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ABSTRACT 8 

Motivation: Tn-seq (transposon mutagenesis and sequencing) and constraint-based metabolic 9 

modelling represent highly complementary approaches. They can be used to probe the core 10 

genetic and metabolic networks underlying a biological process, revealing invaluable 11 

information for synthetic biology engineering of microbial cell factories. However, while 12 

algorithms exist for integration of –omics data sets with metabolic models, no method has been 13 

explicitly developed for integration of Tn-seq data with metabolic reconstructions.  14 

Results: We report the development of Tn-Core, a Matlab toolbox designed to generate gene-15 

centric, context-specific core reconstructions consistent with experimental Tn-seq data. 16 

Extensions of this algorithm allow: i) the generation of context-specific functional models 17 

through integration of both Tn-seq and RNA-seq data; ii) to visualize redundancy in core 18 

metabolic processes; and iii) to assist in curation of de novo draft metabolic models. The utility 19 

of Tn-Core is demonstrated primarily using a Sinorhizobium meliloti model as a case study.  20 

Availability and implementation: The software can be downloaded from 21 

https://github.com/diCenzo-GC/Tn-Core. All results presented in this work have been obtained 22 

with Tn-Core v. 1.0. 23 

Contact: georgecolin.dicenzo@unifi.it, marco.fondi@unifi.it 24 

Supplementary information: Supplementary data are available at Bioinformatics online. 25 
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INTRODUCTION 27 

The chemical complexity of biological entities hampers a full understanding of life and, 28 

consequently, its characterization is one of the strongest motivations in systems biology. 29 

Constraint-based metabolic modelling (CBMM) [1] is a well-established tool to formally 30 

represent cellular metabolism at the genome-scale level (by means of Genome Scale Metabolic 31 

Reconstructions, GSMRs) and to derive reliable predictions [2]. Despite this approach having 32 

shown remarkable predictive capabilities over the years [3], there are constant efforts aimed at 33 

improving and customizing the procedures of CBMM analyses.  34 

It is increasingly recognized that the complexity of modern GSMRs often masks their 35 

utility in various applications [4], and that most studies to date only focus on the core metabolic 36 

pathways of the organism [5, 6]. Furthermore, due to the scaling of computational complexity, 37 

many stoichiometric (e.g. elementary flux modes enumeration [7]) and/or dynamic approaches 38 

(e.g. kinetic modelling [8]) cannot be applied to GSMRs embedding thousands of reactions. As a 39 

result, algorithms have been implemented to reduce a GSMR to a core set of reactions necessary 40 

to produce a pre-defined phenotype(s) [4, 9-11]. These algorithms share a similar overall 41 

approach: they are reaction-centric and require a user-defined list of reactions, metabolites, 42 

and/or phenotypes that must remain in the core model. However, by not directly incorporating 43 

experimental data, the biological accuracy of these core models cannot be guaranteed. 44 

As GSMRs generally incorporate as much of the cell’s metabolism as possible, regardless 45 

to the activity of the reaction in a given environment, additional constraints are required to 46 

accurately represent environment-specific metabolism. This can be accomplished by constraining 47 

GSMRs with –omics data sets. This most commonly involves integrating gene expression data, 48 

constraining the allowable flux across each reaction based on the expression level(s) of the 49 
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corresponding gene(s) [12, 13]. Similarly, tools exist for combining GSMRs with proteomics 50 

[14], fluxomics [15], and metabolomics data [16]. Ultimately, these applications have a common 51 

goal: reducing a GSMR to a smaller model with only the reactions active in the specific 52 

condition. 53 

High-throughput transposon mutagenesis and sequencing (Tn-seq) generates a genome-54 

wide list of genes essential in a given environment [17]. Arguably, these data sets are the best 55 

experimental representation of which reactions are active in a given environmental condition. 56 

Combining core metabolic networks and Tn-seq can allow deep functional refinement of GSMRs 57 

to account for only those (core) reactions and genes active under the tested conditions.. From a 58 

synthetic biology viewpoint, the central metabolism of an organism is of paramount importance 59 

as it i) produces the precursors for all natural chemicals and ii) has a high capacity of pathway 60 

fluxes; as such, central metabolism can be exploited as a chassis for production of industrially 61 

important molecules [18, 19]. Consequently, a Tn-seq curated core metabolic model is of high 62 

value for synthetic biology attempts at engineering designing cell factories. Indeed, genome 63 

streamlining, i.e., the construction of cells with minimal genomes, is known to generate cells 64 

with improved biotechnological properties, including increased protein or metabolite production 65 

[20-24]. However, despite the highly complementary nature of Tn-seq and CBMM, we are 66 

unaware of a tool for generating context-specific models through the automated incorporation of 67 

Tn-seq data with GSMRs. 68 

 Here, we report the development of Tn-Core, a MATLAB toolbox for use with COBRA 69 

formatted metabolic models. Tn-Core is designed for the generation of gene-centric, context-70 

specific core metabolic models consistent with experimental gene fitness data produced through 71 

Tn-seq experiments, or through both Tn-seq and RNA-seq data. Tn-Core can further be used to: 72 
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i) evaluate potential redundancy in core metabolism (does not require Tn-seq data); ii) identify 73 

which of the alternate pathway(s) contributes to higher flux through the objective function; and 74 

iii) perform Tn-seq-guided refinement of the Gene-Protein-Reaction rules (GPRs) in a GSMR.  75 

 76 

IMPLEMENTATION 77 

Tn-Core was developed to facilitate the generation of context-specific core metabolic 78 

models through the integration Tn-seq data, then expanded to further allow the integration of 79 

RNA-seq data and to examine core metabolic redundancy in the presence or absence of these 80 

data. The toolbox is written in Matlab and uses COBRA formatted models and the COBRA 81 

Toolbox [25]. Tn-Core is available as Supplementary Materials S1, and the current and future 82 

versions will be available through GitHub (https://github.com/diCenzo-GC/Tn-Core).The 83 

functionality of the entire toolbox has been validated on four machines, running three versions of 84 

Matlab (R2015b, R2016b, R2017a) and three distinct COBRA toolbox setups (openCOBRA 85 

downloaded between 12/2016 and 08/2017), suggesting that Tn-Core should work in a broad 86 

range of computing environments. 87 

Generation of core metabolic models. 88 

The pseudocode for Tn-Core is given in Algorithm 1, the main workflow is depicted in the 89 

flowchart of Figure 1, and a detailed manual describing its usage is provided in Supplementary 90 

Materials S1. The minimum input is a COBRA-formatted metabolic model. Optionally, the user 91 

may provide: (i) Tn-seq data for all genes in the genome; (ii) RNA-seq data for all genes in the 92 

genome, and/or (iii) a list of pre-determined core/essential genes. Tn-Core begins with the 93 

optional step (Figure 1a) of producing a list of model genes to be protected during the generation 94 

of 95 
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Algorithm 1. The Tn-Core algorithm 96 

Input: n is the number of iterations; model is the initial GSMR. Other variables and lists: Gm is the list of genes in 97 

model, T is the Tn-seq data, L is the RNA-seq data, Mi is the final array of core metabolic reconstructions, t is the 98 

threshold for objective function. Functions: detectDeadEnds, deleteModelGene, findRxnsFromMets, 99 

singleGeneDeletion, and optimizeCbModel are part of the COBRA Toolbox. All the other functions are 100 

implemented as Matlab code (see Supplementary Material S1). 101 

1: D = detectDeadEnds(model)  102 

2: RD = findRxnsFromMets(D) 103 

3: mred = remove reactions and unused genes (model, RD) 104 

4: Emodel = singleGeneDeletion(model) 105 

5: (E, S, W) = get essential, strong, and weak growth promoting Genes (T) 106 

6: LH = get highly expressed genes (L) 107 

7: Um = (Gm ~ ((E ∩ Gm) ∪ Emodel ∪ (LH ∩ Gm))) 108 

8: for i = 1 to n 109 

9: m = mred 110 

10:  Um
*
 = shuffle(Um) 111 

11: for j = 1 to length(Um
*
) 112 

12:  m’ = deleteModelGene(m, Um
*
(j)) 113 

13:  φ = optimizeCbModel(m’) 114 

14:  if φ > t 115 

15:   m = m’ 116 

16:  end if 117 

17: end for 118 

18:  M(i) = m 119 

19:  GM(i) = get the genes in M(i) 120 

20:  O(i)= optimizeCbModel(M(i)) 121 

21:  {NE(i); NS(i); NW(i)} = {length(GM(i) ∩ E); length(GM(i) ∩ S); length(GM(i) ∩ W)} 122 

22: end for 123 

23: Mcore = M(max(NE) ) 124 

24: if length(Mcore ) > 1  125 

25:  Mcore = Mcore (max(NS) ) 126 

26:  Mcore = Mcore (max(NW) ) 127 

27:  Mcore = Mcore (max(O) ) 128 

28: end if 129 

29: return Mcore 130 
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random core models. This list is based on: (i) all user-defined core genes, (ii) highly expressed 131 

genes if RNA-seq are provided, and (iii) essential genes based on Tn-seq data (optional even if 132 

Tn-seq data are provided). Next, Tn-Core produces a reduced GSMR by iteratively removing all 133 

reactions that produce dead-end metabolites (and associated genes, if they are not in the GPR of 134 

another reaction). Additionally, all GPRs not assigned to a coding sequence (e.g. gap-filling 135 

reactions) are removed. As the order in which reactions are added/removed from a model might 136 

alter the predictive capability of the reconstruction, randomized core models (M, Algorithm 1) 137 

are then generated from the reduced model (Figure 1b). Importantly, this step can be parallelized, 138 

reducing the running time. This involves first preparing a list of all non-protected model genes 139 

(Um), and randomly shuffling their order at each iteration (Um
*
). All genes (and corresponding 140 

reactions) from each shuffled set are individually deleted from the model and growth is tested. If 141 

the objective function flux (φ) stays above the threshold (t), the gene is excluded from the model; 142 

otherwise, the gene is put back to the model. The result is a population of models (M) each 143 

containing the initially protected genes (optional), and a minimal amount of additional genes 144 

required to maintain objective function flux φ above the threshold t. If Tn-seq data is provided, 145 

the objective function flux of each core model is recorded, genes are classified into four 146 

categories from ‘essential’ to ‘non-essential’ based on the Tn-seq data (Figure S1), and the 147 

number of core model genes in each category is recorded (Figure 1c). 148 

Finally, the core reconstruction that maximizes the number of essential Tn-seq genes is 149 

chosen as the reconstruction most consistent with the Tn-seq data (Mcore). If two or more models 150 

embed the same number of essential genes, the reconstruction maximizing the number of ‘strong 151 

growth promoting’ and then ‘weak growth promoting’ genes is selected as the output. If multiple 152 

models still remain, the model with the highest objective reaction flux is returned as the core 153 
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metabolic model most consistent with the gene essentiality data (Figure 1d). Independently, the 154 

core model with the highest objective function flux is returned as the fastest growing core model 155 

(Figure 1d); if multiple models have the same maximal objective function flux, the model most 156 

consistent with the gene essentiality data is chosen. In some cases, it may be desirable to obtain 157 

other core models produced during the running of Tn-Core, such as the slowest growing core 158 

model. The output of Tn-Core additionally includes a cell array of the objective function flux for 159 

all produced core models, as well as a binary presence/absence cell array indicating which genes 160 

are included in each of the core models. By using the latter cell array with the tncore_reconstruct 161 

function, it is possible to rebuild any of the core models produced during the running of Tn-Core. 162 

Analysis of variation across the core metabolic models. 163 

The redundancy embedded within GSMRs means that each of the models in the core 164 

model population may contain a different set of genes and/or reactions. Tn-Core includes 165 

functions to explore this redundancy, whether Tn-seq data is provided or not (Figure 1e). Two or 166 

three primary matrixes are returned, and can display either gene or reaction information. A 167 

binary presence/absence matrix is given, which indicates, for each model, whether each feature is 168 

present or absent; only features embedded in at least one core model are included (Figure 2a, 2b). 169 

A co-occurrence matrix is also provided; for each feature variably present in the core model 170 

population, a Chi-squared statistics is reported to indicate which feature pairs are more likely 171 

than chance to appear, or not appear, in the same core models (Figure 2c-2e). If the core models 172 

are generated multiple times, for example, using different objective flux thresholds, a matrix can 173 

be produced that indicates, for each population of core models, what percentage of models 174 

contains each of the features (Figure 2f, 2g). 175 

 176 
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Refinement of genome-scale metabolic network reconstructions. 177 

Finally, an extension is provided to use Tn-seq data to assist in the automated curation of 178 

GSMRs (Figure 1f). First, Tn-seq essential genes are determined, and these genes are protected 179 

during core model generation. The core model most consistent with the Tn-seq data is collected, 180 

and where appropriate, ‘or’ statements in the GPRs are replaced with ‘and’ statements; if any Tn-181 

seq essential genes in the model have no effect when deleted, and if any occur in the same 182 

reaction(s) and only the same reaction(s), and the GPR currently lacks an ‘and’ statement, the 183 

‘or’ statements of the GPR are replaced with ‘and’ statements. The implementation of this 184 

section of the code is rather strict in order to avoid artificially converting non-essential genes to 185 

essential genes. Finally, for any core model reaction with a Tn-seq essential gene, the 186 

corresponding GPRs of the original GSMR are replaced with those of the core reconstruction. 187 

 188 

RESULTS AND DISCUSSION 189 

Validation of Tn-Core. 190 

Tn-Core was validated by extracting context-specific core models from the 191 

Sinorhizobium meliloti iGD1575 GSMR [26]. Two core models were produced, each using a 192 

growth threshold of 50% the full model, with 50,000 iterations, and with Tn-seq essential genes 193 

pre-identified. In one Tn-Core run, only Tn-seq data [27] was used; in the second run, the same 194 

Tn-seq data plus RNA-seq data [28] was included. The sizes of both models are summarized in 195 

Table 1, and the inclusion of RNA-seq data resulted in a somewhat larger core model. 196 

The ability of the core models to capture context-specific core metabolism was examined 197 

by predicting the essentiality of central carbon metabolic genes (Figure 3). Results were 198 

compared to both the full iGD1575 model and to the manually constructed S. meliloti iGD726 199 
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core metabolic reconstruction [27]. The entire set of central carbon metabolic pathways was 200 

predicted to be non-essential in iGD1575 presumably due to network redundancy. In contrast, 201 

most of central carbon metabolism was essential in the manually prepared iGD726 core model 202 

(gnd and tal are correctly predicted as non-essential). Using only Tn-seq data, Tn-Core extracted 203 

a core model largely consistent with iGD726, although the ATP synthase pump was missing. 204 

However, by also including RNA-seq data in the pipeline, the extracted core model even better 205 

reflected context-specific metabolism. This is highlighted by the lower half of the Embden-206 

Meyerhof-Parnas pathway. In particularly, mutation of pgk was experimentally shown to result 207 

in a 40% growth rate decrease when grown with glucose [29]. Whereas pgk was essential in the 208 

first core model, deletion of pgk in the core model extracted using Tn-seq and RNA-seq data 209 

resulted in a growth rate decrease of 30%. Taken together, these results demonstrate the ability 210 

of Tn-Core to produce highly accurate context-specific core metabolic models, and illustrates 211 

how integrating both Tn-seq and RNA-seq data sets can lead to high precision fitness 212 

predictions. 213 

 We subsequently implemented in Tn-Core the option to employ the Minimization of 214 

Metabolic Optimization (MOMA) algorithm during core model generation instead of FBA. 215 

Using MOMA instead of FBA is significantly slower, had little effect on the size of the core 216 

models (Table 1), and, at least in central carbon metabolism (Figure 3), did not produce more 217 

accurate core reconstructions. We have also found that the core models returned when using the 218 

MOMA implementation are not guaranteed to grow. This appears to be due to certain core 219 

models growing when using the MOMA function of the COBRA toolbox, but not growing when 220 

using the optimizeCbModel function of the COBRA toolbox. We therefore suggest that the FBA 221 

implementation should be used for most purposes. 222 
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 The functionality of Tn-Core was further confirmed using the Pseudomonas aeruginosa 223 

iPae1146 GSMR [30] and published Tn-seq data [31]. These results are reported in 224 

Supplementary Material S2.  225 

Benchmarking of Tn-Core. 226 

There is currently no tool explicitly comparable to Tn-Core as none consider 227 

experimental Tn-seq data during core model identification. Nevertheless, we compared Tn-Core 228 

to two algorithms design for the extraction of core reconstructions: FASTCORE [10] and 229 

minNW [11]. Both algorithms are reaction-centric, and require as input a set of reactions, not 230 

genes, to be protected in the output model. To adapt these algorithms for use with Tn-seq data, 231 

we set the protected reactions as those reactions that are constrained upon deletion of the Tn-seq 232 

essential genes. Additionally, in both cases, a consistent model derived from iGD1575, generated 233 

with FASTCC [10], was used as the starting model. For both FASTCORE and minNW, the 234 

output models had similar or fewer reactions and metabolites, but a larger complement of genes, 235 

than the models produced with Tn-Core (Table 1), which is related to its reaction-centric nature. 236 

More importantly, although faster than Tn-Core, the accuracy of FASTCORE and minNW was 237 

far exceeded by Tn-Core using central carbon metabolism as a proxy (Figure 3). This result 238 

validates that Tn-Core fulfills a function that is currently lacking among the available algorithms.  239 

The output of Tn-Core was also compared to the gene-centric TIGER implementation of 240 

the GIMME algorithm [32, 33]. GIMME generates context-specific models based on expression 241 

data, and is therefore not directly comparable to Tn-Core that primarily uses essentiality data. 242 

GIMME initially failed to return a functional model using iGD1575 and the provided RNA-seq 243 

data, but a working model could be recovered using a custom extension (see Supplementary File 244 

S2). Overall, the models returned by GIMME and Tn-Core displayed high consistency, with the 245 
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central carbon metabolism extracted by GIMME of similar accuracy to those extracted by Tn-246 

Core (Figure 3). Additionally, the GIMME model and Tn-Core model produced with Tn-seq and 247 

RNA-seq data (FBA implementation) share > 87% of their genes. Thus, at least in S. meliloti 248 

where essential genes tend to be highly expressed [27], both Tn-Core and GIMME perform 249 

similarly and the choice of algorithm would be driven primarily by the type of data being 250 

incorporated with the GSMR.  251 

Tn-Core performance. 252 

In order for Tn-Core to be accurate, a sufficiently large population of core models must 253 

be generated to ensure the optimal core model is represented. There are therefore two primary 254 

factors contributing to the speed of Tn-Core: (i) running time per iteration (i.e., per core model 255 

produced), and (ii) the number of iterations. To test the effect of starting model and parameter 256 

settings on the performance of Tn-Core, we generated 25,000 core models for five different 257 

GSMRs with varying parameter settings. A summary of these runs are provided in Table 2, and a 258 

detailed description of is reported in Supplementary File S2. 25,000 iterations did not guarantee 259 

the presence of all possible core models in any of the runs. However, the number of variably 260 

present genes gives an indication of the number of iterations required to cover all possibilities; 261 

the square of the variably present genes represents the theoretical maximum number of 262 

genetically unique core models. Considering that the variability among core models is highly 263 

dependent on the starting GSMR and the parameter settings, we recommend users first perform a 264 

test run of 10,000 iterations, and use the gene variability to approximate how many iterations 265 

must be performed. Additionally, if Tn-Core is being used to produce a core model and not only 266 

to explore redundancies in the core network, we recommend setting Tn-Core to pre-determine 267 
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the essential genes prior to core model generation and to use a growth threshold of at least 50%. 268 

Characterization of redundancy and growth promoting pathways with Tn-Core. 269 

As is evident from Table 2, significant redundancy can exist in core metabolic pathways. 270 

Tn-Core produces a series of matrixes to summarize this variability (Figure 2), which can be 271 

easily imported into graphing tools to visualize the data (e.g. [34]). Here, we briefly illustrate the 272 

usefulness of these matrixes in uncovering biologically interesting data. We note that the same 273 

trends were observed for S. meliloti using the FBA (Figure 2) or MOMA (Figure S2) 274 

implementation, and also when using GSMRs for Eschericha coli, P. aeruginosa, Pseudomonas 275 

haloplanktis, and Acinitobacter baumannii (Figures S3-S6), demonstrating that these results are 276 

not specific to a single model (Figure S6). 277 

Gene/reaction presence matrixes (Figures 2a, 2b) provide an overview of the variability 278 

of the models. In the case of S. meliloti, the core models contain an average of 434 genes, of 279 

which 286 genes (~ 66%) are invariably present and the rest are from a set of 777 variably 280 

present genes. In other words, a third of core S. meliloti metabolic genes can be functionally 281 

replaced by alternative genes or pathways, consistent with recent experimental work [27]. The 282 

variable and invariable core genes were mapped to KEGG pathways [35] using eggNOG-mapper 283 

[36] to identify functional biases. Significant redundancy was observed in a diversity of 284 

pathways, including carbon, amino acid and nucleotide metabolism. In contrast, the most 285 

fundamental cellular processes appeared to lack redundancy, such as transcription, translation, 286 

and aminoacyl-tRNA biosynthesis. 287 

Gene/reaction co-occurrence matrixes summarize the frequency that two genes or 288 

reactions occur in the same model relative to chance (Figures 2c-2d). This can identify modules 289 

that work together (likely to co-occur), and genes or biochemical pathways that are functionally 290 
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redundant (unlikely to co-occur). For all GSMRs used in this work, clear modules and redundant 291 

genes/pathways could be observed in the matrixes (Figure 2, Figures S2-S6). Known 292 

redundancies could be detected in the S. meliloti iGD1575 reaction co-occurrence matrix. For 293 

example, the two pathways for L-proline biosynthesis [37] were unlikely to occur in the same 294 

model, as were thiamine transport and thiamine biosynthesis. These observations confirm that 295 

these matrixes could be useful in detecting metabolic redundancy in core bacterial metabolism. 296 

Finally, core models were generated using growth thresholds of 10% and 99% (of the 297 

original objective function flux), and a scatterplot was used to compare the frequency of each 298 

gene/reaction in the resulting core model populations (Figures 2f, 2g). In all cases, some 299 

genes/reactions were found to be enriched in one of the two core model populations, and the use 300 

of the MOMA algorithm increased the incidence of such genes/reactions (Figures 2 and S2). 301 

When using the FBA algorithm, biases in the occurrence of genes in the two core model 302 

populations were particularly prevalent in the E. coli iJO1366 model (Figure S5). Intriguingly, 303 

some genes, such as b2417 (glucose-specific enzyme IIA component of PTS, glycolysis), b2342 304 

and b3845 (both acetyl-CoA acyltransferase, fatty acid degradation), were ~ 5-fold more 305 

prevalent in the core models generated with a 99% growth threshold compared to a 10% growth 306 

threshold (differences statistically significant based on Fisher exact tests, p-value < 2.2e-16). 307 

Yet, despite the importance of the pathways these genes are involved in, none of them had a 308 

predicted effect on growth rate when deleted in the full iJO1366 model (using either FBA or 309 

MOMA), likely due to the redundancy in the complete GSMR. Hence, Tn-Core may facilitate 310 

the identification of genes contributing to optimal growth in core metabolic networks, including 311 

genes not readily detected as important in the full GSMR. 312 

 313 
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 314 

Refinement of GSMRs using Tn-Core. 315 

Automated metabolic network reconstruction methods are expected to incorrectly assign 316 

multiple genes to the same core metabolic reaction. In the absence of experimental data, it can be 317 

difficult to correct such errors. We therefore implemented a function for using Tn-Core to assist 318 

in model refinement using Tn-seq data. We tested this pipeline using the S. meliloti iGD1575 319 

model, as well as with a draft S. meliloti model prepared using the Kbase automated 320 

reconstruction pipeline. This process resulted in the modification of the GPRs of 60 reactions in 321 

iGD1575, with 69 genes removed from the model. Similarly, 107 GPRs (over 6% of reactions) 322 

were modified in the draft model following this process, with 57 genes deleted from the model. 323 

These results demonstrate that Tn-seq data and Tn-Core can play a valuable role in curation of 324 

metabolic models, although it certainly does not replace the need of an accurate manual curation. 325 

 326 

CONCLUSIONS 327 

 Here, we presented Tn-Core, a new tool for the generation of core metabolic network 328 

reconstructions. The unique feature of Tn-Core is the ability to consider experimental Tn-seq 329 

data, as well as both Tn-seq and RNA-seq data, for producing a core model that best represents 330 

the true metabolism of the cell in a given physiological condition. Despite that this pipeline may 331 

run slower than existing algorithms for the generation of core or context-specific models, Tn-332 

Core remains advantageous due to: i) its high accuracy; ii) its ability to consider both functional 333 

genomics (Tn-seq) and transcriptomics data (RNA-seq); iii) its ease of use with little pre-334 

processing of the data required; and iv) its gene-centric approach. 335 

 336 
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 337 

METHODS 338 

 All data generated with Tn-Core (except for the timing of Table 2) was done using 339 

Matlab 2016a (Mathworks), the COBRA Toolbox (downloaded December 9, 2016 from the 340 

openCOBRA repository) [25], and using the Gurobi 6 solver (gurobi.com), SBMLToolbox 4.1.0 341 

[38], and libSBML 5.11.8 [39]. All other computations were performed in Matlab 2017a using 342 

the Gurobi 7.0.2 solver, SBMLToolbox 4.1.0, libSBML 5.15.0, scripts from the COBRA 343 

Toolbox (downloaded May 12, 2017 from the openCOBRA repository), and the TIGER Toolbox 344 

v.1.2.0-beta [33]. For running minNW, the iLOG CPLEX Studio 12.7.1 solver (ibm.com) was 345 

used. Gene essentiality was determined using the singleGeneDeletion function and the MOMA 346 

algorithm. In order to ensure that core model generation with Tn-Core did not occasionally fail 347 

when using the MOMA algorithm, the MOMA.m script of the COBRA Toolbox was modified at 348 

line 216 to to treat unbounded solutions the same as infeasible solutions. Additionally, the 349 

solveCobraQP.m script of the COBRA Toolbox was modified to work with the Gurobi 6 solver. 350 

Detailed usage, and modifications, of FASTCORE [10], minNW [11], and GIMME [32, 33] are 351 

provided in Supplementary Materials S2. 352 

 The S. meliloti iGD1575 [26], P. haloplanktis iMF721 [40], A. baumannii iLP844 [41], 353 

E. coli iJO1366 [42], and P. aeruginosa iPae1146 [30] models were previously published. Prior 354 

to using iLP844, the genes ‘Unknown1’ through ‘Unknown160’ were replaced with a single 355 

gene called ‘Unknown’. The draft S. meliloti GSMR was generated using Kbase (kbase.us) as 356 

described in Supplementary Materials S1. 357 

Scripts to repeat all benchmarking, as well as all output data generated in this work, are 358 

available at https://github.com/diCenzo-GC/Tn-Core. The complete Tn-Core toolbox, together 359 
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with a reference manual, are provided as Supplementary Materials S1. Tn-Core is also freely 360 

available at https://github.com/diCenzo-GC/Tn-Core, and future releases of the toolbox will be 361 

available through the same link.  362 
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Table 1. Summary of the sizes of the produced core models relative to the parent model 481 

(iGD1575) and the manually prepared core model (iGD726). 482 

Model Genes Reactions Metabolites 

iGD1575 1577 1828 1579 

iGD726 728 681 703 * 

Core model A (without RNA-seq, FBA) 488 574 578 

Core model B (with RNA-seq, FBA) 532 614 601 

Core mdoel C (without RNA-seq, MOMA) 490 581 584 

Core model D (with RNA-seq, MOMA) 532 602 590 

FASTCORE 732 555 544 

minNW 650 487 509 

GIMME 546 1211 † 1165 † 

* As iGD726 contains an updated biomass with a more complex membrane lipid composition, 483 

this model is expected to have more metabolites than core models produced from iGD1575. 484 

† The high number of reactions/metabolites is at least partially due to the presence of the 485 

complete complement of exchange reactions. 486 
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Table 2. Parameters and summary statistics for Tn-Core runs. 487 

Model 
Gene 
Count * 

Reaction 
Count * 

Metabolite 
Count * 

Growth 
Thresh 

Pre-set 
EGs 

RNA-seq Method 
Unique 
Gene Sets † 

Unique 
Reaction Sets † 

Variable 
Genes ¥ 

Variable 
Reactions ¥ 

Iteration run 
time (s) ø 

iGD1575 1577 (1130) 1828 (920) 1579 (710) 10 No No FBA 25,000 25,000 777 416 26.7 

        25 No No FBA 25,000 25,000 776 417 24.0 
        50 No No FBA 25,000 25,000 773 413 23.8 

        75 No No FBA 25,000 25,000 773 415 23.7 

        90 No No FBA 25,000 25,000 771 412 23.9 
        99 No No FBA 25,000 25,000 763 389 24.1 

        10 Yes No FBA 25,000 25,000 471 296 20.6 

        10 No Yes FBA 25,000 24,999 399 262 18.5 
        10 Yes Yes FBA 25,000 24,995 265 163 17.1 

        50 Yes No FBA 25,000 25,000 472 295 19.6 

        50 No Yes FBA 25,000 25,000 402 265 18.4 
        50 Yes Yes FBA 25,000 24,995 292 192 17.3 

        10 No No MOMA 25,000 25,000 837 456 79.7 

        50 No No MOMA 25,000 25,000 837 455 79.9 
        99 No No MOMA 25,000 25,000 773 384 76.6 

        50 Yes No MOMA 25,000 25,000  531 328 64.6 

        50 Yes Yes MOMA 25,000  24,999 389 280 58.2 

iPAE1160 1148 (808) 1496 (888) 1284 (643) 10 No No FBA 25,000 25,000 470 364 16.8 
        50 No No FBA 25,000 25,000 476 362 17.1 

        99 No No FBA 25,000 25,000 415 310 16.9 

        10 Yes No FBA 25,000 24,997 319 258 14.8 
        50 Yes No FBA 25,000 24,999 321 259 14.6 

iJO1366 1367 (1255) 2583 (2333) 1805 (1578) 10 No No FBA 25,000 25,000 607 814 60.7 

        50 No No FBA 25,000 25,000 510 719 59.4 
        99 No No FBA 25,000 25,000 363 381 57.6 

iLP844 887 (618) 1628 (816) 1518 (589) 10 No No FBA 25,000 25,000 340 303 11.3 

        50 No No FBA 25,000 25,000 337 300 11.4 
        99 No No FBA 25,000 25,000 304 263 11.1 

iMF721 723 (611) 1324 (921) 1134 (688) 10 No No FBA 25,000 25,000 329 397 11.0 

        50 No No FBA 25,000 25,000 338 399 10.7 

        99 No No FBA 25,000 25,000 300 361 10.2 

* The first set of numbers are based on the full starting model, while those in parentheses are based on the reduced model (following 488 

dead-end removal) that is used in the core model generation. 489 

† Following 25,000 iterations, how many unique sets of genes or reactions were present in the core models. 490 

¥ Following 25,000 iterations, how many genes or reactions were found to be variably present or absent in the core models. 491 

ø Length of time in seconds required to produce a single core model. Total running time is approximately equal to the run time per 492 

iteration multiplied by the number of iterations and divided by the number of parallel pools used. 493 
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 498 

 499 

Figure 1. Schematic representation of the Tn-Core pipeline. Dashed lines represent optional 500 

steps. 501 

 502 
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 503 

Figure 2. Evaluation of core metabolic redundancy with Tn-Core. The six primary matrixes 504 

generated by Tn-Core are shown. Tn-Core was run using the S. meliloti iGD1575 genome-scale 505 

metabolic reconstruction, with 25,000 iterations, a growth threshold of 10%, without essential 506 

gene pre-identified, and without RNA-seq data. Gene (a) and reaction (b) presence matrixes are 507 

shown for 1,000 of the randomly produced core models. Blue indicates the gene/reaction is 508 

present, white indicates the gene/reaction is absent. Gene (c) and reaction (d) co-occurrence 509 

matrixes are shown for the genes/reactions variably present in the 25,000 core models. (e) The 510 

legend for the co-occurrence matrixes is shown. The scale represent a Chi-squared statistic that 511 

summarizes if the gene or reaction pair is more (yellow) or less (blue) likely to occur in the same 512 

core model than by chance. Gene (f) and reaction (g) scatter plots displaying the correlation 513 

between the percentage of core models containing the gene/reaction when made using a growth 514 

threshold of 10% or 99%. Genes/reactions either present in all models or in no models are not 515 

included. 516 
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 522 

Figure 3. Comparison of central carbon metabolism of full and core metabolic models. This 523 

figure represents the full S. meliloti genome-scale metabolic reconstruction (iGD1575), the 524 

manually produced core metabolic reconstruction (iGD726), four core models produced from 525 

iGD1575 using Tn-Core (Core Model A [with Tn-seq, without RNA-seq, FBA algorithm], Core 526 

Model A [with Tn-seq, with RNA-seq, FBA algorithm], Core Model A [with Tn-seq, without 527 

RNA-seq, MOMA algorithm], Core Model A [with Tn-seq, with RNA-seq, MOMA algorithm]), 528 

and core models derived from iGD1575 using the FASTCORE, minNW, or GIMME algorithms. 529 

Representative genes from central carbon metabolism and the ATP synthase are shown. For each 530 

gene, a circle is shown if the gene is present in the model, and the circle is coloured according to 531 

the effect of deleting the gene on the growth rate of the model (determined using the MOMA 532 

algorithm); a value of 100 means no growth impact, a value of 0 means the gene deletion is 533 

lethal. 534 

 535 
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