation and are therefore unreliably assigned to clusters (Fig. 4c). Clusters produced by clust are 

discrete and therefore not affected by this unreliable assignment problem (Fig. 4c).  
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Clust extracts clusters of co-expressed genes from multiple datasets simultaneously 
The quantity of gene expression data that is deposited in public repositories is increasing rapidly. This 

is primarily due to a reduction in the costs of acquiring such datasets. These datasets come from a 

multitude of different species, have been generated using different technologies (microarrays and RNA-

seq), and have different properties such as numbers of conditions, replicates, and missing values. Clust 

is designed to enable simultaneous cluster extraction from multiple such heterogeneous gene 

expression datasets (Supplementary Text S1). Irrespective of datatype or source species, clust extracts 

clusters of genes that are consistently co-expressed with each other in all of the given datasets. 

To evaluate this feature of clust, ten combinations of d datasets (where d ∈ {2,3,4,5,6,7,8,9,10}) were 

selected at random from the ten yeast RNA-seq datasets (D91 to D100; Supplementary Table S1). The 

same experiment was performed over Arabidopsis datasets. To provide a comparison, the other 

methods were also applied to these combinations of datasets. However, as these methods are only 

applicable to a single dataset at a time, the only way to enable their simultaneous analysis was to 

concatenate them together prior to clustering (Supplementary Tables S6, S7, S8, and S9). As before, 

clust produces tighter clusters with lower within-cluster dispersion (lower MSE) (Fig. 5a & b) and 

guarantees no cluster profiles which overlap (JI = 0, Fig. 5c & d). Moreover, and as expected from a 

biological point of view, both the percentage of input genes that are included in the extracted clusters 

(PAG) and the number of generated clusters (K) decrease as more datasets are included as input to 

clust (Fig. 5e-h). This behaviour is expected because as the number of conditions increases, the less 

likely a group of genes are to be co-expressed under all conditions. For example, when all ten yeast 

RNA-seq datasets are provided as input to clust, only a single cluster of 56 genes is identified. Of these, 

48 are components of the ribosome or participate in ribosome biogenesis (Supplementary Table S10). 

An analogous cluster of 50 genes (45 of which are ribosomal or involved in ribosome biogenesis) was 

obtained when all 10 Arabidopsis RNA-seq datasets were provided to clust (Supplementary Table S10). 
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Of the other methods, MCL maintains relatively low MSE values over increasing numbers of datasets 

(d). In contrast, MSE values of the other methods increase when d increases (Fig. 5a-d). Moreover, 

MCL is the only method which shows a trend similar to clust in terms of decreasing values of PAG and 

K at higher d values (Fig. 5e-h). Nonetheless, the performance of clust is significantly better than MCL 

in terms of MSE and JI values at all d values (Fig. 5a-d). 

Discussion 
Co-expression clustering is a routinely used step in data exploration for gene expression analysis. Here 

we show that the most commonly used methods for conducting co-expression analysis do not match 

the biological expectations of a co-expressed cluster of genes, producing clusters that are highly 

dispersed (high MSE values) and contain large proportions of genes that could be equally assigned to 

other clusters within the same clustering result (high JI values). Moreover, the methods behave 

inconsistently, with substantial differences in clustering performance attributable to differences in 

datatype or data quantity. We present clust, as a method designed to solve all of these problems. Clust 

was compared with five commonly used clustering methods (MCL, k-means, HC, WGCNA, and SOMs) 

by application to 100 different microarray and RNA-seq gene expression datasets from five model 

species. In contrast to the other tested methods, clust behaviour is consistent and is unaffected by 

species, datatype, number of genes, or number of conditions. Thus, clust performance is robust to 

increases in data quantity without sacrificing the quality of the results. 

The most commonly conducted post-clustering analysis is to detect enrichment of functional terms within 

clustered sets of co-expressed genes. We show that conducting such analyses on clusters produced 

using the most commonly used methods for co-expressed gene clustering produces very different 

results (Fig. 4a) with between 10% and 80% of enriched functional terms being unreliably assigned to 

clusters (Fig. 4c). This observation has implications for the utility of downstream analysis conducted on 

these clusters. For example, putative regulatory relationships are often inferred by identifying regulatory 

genes that occur in clusters that are enriched for specific functional terms 10,11,12. Thus, unreliability of 
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enriched functional term assignment likely contributes to the high false positive discovery rate in the 

discovery rate of regulatory interactions from co-expression data 13. As clust is designed to solve the 

problem of reliability of gene assignment to clusters, it does not suffer from such unreliability in enriched 

functional terms, and therefore represents a solution to this problem. 

Finally, clust is designed to be able to extract clusters of co-expressed genes from multiple gene 

expression datasets, even if these datasets have different properties such as numbers of conditions or 

replicates. Such feature allows researchers who have multiple gene expression datasets that are all 

related to the biological problem in hand to analyse them simultaneously. That is, to extract the clusters 

of genes which are consistently co-expressed in each of these different datasets. Various consequences 

can be inferred from such analysis. For instance, it is more reliable to hypothesise that a group of genes 

are co-regulated by common regulator when they are consistently co-expressed over multiple datasets 

in contrast to being co-expressed in a single dataset only 14,15,16,17,2. 

Taken together, this work reveals a mismatch between what researchers expect from gene expression 

clustering and the results that are produced by application of commonly used data partitioning methods 

to these data. The proposed clust method solves this problem, and the utility and performance 

characteristics of clust are demonstrated through comprehensive testing and comparison on real 

biological datasets from multiple different species. In addition to improved performance characteristics 

over competing methods, the ability of clust to handle multiple datasets simultaneously will enable 

individual gene expression datasets to be interpreted in the context of the large quantity of publicly 

available gene expression data. Clust is open source and freely available at 

https://github.com/BaselAbujamous/clust. 
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Methods 

Overview of the clust cluster extraction method 
Clust has a pipeline of steps that extract final optimised clusters of co-expressed genes from one or 

more gene expression datasets. A summary description of the algorithm is presented in this section and 

the full details are provided in Supplementary Text S1. A standalone Python implementation of Clust is 

available at https://github.com/BaselAbujamous/clust. In brief, clust begins by finding the general trends 

in the data and employs a number of base clustering methods (e.g. k-means clustering, hierarchical 

clustering, and self-organising maps) to produce initial sets of guide clusters. These initial clusters are 

provided as input to construct consensus “seed” clusters using Bi-CoPaM 18. All seed clusters are 

evaluated by the M-N distance metric 19 which considers both within-cluster dispersion and cluster size. 

Then, the set of non-overlapping clusters that minimise the M-N distance metric, that is, that minimise 

within-cluster dispersion while maximising cluster size are selected as elite seed clusters. The final step 

of the algorithm removes outliers from elite seed clusters using a Tukey filter, defines the cluster profile 

based on the range of expression values observed within the cluster, and then assigns all genes from 

the input dataset that fit within this cluster profile.  

Selection of 100 gene expression datasets 
The 100 gene expression datasets were downloaded from the Gene Expression Omnibus (GEO) 

repository on 2nd of July 2017 20. For each one of the five model species, ten microarray datasets and 

ten RNA-seq datasets were downloaded. In all cases, the most recently published datasets for each of 

these species was selected, given that the dataset had at least 4 different conditions (time-points or 

treatments) and no more than 50 samples including replicates. RNA-seq datasets were chosen only if 

the resulting TPM, RPKM, FPKM, or CPM quantitation files were available from the GEO repository. 

Microarray datasets were a mix of both one-colour or two-colour microarrays. The complete list of the 

100 datasets and their properties is available in Supplementary Table S1. The raw data files for the 100 

datasets, the clustering from each method, and the analysis scripts are all publically available at the 

Zenodo repository with the doi 10.5281/zenodo.1169191. 
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Implementation of clust and comparative methods 
All methods, including clust, were run using their default parameters, which is the manner in which they 

are most commonly used. Running k-means, HC, and SOMs, requires pre-setting the number of clusters 

(k). Each of these methods was applied to the input data with k values ranging from 2 to 50 and the k 

value that minimised the Davies–Bouldin (DB) cluster validation index was chosen. The DB index is the 

most widely used and most frequently cited whole-partition cluster validation index 9.  

k-means was run using the Python sklearn.cluster implementation. The Python mcl package was used 

to run MCL after generating networks of co-expressed genes using an intuitive Pearson’s correlation 

threshold of 0.8 21. The Python scipy.cluster.hierarchy package was used to run HC clustering. The 

blockwiseModules module of the R WGCNA library was used to run WGCNA with the network type set 

to “signed”. The Python sompy package was used to run SOMs. The Python package clust 1.2.0 was 

used to run clust. To demonstrate that the superior performance characteristics of clust were not due to 

use of the DB index, we also attempted to bias against our principle finding by choosing the cluster sets 

that minimised our evaluation criteria i.e that minimised MSE and the JI metrics 

(minimising √𝑀𝑆𝐸2 + 𝐽𝐼2). These additional results are analogous to those produced using DB index 

and are included in Supplementary Table S3 (B) and Supplementary Figure S2. 

Cluster dispersion metric (MSE) 
The mean squared error (MSE) metric is used to measure within-cluster dispersion. If the cluster has N 

genes and the dataset has D dimensions, the MSE value for that cluster will be: 

𝑀𝑆𝐸 =
1

𝐷 × 𝑁
∑‖𝑥⃗𝑔 − 𝑧‖

2
𝑁

𝑔=1

, 

where 𝑥⃗𝑔 is a vector of the gene expression profile of the 𝑔𝑡ℎ gene in this cluster, 𝑧 is a vector of the 

average expression profile of all genes in this cluster, and ‖𝑥⃗𝑔 − 𝑧‖ is the Euclidean distance between 

these two vectors. Note that the MSE value here is normalised by the number of genes in the cluster. 

When calculating the MSE value for a whole clustering result (a set of clusters), it is calculated as the 
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weighted average of the MSE values of the each of the clusters, where the weight is the size (number 

of genes) in each of the clusters. 

Cluster similarity metric (JI) 
The Jaccard Index (JI) metric is used to measure the similarity amongst the clusters in a clustering result 

22. JI is calculated as the ratio between the number of “overlap genes” and the number of all genes in 

clusters. “Overlap genes” are those genes that are included in a cluster while their expression profiles 

also fit within the boundaries of at least one other cluster. The upper and the lower boundaries of a 

cluster at any given dimension (condition) are respectively calculated as the maximum and the minimum 

expression values of all genes in that cluster after trimming the most extreme 1% values at each point 

to reduce the effect of outliers. 

GO term enrichment analysis 
The GO term annotations for Arabidopsis thaliana and Saccharomyces cerevisiae were downloaded 

from the Gene Ontology Consortium’s online repository at http://www.geneontology.org 23,24. 

Significantly enriched GO terms were taken as those that obtained an adjusted hypergeometric test p-

value ≤ 0.001. 

Acknowledgements 
BAJ and this work were supported by the Bill & Melinda Gates Foundation through award number 

OPP1129902. SK is a Royal Society University Research Fellow. Work in SKs lab is supported by the 

Royal Society, and the European Union’s Horizon 2020 research and innovation programme under grant 

agreement number 637765.  

Author contributions 
BAJ and SK designed the study, analysed the data, and wrote the manuscript. BAJ developed the 

software and conducted the analysis.  

Competing interests 
The authors declare no competing interests.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2018. ; https://doi.org/10.1101/221309doi: bioRxiv preprint 

http://www.geneontology.org/
https://doi.org/10.1101/221309
http://creativecommons.org/licenses/by/4.0/


14 

 

Figure legends 

Figure 1. Expectations and outcomes for application of data-partitioning methods to co-
expression clustering. 
(a & b) Simulated gene expression data for 500 genes with increasing noise (D1 – D4). (a) All genes. 

(b) profiles of the genes in each of the three simulated clusters as well as the extra unclustered genes 

at each one of the four levels of dispersion. The horizontal axis of each plot represents the six different 

conditions/samples, while the vertical axis represents gene expression values. (c) The results of 

applying a partitioning method (k-means in this case) to the same simulated datasets. (d) Heat-maps 

that show the percentage of genes in a cluster that also fit well within each one of the other clusters. 

Figure 2. Evaluation of the performance of clustering methods.  
(a-c) Evaluation of clustering performance over all 100 datasets. (a) the percentage of input genes that 

were included in clusters; (b) the average dispersion of clusters measured by weighted-averaging of 

individual cluster MSE values; (c) percentage of the overlap amongst clusters, as measured by JI index. 

(d-e) Distributions of individual cluster properties for all 100 datasets. MSE values (d), JI values (e), and 

cluster sizes (f). (Supplemental Tables S2 and S3 and Supplemental Figures S3 to S10). 

Figure 3. Profiles of the genes in the clusters generated by each method when applied 
to the dataset D82 
This figure visually shows a sample of the results of each one of the methods when applied over the 

same dataset, which is the dataset D82 (Supplementary Tables S1 and S2). This dataset was chosen 

out of the 100 datasets because the numbers of clusters generated by the six methods are more similar 

to each other at this dataset than any other dataset (measured by the least squares metric). Datasets 

with less than five clusters generated by any method were avoided. The numbers of clusters generated 

for this dataset by clust, MCL, k-means, HC, WGCNA, and SOMs were 14, 10, 8, 23, 21, and 8, 

respectively. This figure shows all 14 clusters generated by clust in the first row. Then, the most similar 

clusters generated by the other methods to each one of the 14 clust’s clusters are aligned below them. 

When there are more than 14 clusters generated by the same method, only the 14 clusters which are 

most similar to the clust’s clusters are displayed here. The title of each sub-plot shows the name of the 
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cluster and the number of genes in that cluster between parentheses. The horizontal axis of each sub-

plot represents the six samples in the dataset D82 while the vertical axis represents the normalised 

gene expression value. The profiles of all individual genes in a cluster are drawn as lines on top of each 

other in its corresponding sub-plot. 

Figure 4. Evaluation of GO term enrichment in the results of the clustering methods. 
(a) Venn diagram demonstrating substantial differences in enriched GO terms between methods. The 

numbers on this diagram represent the number of GO terms detected as significantly enriched across 

the 20 selected datasets. The union of these sets includes 6864 terms, 3010 of which (44%) are 

exclusive to a single method. (b) The percentage of reliable GO terms (i.e. those detected by two or 

more methods) detected by each method. WGCNA is the only method which is significantly higher than 

clust (Supplementary Table S4). (c) F-scores quantifying the similarity between the set of GO terms 

detected as enriched in the original clusters and the set of GO terms detected as enriched in clusters 

after taking into account unreliably assigned genes (Supplementary Table S4). 

Figure 5. Evaluation of the performance of clustering methods when applied to multiple 
datasets. 
Each sub-plot shows the values of one performance metric measured for each method when applied on 

(d) different datasets simultaneously. The horizontal axes represent the numbers of datasets 

simultaneously clustered (d), the vertical axes represent the performance metrics’ values, and the error 

bars represent standard error values over 10 random repetitions. The datasets are from either yeast (a, 

c, e, and g) or arabidopsis (b, d, f, and h). The performance metrics are within-cluster dispersion 

measured by MSE (smaller values are better) (a & b), percentage of overlap amongst clusters measured 

by the JI index (smaller values are better) (c & d), percentage of genes assigned to clusters (PAG) (e & 

f), and number of clusters generated (K) (g & h). 
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