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Abstract: 
Robust quantification  of immune  cell  infiltration  into  the  tumor microenvironment may shed  light 
on  why only a  small  proportion  of patients benefit from checkpoint therapy. The  immune  cells 
surrounding  a  tumor have  been  suggested  to  mediate  an  effective  response  to  immunotherapy. 
However, traditional  measurement of immune  cell  content around  a  tumor by 
immunohistochemistry, flow cytometry, or mass cytometry allows measurement of only up  to  a 
few dozen  markers at a  time, limiting  the  number of immune  cell  types identified. Immune  cell 
type  abundances may instead  be  estimated  in silico by deconvolving  gene  expression  mixtures 
from bulk RNA sequencing  of tumor tissue. By measuring  tens of thousands of transcripts at 
once, bulk RNA-seq  provides a  rich  input to  algorithms that quantify cell  type  abundances in  the 
tumor microenvironment, affording  the  potential  to  quantify the  states of a  greater number of 
immune  cell  types (given  adequate  training  data). Here, we  first review existing  methods for 
deconvolution  and  evaluate  their performance  on  synthetic mixtures. Then  we  develop  a 
Bayesian  inference  approach, named  infino, that learns to  distinguish  immune  cell  expression 
phenotypes and  deconvolve  mixtures. In  contrast to  earlier approaches, infino accepts RNA 
sequencing  data, models transcript expression  variability, and  exploits the  relationships 
between  cell  types to  improve  deconvolution  accuracy and  allow interrogation  from the  level  of 
broad  categories to  the  level  of finest granularity. The  resulting  probability distributions of 
immune  infiltration  could  be  applied  to  numerous questions concerning  the  diverse  ecology of 
immune  cell  types, including  assessment of the  association  of immune  infiltration  with  response 
to  immunotherapy, and  study of the  expression  profile  and  presence  of elusive  T cell 
subcompartments, such  as T cell  exhaustion.  
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Introduction 
While  the  tumor microenvironment holds many secrets about the  state  of the  tumor and  whether 
the  patient will  respond  to  therapy, this region  is difficult to  interrogate. As part of the  immune 
system’s response  to  cancer, immune  cells of many different kinds infiltrate  the  area  around  a 
tumor. Numerous studies have  demonstrated  that the  immune  cells present in  the  tumor 
microenvironment are  associated  with  patient prognosis -- an  association  stronger than  even 
the  prognostic value  of the  standard  tumor TNM staging  system, which  rates cancers from stage 
I to  stage  IV [1]. Additionally, there  is some  evidence  to  suggest that the  tumor 
microenvironment may modulate  a  patient’s response  to  checkpoint blockade  [2–4]. Measuring 
the  contents of the  tumor microenvironment could  help  explain  the  differential  response  to 
checkpoint therapy, which  has a  response  rate  between  approximately 15% and  30% [5–7]. 
Finally, the  task of understanding  the  immune  cell  profiles that make  up  an  environment as 
diverse  as the  tumor microenvironment can  shed  light on  the  vast ecology of immune  cell  types, 
including  giving  us new abilities to  examine  phenotypes of interest. For example, exhausted  T 
cells are  likely to  be  implicated  in  the  response  to  checkpoint blockade  [8]. But the  presence  of 
such  a  T cell  compartment in  the  tumor microenvironment has until  now been  difficult to 
establish, undermining  attempts to  study the  aggregate  association  of this cell  type  with  clinical 
conditions. 
 
The  difficulty of interrogating  the  tumor microenvironment is attributable  to  a  manual 
measurement protocol  that is extremely low throughput and  to  computational  alternatives that 
fail  when  exposed  to  complex mixtures, which  are  common  in  the  region. The  predominant 
methods to  identify the  immune  cells within  the  tumor microenvironment involve  significant 
manual  intervention. These  approaches begin  with  manual  tissue  section  preparation. 
Fluorescence-activated  cell  sorting  (FACS) may be  used  to  separate  immune  cell  types by their 
distinct surface  markers. Alternatively, samples may be  stained  with  antibodies to  differentially 
color different cell  types by immunohistochemistry (IHC). A pathologist must manually examine 
the  images and  count the  cells of each  variety [9].  
 
Computational  alternatives instead  manipulate  a  proxy source  of data  to  estimate  infiltration. 
Recent “infiltrate  quantification” methods exploit the  fact that clinical  tumor biopsies often 
undergo  bulk RNA sequencing. Several  computational  approaches estimate  the  relative 
abundance  of many immune  cell  types in  a  bulk gene  expression  mixture  extracted  from the 
tumor microenvironment. Indeed, they perform well  for many mixtures (Figure  1a). These 
methods are  unique  because  they are  highly multiplex: they make  use  of tens of thousands of 
features. Detailed  deconvolution  of many cell  types is difficult by multicolored  IHC, which  in 
common  practice  can  stain  with  up  to  only seven  dyes at a  time  [4,10]. While  FACS and  CyTOF 
allow more  markers to  be  measured  simultaneously [4,11], they remain  dwarfed  by RNA 
sequencing, which  measures thousands of genes at once  -- therefore  capturing  a  fuller 
expression  profiles within  cell  types, as well  as affording  the  potential  to  examine  many more 
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cell  types. Moreover, bulk RNA sequencing  remains significantly cheaper and  more  common 
that single  cell  RNA sequencing. RNA-seq  is commonly performed  on  tumor tissue  for other 
purposes, so  an  immune  infiltrate  quantification  method  that functions on  bulk RNA-seq  data 
can  easily be  applied  to  samples for whom RNA-seq  has previously been  acquired  for other 
analyses [12]. 
 
To  characterize  the  blended  overall  expression  mixture  collected  from the  tumor 
microenvironment -- which  also  includes stromal  and  tumor cells -- several  groups identified 
marker genes whose  differential  expression  is characteristic of certain  immune  cell  types 
[13–19]. We  seek to  evaluate  the  marker gene  approach  to  deconvolution. Since  many immune 
cell  types are  remarkably similar in  their gene  expression  profiles, we  demonstrate  that the  strict 
criteria  to  identify marker genes can  extract genes whose  biological  function  does not appear 
unique  to  their associated  cell  types. For example, we  performed  gene  ontology enrichment 
analysis on  genes labeled  as T cell  markers only by the  IRIS method  [13], extracting  biological 
pathways over-represented  in  the  gene  list relative  to  their expected  background  frequency 
[20,21]. The  thirteen  most significantly overrepresented  gene  ontology terms (evaluated  at the 
significance  threshold  p  < 0.001) were  all  related  to  mitotic nuclear cell  division, a  process not 
unique  to  the  particular behavior of T cells. While  [19] demonstrate  how stricter criteria  for 
marker genes identification  can  improve  deconvolution, the  authors note  an  important limitation: 
some  immune  cell  types had  no  marker genes pass the  threshold. 
 
Other approaches first compute  a  representative  expression  profile  for each  immune  cell  type 
from purified  cell  populations, then  model  a  test mixture  as a  linear combination  of these 
reference  profiles, solving  for the  mixture  weights that produce  the  sampled  mixture  [22,23]. 
However, we  identified  shortcomings in  the  methodologies by which  these  methods extract 
representative  profiles. First, we  observed  that the  state-of-the-art method  Cibersort [23] 
excludes relevant information, modeling  only a  point estimate  of a  transcript’s expression  in 
each  cell  type, as opposed  to  its full  distribution  (Figure  2a). We  then  found  that Cibersort fails 
to  separate  challenging  mixtures of similar cell  types, producing  estimates with  perfect 
confidence  despite  a  high  error rate  (Figure  1b). Finally, many existing  methods were  designed 
only for data  from microarrays, a  technology that has been  largely superseded  by RNA 
sequencing  in  cancer research  and  clinical  practice. As a  result of these  incomplete  solutions to 
the  problem of immune  infiltrate  quantification, no  conclusive  test of the  predictive  value  of 
infiltration  for response  to  checkpoint therapy has yet been  performed, to  our knowledge. In 
addition  to  shedding  light on  this important question, improving  immune  infiltrate  deconvolution 
would  enable  identifying  expression  signatures for phenotypes of interest, such  as exhausted  T 
cells. As more  granular immune  cell  subsets are  identified  -- particularly via  single  cell  RNA 
sequencing  -- and  as expression  profiles for these  more  detailed  immune-cell  subsets become 
available, it will  be  crucial  for a  deconvolution  method  to  separate  very similar cell  types well 
and  to  facilitate  a  summary of inferences at any level  of the  cell-type  hierarchy. In  turn, this will 
require  more  interpretable  and  nuanced  ways to  evaluate  the  quality of a  deconvolution. 
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Results 
In  this investigation, we  refine  the  core  statistical  methodology for bulk tumor expression 
deconvolution  to  leverage  additional  information, including  the  natural  hierarchy of immune  cell 
subtypes. We  introduce  infino (“infer infiltrate  expression  phenotypes”), a  new method  that 
accepts clinical  RNA sequencing  data  of gene  expression  in  a  patient sample  and  produces 
probability distributions of the  abundance  of many immune  cell  types. By applying  Bayesian 
inference  to  this problem, we  enable  a  clear representation  of our model’s uncertainty in  the 
deconvolution  of a  gene  expression  mixture  from many cells into  mixture  weights of 13  cell 
types. We  show below that while  infino performs comparatively to  previous infiltrate 
quantification  methods on  common  mixtures, this Bayesian  model  enables analysis of complex 
cases for the  first time, thanks to  rich  diagnostics in  the  form of probability distributions over its 
estimates to  indicate  the  uncertainty in  deconvolution. 
 
 

 
 
Figure  1: Deconvolution  results by infino and  Cibersort for several  synthetic RNA-seq  mixtures. The 
ground  truth  mixture  weights are  represented  by yellow  stars. Infino’s estimates of the 
fractional  contribution  of each  subset to  the  mixture  are  shown  as probability density distributions. 
Cibersort’s estimates are  overlaid  as red  circles. Aggregated  estimates at the  B, CD4+ T, and  CD8+ T cell 
supertype  level  are  also  illustrated  in  darker colors (highlighted  rows). 
(a): Successful  deconvolution  by infino of a  simple  example, consisting  of a  50%-50%  mixture  of a  naive 
B cell  sample  and  a  CD4+ regulatory T cell  sample. Cibersort’s diagnostics: p<0.01, RMSE=0.45 . 
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(b): Unsuccessful  deconvolution  of a  more  complex example, consisting  of a  50%-50%  mixture  of a  naive 
B cell  sample  and  a  memory B cell  sample. Deviation  of estimated  mixture  weights from ground  truth  is 
shown. However, infino’s aggregated  scores demonstrate  high  confidence  and  precision  (see  highlighted 
rows). Cibersort’s diagnostics: p<0.01, RMSE=0.34 . 
 

 
 
(c): Another complex example, a  25%-75%  mixture  of a  naive  B cell  sample  and  a  CD4+ regulatory T cell 
sample, reveals that infino underestimates regulatory T cell  abundance. Deviation  of estimated  mixture 
weights from ground  truth  is shown. Cibersort’s diagnostics: p<0.01, RMSE=0.49 . 
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Three  key principles differentiate  infino from existing  infiltrate  quantification  methodologies. 
First, we  model  the  process by which  a  mixture  is generated  from individual  underlying  cells with 
varying  gene  expression. In  doing  so, we  encode  the  gene  expression  distributions of each 
individual  cell  type, rather than  extracting  point estimates to  represent a  certain  cell  type’s 
expression  profile. This is in  contrast to  earlier approaches; for example, we  observed  that the 
state-of-the-art method  Cibersort discards the  variability between  samples from similar and 
different contexts (Figure  2a). As a  result, infino captures the  variability in  every immune  cell 
type’s gene  expression  and  returns posterior probability distributions as output, which  provide 
clearer diagnostics than  the  point estimates produced  by earlier methods. 
 
Second, we  exploit the  relationships between  cell  types to  improve  our deconvolution  results. 
Existing  approaches attempt to  deconvolve  complex gene  expression  mixtures directly into  the 
abundances of naive  B cells, memory resting  B cells, and  so  on. In  contrast, we  recognize  that 
naive  B cells and  memory resting  B cells, for instance, have  extremely similar gene  expression 
profiles. We  perform deconvolution  with  knowledge  of the  relationships between  cell  types: 
naive  B cells and  memory resting  B cells are  both  subtypes of a  “B cell” supertype. Therefore, 
we  model  the  shared  characteristics of all  B cells with  high  certainty, as B cells are  much  easier 
to  distinguish  from T cells than  naive  B cells are  from memory resting  B cells. Furthermore, we 
identify the  deviations from the  master B cell  gene  expression  distributions that make  a  certain 
subtype  unique. By encoding  information  about the  “hierarchy” of immune  cell  types, we  can 
evaluate  the  uncertainty in  infino’s results at any deconvolution  depth  on-demand. For example, 
in  the  case  of a  particularly challenging  mixture, as in  Figure  1b, infino may report sufficient 
confidence  in  the  abundances of B cells and  T cells, but may note  low confidence  in  its further 
deconvolution  into  B cell  compartments and  T cell  compartments. Such  granularity in  the 
reporting  of results is unprecedented  for immune  infiltrate  quantification; to  our knowledge, all 
existing  approaches ignore  these  cell-type  relationships, flatten  the  hierarchy, and  return  a 
deconvolution  result at the  level  of the  most granular and  nearly indistinguishable  cell  types. 
While  it is possible  to  aggregate  these  low-level  cell  type  estimates to  a  higher level  of the 
hierarchy, no  existing  method  provides confidence  metrics to  accompany such  a  rollup. 
Moreover, infino learns these  relationships directly from the  data, as opposed  to  following  a 
pre-configured  arbitrary set of cell  type  relationships (Figure  2b). 
 
Finally, infino accepts input data  from RNA sequencing, which  is more  commonly performed 
today in  the  research  setting  than  microarray measurement of gene  expression. Meanwhile, 
several  existing  approaches only accept microarray input data.  
 
When  making  predictions at the  finest level  of granularity, infino performs comparably to  existing 
approaches. In  testing  on  simple  synthetic mixtures, all  approaches estimate  mixture  weights 
with  low error (Figure  1a). When  tested  on  complex synthetic mixtures, though  all  approaches 
have  high  uncertainty or error in  their estimation  (Figure  1b), the  advantages of applying 
Bayesian  inference  to  immune  infiltrate  quantification  become  clear. In  particular, infino reports 
its low confidence  in  the  form of a  wide  confidence  interval  for the  most granular level  of cell 
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type  subsets. The  robust diagnostic of evaluating  the  standard  deviation  of infino’s probabilistic 
estimates provides a  clear understanding  of deconvolution  performance.  
 
In  this challenging  mixture  case, the  advantages of incorporating  information  about the 
relationships between  cell  types also  become  clear. While  all  approaches struggle  to  form 
low-error, high-confidence  estimates of mixture  weights at the  finest level  of granularity, only 
infino produces robust estimates at higher levels of the  hierarchy. When  infino’s estimates are 
aggregated  to  the  B cell, CD4  T cell, and  CD8  T cell  groups, we  observed  lower uncertainty and 
very accurate  estimates for challenging  mixtures (Figure  1b). Indeed, infino automatically 
recovers biological  facts when  the  model  learns relationships between  cell  types directly from 
the  data, distinguishing  clearly between  the  CD4  T cell, CD8  T cell, and  B cell  supertypes 
(Figure  2b). As a  result, this modeling  approach  enables a  user to  interrogate  complex mixtures 
at increasingly fine  levels of granularity to  an  acceptable  level  of prediction  uncertainty.  
 
In  our experimentation  with  synthetic mixtures, several  cell  types appeared  to  be  particularly 
challenging  to  deconvolve. Very similar cell  types, like  naive  and  memory B cells, are 
notoriously difficult to  separate  (Figure  1b). These  are  indeed  the  cell  types estimated  to  have 
the  most similar expression  patterns (Figure  2b). Infino’s aggregation  capability can  rescue  the 
deconvolution  of these  mixtures and  provide  robust estimates at a  higher level  of the  hierarchy. 
But the  model  also  underestimates the  abundance  of regulatory T cells (Figure  1c), a  pattern 
that deserves further exploration. 
 

7 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/221671doi: bioRxiv preprint 

https://doi.org/10.1101/221671


Figure  2: (a) Observed  variance  in  expression  levels of perforin  1  (pore  forming  protein), which  has been 
suggested  to  be  a  CD8  T cell  marker gene  [14]. Histogram: nine  microarray expression  samples [GEO 
accession  GSE22886, 13,GEO accession  GSE6740, 24]. Cibersort’s representative  expression  level 
(from LM22) of this gene  in  CD8  T cells is overlaid  in  red.  For comparison, summary statistics of interest, 
computed  before  and  after log-normalization  was applied  to  the  microarray expression  intensities, are 
also  shown  as vertical  bars. The  noticeable  differences between  the  range  of observed  expression 
intensities, the  summary statistics, and  the  value  chosen  by Cibersort suggest that a  single  point estimate 
may not be  representative  of transcript expression  across samples of the  same  cell  type. 
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(b) Hierarchical  clustering  dendrogram created  from the  correlation  matrix infino estimated  from purified 
cell  populations.  

Discussion 
Understanding  the  differential  response  to  cancer immunotherapy motivated  our study of 
immune  infiltrate  quantification. We  can  apply our new approach  to  clinical  data  to  test the 
association  between  immune  infiltration  and  response  to  immunotherapy. Because  our 
approach  is entirely computational  and  requires no  manual  scoring, it can  produce  a  sample 
size  large  enough  to  accurately test the  prognostic significance  of infiltration  and  address this 
key question  in  cancer immunotherapy. In  particular, we  plan  to  apply infino to  data  gathered 
from multiple  clinical  trials of checkpoint blockade  therapy, producing  infiltrate  predictions for 
each  patient’s tumor microenvironment from bulk tumor expression  data  alone. First, we  will 
assess the  association  between  infiltration  and  immune  activation  -- a  sanity check, as we 
expect a  strong  correlation. Second, we  would  examine  whether infiltration  levels separate 
nonresponders from responders, which  would  be  an  intriguing  and  meaningful  result. Then  we 
could  also  examine  other clinical  variables, like  survival, to  refine  our understanding  of the 
ramifications of immune  infiltration. 
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These  conclusions suggest several  future  directions for refining  the  infino approach. First, there 
are  opportunities to  adjust the  features of the  Bayesian  mixture  model  that we  apply to  the  task 
of mixture  deconvolution. Incorporating  tissue-specific priors could  prevent our underestimation 
of regulatory T cell  content. We  could  include  other sample-level  covariates, such  as 
adjustments for batch  effects related  to  particular data  sources or for the  tissues of origin, which 
can  lead  to  the  observed  variability in  expression  profiles. Additionally, we  can  consider 
modeling  cell  surface  markers, which  may be  shared  between  different cell  types and 
incorporate  a  new set of relationships among  them. Finally, we  could  strengthen  the  way we 
currently model  the  relationships between  cell  types (as a  correlation  matrix) by also  adding 
higher-level  categorizations –  for example, through  a  feature  that encodes which  cell  types 
belong  to  the  B cell  supertype, and  similarly for T cell  subsets.  
 
The  source  of and  modeling  strategy for RNA-seq  data  deserves further consideration, as well. 
So  far, we  have  trained  infino on  data  from purified  cell  populations only. While  this can  provide 
a  sense  for the  behavior of individual  cell  types, we  incorporate  no  data  suggesting  how these 
cell  types may mix. Incorporating  some  mixture  training  data  could  further aid  prediction. 
However, little  RNA-seq  ground  truth  mixture  data  exists today, to  our knowledge. The  particular 
RNA-seq  quantification  strategy infino employs is another area  of potential  improvement. Since 
read  counts are  known  to  depend  on  transcript length, we  could  correct for this source  of bias 
by adjusting  for the  length  of each  transcript [25]. There  is also  considerable  debate  in  the 
literature  as to  which  metric best quantifies transcript abundance. Other metrics, like  FPKM, 
thus merit investigation. 
 
Our approach  would  be  even  more  useful  with  the  ability to  estimate  the  abundance  of 
non-immune-cell  content in  the  tumor microenvironment. Since  samples are  not uniform in  their 
amounts of stromal  tissue, immune  cells, and  tumor cells captured, controlling  for this 
heterogeneity would  enable  better analysis. For example, by adjusting  for the  variation  in 
immune  cells between  samples of two  patients’  tumors, we  could  characterize  the  differential 
expression  of the  tumor cells. To  estimate  absolute  abundances of immune  cells in  the 
microenvironment, rather than  relative  abundances as we  have  done  so  far, we  propose 
incorporating  a  non-immune-cell  component into  our mixture  model. That is, we  could  model  a 
mixture  as having  immune, tumoral, and  stromal  components, or simply as having  an  immune 
component and  a  non-immune  component. The  non-immune-cell  component could  have  a 
vague  prior, or we  can  seed  this “other” component with  tumor cell  lines. However, others have 
noted  that these  efforts may be  complicated  by the  fact that tumor cells can  sometimes mimic 
the  expression  patterns of immune  cells, such  as tumors with  parainflammation  exhibiting 
expression  patterns characteristic of macrophages [15,26]. 
 
One  technical  challenge  remains standing  in  the  way of us applying  infino to  a  large  clinical 
dataset. Since  the  the  joint distribution  is modeled  directly under the  paradigm of Bayesian 
inference  with  a  generative  model, we  estimate  all  model  parameters simultaneously. As a 
result, the  process of fitting  infino and  deconvolving  ten  unknown  mixtures simultaneously 
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routinely requires over two  days of wall  clock compute  time  for four simulation  chains 
(parallelized). In  this form, infino cannot practically score  large  collections of unknown  mixtures.  
 
We  plan  to  investigate  three  modifications to  our procedure  for running  infino intended  to 
accelerate  the  process. First, we  will  evaluate  the  accuracy of variational  inference  methods, 
which  bypass the  lengthy simulation  process and  produce  fast but noisy estimates. Variational 
inference  could  quickly provide  a  rough  picture  of the  tumor microenvironment to  a  user, who 
could  then  choose  to  investigate  further with  a  lengthier simulation  by traditional  methods. 
Additionally, variational  inference  is straightforward  to  integrate  into  our current infrastructure  for 
running  infino. 
 
Second, the  complexity of the  training  procedure  depends on  the  number of genes we 
incorporate, since  each  transcript is represented  by a  set of parameters. While  decreasing  the 
number of genes used  would  lower the  required  time  to  deconvolve  mixtures, the  time  savings 
would  come  at the  expense  of infino’s predictive  accuracy. We  will  investigate  how to  choose  a 
set of informative  genes whose  expression  helps differentiate  immune  cell  phenotypes, as well 
as a  set of housekeeping  genes with  stable  expression  levels for a  baseline. 
 
Third, refitting  parameters from scratch  on  every execution  may be  wasteful. While  the  Bayesian 
inference  paradigm does not support a  separation  into  “training” and  “testing” phases, we  can 
accomplish  a  similar separation  of concerns by using  stronger, more  informative  priors and 
supplying  pre-fit hyperparameter values for these  priors. This would  effectively enable 
pre-computing  model  parameters related  to  our set of 63  training  samples from purified  cell 
populations. In  particular, we  recommend  developing  a  solution  to  distribute  infino by shipping 
informative  priors. Rather than  feeding  in  training  data  for every use, a  user could  instead 
supply a  vector of parameter values estimated  in  an  earlier offline  run  with  the  complete  set of 
training  data. This simple  innovation  could  dramatically accelerate  infino runs and  enable 
evaluation  of large  clinical  datasets -- bringing  answers to  consequential  questions in  cancer 
immunotherapy within  reach.  

Methods 
We  propose  a  new method, infino, that enables improved  diagnostics and  clearer differentiation 
of similar cell  types while  capturing  less noise  and  supporting  RNA-seq  data. Our approach  is to 
deconvolve  RNA-seq  mixtures with  a  Bayesian  generative  model  that encodes the  process of 
mixing  immune  cell  types. Infino estimates the  probability distribution  of each  cell  type’s 
expression  profile, naturally incorporating  variation  and  resolving  a  limitation  of earlier 
approaches. Aggregating  the  posterior probability distributions at varying  levels of the  immune 
cell  type  hierarchy produces improved  diagnostics for the  evaluation  of deconvolution  results 
and  performance. A critical  innovation  is the  incorporation  of relationships between  cell  types, 
which  we  demonstrated  as storing  valuable  information  capable  of improving  deconvolution 
accuracy (Online Methods). 
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Online Methods

Data

We obtained RNA-seq measurements from a publicly-available dataset of 63 purified immune cell popula-
tions [2]. To quantify the number of transcripts per gene, we created a RNA-seq processing pipeline using
Google Container Engine and the Kubernetes technology [1,11] to replicate the processing described by [2].
We ran two Docker containers in series under massive parallelization through the batch job functionality of
Google Container Engine’s hosted Kubernetes cluster service offering. The first container downloaded raw
FASTQ RNA sequencing reads from a set of public dataset URLs. Then processing containers were run
in parallel over the downloaded files, each one first unzipping the FASTQ reads, then performing trimming,
which removes the bases with low quality reads – a commonly used but controversial technique [18]. Fi-
nally, the Kallisto tool was run over the preprocessed data to count the abundance of each gene transcript
in the RNA-seq reads. The Kallisto tool is a popular choice because it avoids an expensive alignment step
when quantifying transcript abundance [3]. In this manner, we downloaded the raw sequencing reads and
executed standard quantification tools to clean the data and count the number of transcripts of each gene.
The process ran for roughly an hour per sample.

RNA sequencing transcript abundance transformation

Microarray modeling assumptions do not apply to the direct interpretation of RNA-seq data due to sampling
bias and normalization requirements. We compared RNA-seq samples from the processed dataset [2] to
similar microarray data to understand how to properly model RNA-seq mixtures. As suggested in [9], we
log-transformed RNA-seq transcript counts.

In addition to different phenotypes being clearly distinguishable, even across technologies, the most highly
expressed genes were observed to follow the same patterns. While microarrays have an independent probe
for each transcript (in a limited set of transcripts), RNA sequencing pulls a finite number of reads from a pool
of RNA. As a result, RNA-seq transcript counts are interdependent, since every read of one transcript leaves
one fewer read for all other transcripts. Therefore, the most highly expressed transcripts may be expected
to be in competition for the limited number of reads [14]. This suggests that the two most highly expressed
genes, for example, will have a different relationship in RNA-seq data than in microarray data. Filtering to
the highly expressed transcripts, we compared one transcript to the next most-expressed transcript. After
applying the voom transformation, we found that microarray and RNA-seq data were comparable even in
the relationships between pairs of very highly expressed genes. For instance, we observed a correlation of
r=0.92 between the top 25 pairs of highly expressed genes.

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/221671doi: bioRxiv preprint 

https://doi.org/10.1101/221671


Generative modeling

In this study, we propose a Bayesian regression mixture deconvolution method that encodes the immune
cell lineage relationships and produces rich confidence scores at all levels of the hierarchy of immune cell
types. In this case, a generative model encodes the process by which mixtures are generated from the set
of all immune cell types. Moreover, a Bayesian generative model can naturally incorporate the inter-cell-type
relationships that we have called a “hierarchy”, and even learn these relationships directly from the data. We
model expression and its variance for each cell type, not just a point estimate. Furthermore, we have the
flexibility to condition on tissue of origin and similar predictors. The model will produce posterior probability
distributions, which are much richer confidence scores than the point estimates and hypotheses tests used
in earlier methods.

Importantly, generative models are distinct from discriminative models, which directly learn P (y | x), the
probability of data y given predictors (independent variables) x. For example, in the classification con-
text, discriminative models learn the decision boundaries between classes that are maximally “discrimina-
tive”, then use these boundaries to distinguish between the classes when labeling a test example. (For
instance, support vector machines find an optimal hyperplane that represents the decision boundary sepa-
rating classes.) Instead, generative models express a joint probability distribution over all observations and
labels. This means they represent a full model incorporating all variables, including latent parameters. Gen-
erative models estimate P (x, y) first; rather than drawing decision boundaries between classes, generative
models learn the distribution of each individual labeled class. Then to classify test examples, this joint distri-
bution is transformed into P (y | x) by applying the definition of conditional probability: P (y | x) = P (x,y)

P (x) .
(The denominator P (x) is the empirical probability density of the data.) Again in the classification context,
we can understand a generative model’s process for labeling a test example as computing which class is the
most likely to have generated the data point, given that we know how data is generated because we have
modeled each class’s distribution [13].

In the generative model paradigm which captures the process by which the data is generated, a researcher
can estimate a latent (unmeasurable) variable, such as the mixture weights we seek that produce the ob-
served mixture. We also state our prior beliefs, which can be vague for parameters such as the mixture
components, or informative for each cell type’s expression distribution. Then we utilize a computational tool
to repeatedly sample from the posterior joint probability distribution. At each step, we update our beliefs
or uncertainty about the true mixture weights using Bayes’ rule, which follows directly from the definition of
conditional probability and represents the fact that multiplying one’s prior belief with new evidence yield an up-
dated belief distribution, called the posterior: P (hypothesis | data) ∝ P (data | hypothesis)P (hypothesis).
This process is repeated until convergence of the posterior distribution [7].

Stan probabilistic programming language

To express this Bayesian model and perform repeated sampling from the data generation process with up-
dates to the posterior belief distribution at each step, we use Stan, a Turing-complete programming language
in which random variables are first-class citizens. In particular, we use a python wrapper called pystan, one
of several programming interfaces exposed by Stan [4]. A Stan program represents the conditional prob-
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ability P (θ | y, x) of a generative model, where: θ are parameters, including the unknown latent mixture
components; y are known data, such as the observed RNA-seq read counts; and x are predictors, including
constants like the ground truth mixture weights for synthetic “training” mixtures. Then P (θ, y, x) is the joint
probability over all data and parameters. A priori beliefs about the model, called “priors,” are encoded as
P (θ).

After writing the generative model as a Stan program, it is compiled into a C++ executable that performs
inference using a variant of Markov chain Monte Carlo sampling [8]. A set of query or input data is fed
into the inference executable, which produces the requested amount of samples from the posterior joint
probability distribution. Bayesian inference allows us to calculate the posteriorP (θ | y, x), which represents
the uncertainty in our beliefs of parameter values from our estimation with the available data. The joint
distribution can be written as P (θ, y, x) = P (y, x | θ)P (θ), where P (θ) represents prior beliefs and
P (y, x | θ) is the likelihood function L(θ) (a density of the observed data given the parameters) [10]. While
exact inference is often impossible, the computation can be expressed as: P (θ | y, x) = P (y,x,θ)∫

P (y,x,θ)dθ
.

Finally, we can perform Bayesian predictive inference to evaluate the probability of a new observation P (ỹ |
y) =

∫
P (ỹ | θ)P (θ | y)dθ. In other words, given a new data point, we marginalize over the posterior to

predict the new data point’s probability given the posterior distribution, which we estimated in the Bayesian
inference step. This mechanism enables direct evaluation of how well the model fits our data [5,7,16].

The details of the sampling procedure are key to effective inference. Stan starts with initial guesses for
parameter settings, then produces repeated simulated draws from the posterior distribution to correct the
parameter posterior distributions until stationary distributions are reached. The initial samples are treated
as warm-up iterations and excluded from the final results. To avoid reliance on those initial points, multiple
chains of MCMC are used, and their convergence is evaluated [16].

Bayesian model of RNA transcript mixture

We model gene expression mixtures as follows. Starting from a collection of cell types – each with their own
expression distributions for all transcripts and with relationships to other cell types – we draw several cell
types and mix them linearly with a specified weight for each cell type. This weighted average produces the
transcript counts we observe in RNA-seq mixture data. Then we apply the inference machinery described
above. By running multiple MCMC chains, we can detect whether there are multiple likely possible deconvo-
lutions (in such a scenario, the separate MCMC sampling chains would not mix), affording a level of flexibility
not available in existing approaches to immune infiltrate quantification.

Our model incorporates the following features:

• Estimated counts for each transcript in every sample.
• For each cell type, a per-gene offset from that gene’s mean expression level across all cell types and
samples.

• A correlation matrix between the above offsets for each cell type to incorporate cell type relationships.
• A scale for each cell type that is multiplied on diagonal with the correlation matrix to form the covari-
ance matrix between cell types. (This forms a hierarchical model of relationships among cell types.)
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• Cell-type specific predictors, including surface markers.
• The weight of each cell-type specific predictor across cell types.
• For each transcript, an overdispersion parameter across all samples to account for RNA-seq read
count heteroscedasticity, estimating variance in transcript-level expression among samples.

• An adjustment for the expression level of “housekeeping genes.”

Within the probabilistic programming paradigm, our “query data” includes:

• Training data: single-origin purified cell population samples of known composition (e.g. entirely naive
B cells).

• Testing data: mixtures of unknown composition.

The model infers sample compositions whose fractional components sum to one. To do so, the model first
estimates the relative expression offsets of each transcript in each cell type. This is a standard multivariate
regression problem, therefore we apply themultivariate normal distribution, which is theGaussian distribution
extended to a high-dimensional vector.

The model then estimates the pairwise correlation matrix between the cell types. This can be viewed more
precisely as a distance computation, encoding how different the expressions of each cell type are. From this
perspective, the correlation matrix is a broad way to represent a hierarchy of cell types, because it places
similar cell types closer together without enforcing the rigidity of a hierarchy expressed in tree form. That
is, a tree hierarchy assumes that certain relationships cannot exist across lineages, for instance. Instead,
the correlation matrix representation of cell-type similarity is more general and enables more relationships
to be learned. We will hereafter refer to our modeling innovation as using a correlation matrix rather than a
hierarchy. In fact, “hierarchical Bayesian modeling” generally refers to multilevel modeling with a hierarchy of
features (parameters), rather than a hierarchy of labels (cell types). We note that our model is also multilevel,
since there is a hierarchy among the parameters.

Next, the model estimates the observed expression in the training and testing samples. The mixture is
represented as a constant base expression level for each gene, to which cell-type specific offsets mixed
with fractional weights are added – a master distribution with deviations. Those weights are the desired
deconvolution fractions. Transcript counts are modeled as a gamma-Poisson distribution mixture, which is
the negative binomial counts distribution. This is essentially a Poisson count distribution, with a gamma
distribution underlying it to account for variability and overdispersion. As noted by [9], the heteroscedasticity
of transformed RNA sequencing read counts must be considered; hence, we allow for overdispersion and
per-transcript variability beyond a standard Poisson counts model. While transcript counts are fed into the
model in their raw form (because log-transformed counts do not follow a normal distribution), we apply a log
link function in the negative binomial distribution to effectively model log-transformed counts, per [9].

We specify our hierarchical generalized linear model [7] as follows:

We relate a linear predictor, Xβ, to our outcome variable matrix of gene counts Y , a (S ×G) matrix where
entry Ys,g corresponds to the mean number (tpm) of transcripts of g in sample s. X is a (S × C) matrix
corresponding to the abundance of cell type per sample, and β is a (C × G) matrix representing the gene
transcript counts per cell type.
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We relate the expectation of our outcome variable y with our linear predictor like so:

E(y|X, β) = g−1(Xβ),

where the “link function” g is a negative binomial parameterized by µ, the log of the mean expression per
gene, and ϕ, the dispersion parameter per gene. Then:

ys = NegBinLog(µ, ϕ).

For each sample, µ (a vector of G elements) is further decomposed into a transcript-level log-mean µ̃ (a
vector of G elements), cell-type-specific transcript abundances β, and the sample composition x⃗s, where
xsi

∈ [0, 1]∀i ∈ [1, C] and Σi=1···Cxsi
= 1:

µ = µ̃ + log(βx⃗s).

We place a hyperprior on our coefficient β with a multinormal on each gene g’s vector of expression per cell
type:

βg = MultiNormal(ug, Σ).

For a gene g, the vector of cell-type-specific means ug has contributions: from the mean expression level
of the gene per cell type, p; the C × M matrix of cell-type features, F ; the coefficients per feature b and
each feature’s influence on a gene κ. That is:

ug = p + F ∗ (⃗b + κ⃗g)

Finally, the covariance matrix Σ is decomposed into the diagonal matrix (“scaling factor”) τ and correlation
matrix Ω:

Σ = τΩτ.

It is the correlation matrix Ω that our model computes as encoding the hierarchy of immune cell types.

Validation of model convergence

When measuring the model’s predictive accuracy with synthetic mixtures, we evaluated the model’s con-
vergence. We generated synthetic test mixture of known composition from combinations of the 63 purified
cell populations. Then we fit infino with only the expression mixture and not the mixture fractions. That is,
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we supplied only the simulated expression values, not the fractional mixture components, to the model, to
assess the model’s estimated mixture components.

We fit the model with the NUTS sampler through pystan. The model fit lasted 51 hours and 20 minutes to
produce four MCMC chains of 2000 iterations each (in parallel). The first 1000 samples of each chain were
considered to be warm-up samples and discarded.

First, we checked whether convergence was reached in the sampling. We plotted the Monte Carlo standard
error, which measures the consequences of a limited number of sampling draws (Figure 1). We observe
that the Monte Carlo standard error was under 2%, an order of magnitude lower than the highest posterior
standard deviation of a parameter estimate (Figure 2). This suggests that our sampling strategy was effective
[5,7].

Second, we examined the level of autocorrelation in our sampling. By definition, MCMC is serially correlated:
each parameter configuration is a random deviation away from the previous parameter configuration. Ideally,
the level of correlation between successive samples is low. We plotted a histogram of the distribution of
effective sample sizes across all parameter estimates for the unknown mixture components (Figure 3). In
this sampling run, the effective sample size was quite variable, but there were always at least a few dozen
usable samples per parameter, suggesting that we sampled enough to trust the model’s estimates.

We also examined the parameter traceplots, which show how the four chains sampled a parameter in all
of their iterations. Figure 4 displays the simulation trace of the posterior estimate of one unknown mixture
component. This traceplot reveals low autocorrelation, since the parameter estimate jumps widely rather
than shifting slowly [5,7].

The traceplots also demonstrate that the four chains mixed quite well, since they appear indistinguishable.
This suggests that the unknown mixtures did not have multiple valid deconvolutions discovered by separate
MCMC chains. Rather, only one deconvolution for these simulated mixtures appears to be valid.

We can also look to R̂, the Gelman-Rubin potential scale reduction factor, which is a metric of how well the
chains converge [6]. Since the R̂ values for the unknown mixture fraction parameters were close to one
(Figure 5), we conclude that variation in the chains’ estimates of these parameters would not be reduced
significantly by longer chains [5,7]. Also, we note that the R̂ for the estimated log posterior likelihood was
low (1.0049), suggesting overall model convergence was achieved.

These tests suggest that the estimated posterior distributions converged in our simulation run and their vari-
ance would not be significantly decreased by sampling further. Therefore, we are confident that these results
represent the model’s true ability to deconvolve, and now will analyze how the model learns expression data
and cell type relationships.

Hierarchical clustering of estimated correlations between cell types

First, we extracted the posterior distribution samples for the correlation matrix parameter in our model. We
then converted every correlation r into a distance metric d as follows: d =

√
2 ∗ (1 − r). We employed

hierarchical clustering to visualize the estimated hierarchy in the form of a dendrogram. Specifically, we pro-
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Figure 1: A histogram of the Monte Carlo standard errors of all unknown mixture component parameter
estimates.
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Figure 2: A histogram of the posterior standard deviations of all unknown mixture component parameter
estimates.
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Figure 3: A histogram of the effective sample sizes of all unknown mixture component parameter estimates.
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Figure 4: The trace of the CD4+ Treg cell estimated fractional mixture weight component in a 25%-75% mix
of naive B cells and CD4+ Treg cells.
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Figure 5: A histogram of the Gelman-Rubin potential scale reduction factors of all unknown mixture compo-
nent parameter estimates.

gressively grouped cell types into clusters by their pairwise distances using Ward’s method, which minimizes
variance within created clusters [17]. The cophenetic correlation, a measure of how accurately a hierarchi-
cal clustering dendrogram represents the true pairwise distances, was 0.910 for our clustering, where 1 is
best [15]. Therefore, we trust that the clustering preserves the true relationships in the estimated correlation
matrix.

Source code

Instructions for running infino are available at https://github.com/hammerlab/infino.

Comparison to Cibersort

All comparisons were performed using Cibersort v1.03 [12] and default settings as described in the
Cibersort documentation.
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