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Abstract  

Identifying complementary genetic drivers of a given phenotypic outcome is a 

challenging task that is important to gaining new biological insight and discovering 

targets for disease therapy. Existing methods aimed at achieving this task lack 

analytical flexibility. We developed Candidate Driver Analysis or CaDrA, a framework to 

identify functionally-relevant subsets of binary genomic features that, together, are 

associated with a specific outcome of interest. We evaluate CaDrA’s sensitivity and 

specificity for typically-sized multi-omic datasets, and demonstrate CaDrA’s ability to 

identify both known and novel drivers of oncogenic activity in cancer cell lines and 

primary tumors.  
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Background 

Advances in high-throughput sequencing technology has led to a rapid rise in the 

availability of large multi-omic datasets through compendia such as the Cancer Cell 

Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), the Genotype-Tissue 

Expression (GTEx), and others [1–3]. These data include genetic alterations, 

comprising somatic copy number alterations (SCNAs) and somatic mutations, 

epigenetic information, such as microRNA expression and DNA methylation, as well as 

gene expression profiling through microarray or RNA-sequencing (RNASeq) 

technology, across tens of thousands of samples representing varying biological 

contexts. Concomitantly, several computational methods have been developed and 

applied to effectively query and integrate different types of genome-wide datasets in 

order to make meaningful predictions about the biological processes driving the 

phenotypes of interest [4,5]. An important application of such methods is the 

identification of recurrent genomic alterations, and their potential effects on downstream 

pathway activity or phenotypes. For example, in many cancers, samples exhibiting 

elevated activity of a given oncogenic signature may be enriched for, or driven by 

functionally-relevant somatic mutations or SCNAs. Identifying such associations may 

help unravel underlying mechanisms contributing to abnormal pathway activity, further 

enabling disease subtyping and sample classification [6–8]. Alternatively, linking these 

genomic features with phenotypic readouts such as drug sensitivity may support the 

discovery of novel druggable targets and further guide precision medicine regimens [9–

11].  
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Recently, computational methods have been developed to identify subsets or 

combinations of genomic features that are collectively associated with a given 

phenotypic response [12–15]. These methods, while having the capacity to find 

alternative drivers contributing to the same downstream effect, tend to rely on restrictive 

properties such as mutual exclusivity of features, or feature recurrence in a subset of 

samples independent of the target phenotypic profile under consideration. More 

importantly, not all methods support the joint analyses of features including SCNAs and 

somatic mutations, with possible extension to other genomic data, while also allowing 

for multiple statistical feature scoring functions, and rigorous assessment of the 

statistical significance of the discovered associations. Finally, a user-friendly and flexible 

programming package supporting the rapid screening for candidate drivers given a set 

of ranked genomic features is currently lacking, and would prove extremely useful for 

incorporation in analytical pipeline frameworks aimed at the generation of novel 

biological hypotheses. 

Here, we present Candidate Driver Analysis (CaDrA), a methodology that 

searches for the set of genomic alterations, here denoted as features (mutations, 

somatic copy number alterations, translocations, etc.) associated with a user-provided 

ranking of samples within a dataset. Our method specifically employs a stepwise 

heuristic search to identify a subset of features whose union is maximally-associated 

with the observed sample ranking, and carries out rigorous statistical significance 

testing based on sample permutation, thereby allowing for the identification of candidate 

genetic drivers associated with aberrant pathway activity or drug sensitivity, while still 

exploiting aspects of feature complementarity and sample heterogeneity. To highlight 
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the method’s overall performance, along with its relevance and ability to select sets of 

genomic features that indeed drive certain oncogenic phenotypes in cancer, we apply 

CaDrA to simulated data, as well as to real genomic data corresponding to cancer cell 

lines and primary human tumors. The results from simulations suggest CaDrA displays 

high sensitivity for mid- to large-sized datasets, and high specificity for all sample sizes 

considered. Using genomic data drawn from CCLE and TCGA, we demonstrate 

CaDrA’s capacity to correctly identify well-characterized driver mutations in cancer cell 

lines, along with its ability to discover less-known features associated with invasive 

phenotypes in human breast cancer samples, which we functionally validate in vitro. 

Our package, which is publicly-available, will allow for rapidly mining numerous multi-

omics datasets for candidate drivers of user-specified molecular readouts, such as 

pathway activity, drug sensitivity, protein expression, or other quantitative 

measurements of interest, further enabling targeted queries and novel hypothesis 

generation. 

Results 

CaDrA overview 

An overview of CaDrA’s workflow is summarized in Figure 1. CaDrA implements 

a step-wise heuristic approach that searches through a set of binary features (each 

represented as a 1/0-valued vector, indicating the presence/absence of a SCNA, 

somatic mutation, or other (epi)genetic alterations across samples, respectively), and 

returns a final subset of features whose union (logical OR) defines an alteration ‘meta-

feature’ that is maximally associated with the defined sample ranking provided as input 
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(see Methods). The strength of the association of a meta-feature with a sample ranking 

is a function of the agreement between the skewness of the alterations’ occurrences 

and the sample ranking. The input sample ranking is usually a function of a sample-

specific measurement, e.g., the activity level of a pathway, the response to a targeted 

treatment, the expression level of a given transcript or protein, etc. Therefore, the meta-

feature returned by the search is the set of features maximally predictive of that same 

sample-specific measurement variable. CaDrA allows for multiple modes to query 

ranked binary datasets with user-specified parameters defining search criteria, enables 

rigorous permutation-based significance testing of results, and reduced computation 

time by exploiting pre-computed score distributions and parallel computing, when 

available (see Methods).  

Analysis of simulated data to evaluate CaDrA performance 

To assess the overall performance of CaDrA to recover (statistically) significantly 

associated meta-features, we simulated two types of datasets for a range of sample 

sizes: i) the true-positive datasets consist of both left-skewed (i.e. true positive with 

skewness concordant with sample ranking) as well as uniformly distributed (i.e. null) 

features; and ii) the null datasets consist of null features only (see Methods). This 

enabled us to estimate the overall sensitivity and specificity of CaDrA using the true 

positive and null datasets, respectively. By running CaDrA on multiple simulated 

datasets (n=500 true positive and null datasets, each), we first assessed the resulting 

meta-features based on the number of true positive features and the total number of 

features contained within each returned meta-feature (i.e., the meta-feature size; Fig. 2a 

and 2c). The true positive datasets had a maximum of 5 positive features to be 
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detected, while the maximum number of features CaDrA was allowed to add was set to 

7, to evaluate the ability of the search to recover all but no more than the positive 

features. The true positive rate (TPR) and false positive rate (FPR) of CaDrA on the 

simulated positive and null data, respectively, for different sample sizes are shown in 

Figure 2b and 2d, and was calculated as the fraction of searches returning meta-

features with permutation p-value significant at α=0.05. The TPR was estimated for 

different number of recovered true positive features (in the true positive datasets) and is 

summarized in Table 1. The FPR was estimated for different number of returned 

features (by definition, false positives) in the null datasets, and is summarized in Table 

2. CaDrA returned all of the simulated true positive features with 100% TPR for sample 

sizes larger than N=100. CaDrA also yielded a very high mean TPR of > 95% at N=100, 

with the sensitivity dropping to 7.7% only at the smallest sample size of N=50. Further, 

when applied to the null datasets (Fig. 2c), the majority of meta-features returned by 

CaDrA were correctly deemed as non-significant at α=0.05, with a maximum mean FPR 

of 7.2% for the lowest sample size analyzed (Fig. 2d). These results suggest that 

CaDrA requires mid- to large-sized datasets for sufficient sensitivity, while maintaining 

high specificity at all sample sizes assessed.  

CaDrA identifies known regulators of Ras/Raf/Mek/ERK signaling 

sensitivity 

The mitogen-activated protein kinase (MAPK) kinase (MEKK) / extra-cellular 

signal-regulated kinase (ERK) pathway is a well-conserved kinase cascade known to 

play a regulatory role in cell proliferation, differentiation, and survival in response to 

extracellular signaling [16–18]. Increased MAP/ERK kinase (MEK) activity is a feature of 
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many cancers, and is often triggered by missense mutations in BRAF and NRAS, two 

upstream oncogenes and potent regulators of Ras/Raf/Mek/ERK signaling [17,19]. 

Specifically, the BRAFV600E mutation accounts for >90% of BRAF mutations and has 

been identified as a driver of certain tumors, including melanoma and colorectal 

cancers, by activating MEK downstream, and is generally found to be mutually 

exclusive to NRAS mutations  [19,20]. Small molecules targeting these mutated proteins 

have been shown to be effective in treating these cancers via inactivation of 

Ras/Raf/Mek/ERK signaling [1,21–23]. To highlight CaDrA’s ability to recover 

independent genomic features that may confer hypersensitivity of cancer cells to 

targeted small molecule treatment, we utilized drug sensitivity profiles for MEK inhibitor 

AZD6244 [24], along with matched genomic data from CCLE. Specifically, we used per-

sample estimates of ‘ActArea’ or area under the fitted dose response curve, a metric 

that has been shown to accurately capture drug response behavior [25], to rank cell 

lines from high to low sensitivity, as well as data comprising somatic mutations and 

SCNAs as the binary feature matrix (see Methods). CaDrA was then run to look for a 

subset of features associated with increased sensitivity to treatment with AZD6244 (i.e., 

increased ActArea scores).  

The resulting feature set (i.e. meta-feature) is shown in Figure 3. Remarkably, 

CaDrA selected the BRAFV600E and NRAS somatic mutations in the first two iterations, 

respectively. Subsequent iterations identified mutations in APAF1, TGFBR2 and 

AMHR2, before terminating the search process (P ≤ 0.001). APAF1 is a pro-apoptotic 

factor and known regulator of cell survival and tumor development [26], the depleted 

expression of which has been observed in malignant melanoma cell lines and 
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specimens [27]. TGFBR2 and AMHR2 are both type II receptors functioning as part of 

the transforming growth factor (TGF)/bone morphogenetic protein (BMP) superfamily, 

together serving as mediators of cellular differentiation, proliferation and survival, and 

play important roles in directing epithelial-mesenchymal transition (EMT) [28,29]. 

Notably, MAPK signaling activity can also be regulated by TGF/BMP stimulation [30–

32], suggesting that these mutations are potential independent drivers of increased 

MEK signaling, and hence, of increased sensitivity to treatment with AZD6244. We next 

extended our analysis of cancer cell line sensitivity profiles to alternative small 

molecules targeting MEK (PD-0325901), as well as RAF (PLX4720 and RAF265). The 

meta-features associated with increased sensitivity to each of the four drug treatments 

assessed are shown in Figure S3 and summarized in Table 3. Importantly, both 

BRAFV600E and NRAS mutations were identified as candidate drivers of sensitivity to 

MEK inhibition by AZD6244 and PD-0325901. Furthermore, the BRAFV600E mutation 

was returned by CaDrA for all four independent queries, highlighting its association with 

increased sensitivity to inhibitors targeting the same protein (BRAF) as well as its 

downstream effector (MEK). Collectively, these results confirm CaDrA’s capability to 

accurately identify upstream drivers of cellular response to treatment that are both 

components of independently-linked pathways, as well as part of the same signaling 

branch, which in turn suggests their role in driving the disease state of interest. 

CaDrA reveals novel drivers of oncogenic YAP/TAZ activity in human 

breast cancer 

The Hippo signaling pathway is a well-characterized highly conserved and tightly-

regulated developmental pathway known to play an essential role in cell proliferation 
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and survival [33]. YAP [34] and TAZ [35] serve as central downstream transcriptional 

effectors of the pathway, with transcriptional activity restricted by Hippo pathway signals 

that lead to YAP/TAZ nuclear exclusion and degradation. Aberrant nuclear YAP/TAZ 

localization and activity is associated with a range of cancers, including breast 

carcinomas (BRCAs) [36–39]. To identify alternative genetic events that can potentially 

explain the elevated YAP/TAZ activity exhibited in some human breast cancers, we 

applied CaDrA using genomic data from the TCGA BRCA sample cohort, along with 

corresponding per-sample estimates of YAP/TAZ activity derived using a gene 

expression signature of YAP/TAZ knockdown in MDA-MB-231 cells (see Methods). 

Samples with available RNASeq, somatic mutation and SCNA profiles (n=957) were 

first ranked in decreasing order of their overall YAP/TAZ activity estimates. The ranked 

binary mutation and SCNA features were then used as input to CaDrA. In the first 

iteration, CaDrA identified the top scoring genomic feature to be a deletion on 

chromosomal locus chr5q21.3 (Fig. 4a), harboring tyrosine kinase receptor-encoding 

gene EFNA5. EFNA5, a member of the Eph receptor family, has been hypothesized to 

function as a tumor suppressor, whose expression has been shown to be reduced in 

human BRCAs relative to normal epithelial tissue [40]. Advancing to a second iteration, 

CaDrA then identified an additional deletion of chr20p13 as the next-best feature (Fig. 

4a). chr20p13 includes multiple genes (Table S1), including RBCK1, whose reduced 

expression has been shown to be associated with increased tumor cell proliferation and 

survival, as well as with worse patient survival outcomes in breast cancer [41]. CaDrA 

then proceeded to identify somatic mutations in the RELN gene, before terminating the 

search process (P ≤ 0.001; Fig 4a). Loss of RELN expression has indeed been shown 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 23, 2017. ; https://doi.org/10.1101/221846doi: bioRxiv preprint 

https://doi.org/10.1101/221846


11 
 

to induce cell migration in esophageal carcinoma, and to be associated with poor 

prognosis in breast cancer [42,43]. To ensure that the derived meta-feature association 

is not a spurious consequence of correlation with tumor subtype, we tested for the 

association of YAP/TAZ activity with the meta-feature while controlling for BRCA triple-

negative (TN) status. The results confirmed that the positive association between 

YAP/TAZ activity and the occurrence of these genomic alterations is independent of 

BRCA patho-histology (Fig. S4; linear regression meta-feature coefficient P < 0.0001). 

Analysis of YAP/TAZ activity based on the same knockdown signature in CCLE BRCA 

cell lines (n=59; Fig. S5a) shows that RBCK1 and RELN display the highest anti-

correlation between their gene expression and YAP/TAZ activity (Fig. S5b). In order to 

assess whether these identified candidates indeed drive the elevated YAP/TAZ activity 

phenotype, we performed siRNA-mediated knockdown of RELN or RBCK1 in HS578T 

breast cancer cells, followed by expression quantification of YAP/TAZ canonical targets, 

which serves as a read-out of nuclear YAP/TAZ activity [44]. HS578T cells which, 

similar to MDA-MB-231 cells from which the gene signature was derived, are triple-

negative BRCA cells but display lower overall YAP/TAZ activity (rank 7/59) compared to 

the latter (rank 54/59). Importantly, knockdown of either of these candidate drivers in 

these cells yielded a significant increase in expression levels of YAP/TAZ targets CTGF 

and CYR61 (FDR < 0.05; two-tailed Student’s t-test), validating the association of their 

loss of function with increased YAP/TAZ transcriptional activity (Fig. 4b). In summary, 

unbiased application of CaDrA to the analysis of oncogenic YAP/TAZ activity in primary 

BRCA samples identified multiple novel candidate drivers of that activity, and our in vitro 

validation confirmed the causal role of the top two candidates, RBCK1 and RELN, in 
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driving that activity, thus providing convincing evidence about the ability of our tool to 

discover novel drivers. 

Discussion 

Identifying (epi)genetic drivers of molecular readouts is of fundamental 

importance to determining alternative mechanisms influencing the phenotype in 

question. Existing methods attempting to extract functionally-relevant sets of genomic 

alterations associated with a given context either do not support the analysis of data 

beyond somatic mutations, do not incorporate multiple feature scoring functions and 

search modes, or do not implement rigorous statistical significance testing of the 

obtained results. Importantly, a computational framework package bundling all of these 

features does not exist, and can significantly help identify novel drivers of signature 

activity. 

Here, we presented CaDrA as a tool that determines a subset of queried binary 

features to be most-associated with a phenotypic signature of interest by specifically 

exploiting a stepwise heuristic search method based on their union. CaDrA was applied 

to identify both known and novel genomic drivers of sample signature activity, 

comprising drug sensitivity and gene set activity estimates, using publically available 

datasets pertaining to cancer cell lines and primary tumors. Querying CCLE data for 

features associated with increased sensitivity to Mek/Raf inhibitors, CaDra recovered 

known driver mutations in oncogenes known to be gate-keepers of MEK pathway 

activity, including NRAS and BRAF.  
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Through our extensive evaluation on simulated data, we were able to highlight 

CaDrA’s high sensitivity and specificity for mid-to-large sized datasets (N>100). 

Importantly, multi-omic datasets produced by networks such as CCLE and TCGA, also 

presented in this study, are well above this sample size limit. CaDrA’s specificity was 

further evident when querying genetic drivers of increased sensitivity to treatment with 

PLX4720, a potent and selective inhibitor designed to preferentially inhibit active B-Raf 

protein bearing the V600E allele [45]. In this scenario, the search process correctly 

identified the BRAFV600E mutation as the sole feature associated with elevated 

sensitivity to treatment, in agreement with the known specificity of the small molecule 

inhibitor, with the feature association being highly statistically significant.  Importantly, 

we were able to demonstrate the utility of this new framework in the discovery of novel 

drivers in human breast cancers. Specifically, we asked whether there were genomic 

alterations associated with elevated activity of Hippo pathway co-activators YAP/TAZ, 

known to control pro-tumorigenic signals in multiple cancer types [36–38]. The 

mechanisms contributing to dysregulated YAP/TAZ activity in cancer remain poorly 

understood. To date, very few genomic alterations have been associated with driving 

tumorigenic YAP/TAZ activity [46]. Projecting TCGA human BRCA RNASeq data onto a 

YAP/TAZ-regulated gene expression signature derived from MDA-MB-231 cells, we 

derived per-sample estimates of YAP/TAZ activity, which was then used as the input 

ranking variable to CaDrA. CaDrA identified chromosomal deletions of 5q21.3 and 

20p13, and mutations in the RELN gene as maximally-associated with elevated 

YAP/TAZ activity based on the union of their occurrences in TCGA samples. 

Assessment of this identified meta-feature with respect to BRCA TN status confirmed 
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that these genomic alterations are significantly associated with YAP/TAZ activity 

independent of sample clinical subtype. We wished to validate whether introduction of 

these identified perturbations would drive a cell towards higher YAP/TAZ activity, in 

turn, pheno-copying the observed trend in primary BRCAs. Knockdown of select 

targets, namely RELN and RBCK1, in HS578T BRCA cells exhibiting low YAP/TAZ-

activity resulted in a significant increase in the expression of canonical YAP/TAZ targets 

CTGF and CYR61, confirming their involvement in the regulation of YAP/TAZ-mediated 

activity. Since CaDrA was designed to identify genomic alterations impacting similar 

events, we believe these results further emphasize its utility as a tool in identifying and 

linking novel signaling effectors with a target outcome of interest.  

Previously developed methods have indeed been shown to aid in the selection of 

functionally-relevant genomic features. In particular, REVEALER [13] is an iterative 

search algorithm that functions in a similar fashion to CaDrA, while specifically seeking 

only those features that are mutually exclusive given the sample context. We note that a 

direct and rigorous comparison between our method and REVEALER was not possible 

given the lack of a formal procedure to estimate statistical significance of results in the 

latter. We further emphasize that our tool provides a flexible framework capable of 

incorporating additional feature scoring functions, including the mutual information 

criterion implemented in REVEALER.    

While our evaluations focused on somatic mutations and SCNAs, we note that 

CaDrA’s search functionality can be applied to additional sequencing readouts, 

including and not limited to, DNA methylation and microRNA expression, albeit with 

proper discretization of these continuous features. A joint analysis of these additional 
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data types might provide insight into epigenetic mechanisms that complement the 

assessed genetic features in driving phenotypic variation. Furthermore, we envision the 

adoption of CaDrA for the study of germ-line variation as well, thus contributing to move 

beyond the “one feature at a time” paradigm typical of GWAS studies, although issues 

of computational efficiency in that problem space will likely become more challenging. 

Conclusions 
CaDrA enables one to efficiently identify subsets of genomic features, including 

somatic mutations and SCNAs, as candidate drivers of a pre-defined phenotypic 

variable. Given the rapid rise in the availability of multi-omics datasets, as well as an 

increased need to interrogate targeted molecular readouts within these contexts, we 

believe that our methodology will accelerate feature prioritization for further follow-up 

and consideration, in turn aiding in the discovery of potential drivers of the phenotype of 

interest. Thus, we propose CaDrA as a tool for both targeted hypotheses testing, and 

novel hypothesis generation.  

Methods 

The CaDrA algorithm 

An overview of CaDrA’s workflow is summarized in Figure 1. CaDrA takes as input the 

sample ranking induced by a sample-specific measurement, a matrix of binary features 

(1/0 indicating the presence/absence of a given feature in a sample), and a scoring 

method specification to measure the significance of the concordance between the 

occurrence of alteration events and the defined sample ranking. The pre-defined 

sample ranking can be based on quantitative estimates of a gene expression, a 
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signature or pathway activity, or other experimentally-derived measurements. Each row 

in the matrix of binary features denotes the presence or absence of a somatic alteration 

(mutation, CNA, or other) in each of the samples in the ranked cohort. The score 

function is a measure of the left-skewness of a binary vector with respect to the sample 

ranking. The more the occurrences of an alteration are skewed towards higher rankings 

(i.e., the more the 1’s in the feature vector are skewed towards the left), the higher the 

score. The scores currently implemented are the Kolmogorov-Smirnov (KS) test, and 

the Wilcoxon rank-sum test, but additional scoring functions can easily be added. 

Given the sample ranking, the matrix of binary features, and the score of choice (KS or 

Wilcoxon), CaDrA implements a step-wise greedy search: it begins by first selecting the 

single feature that maximizes the score (Step 1; Fig. 1). It then generates the union 

(logical OR) of this starting feature with every other remaining feature in the dataset and 

computes scores for the obtained ‘meta-features’ (Step 2; Fig. 1); it selects a 2nd feature 

that, added to the first (as a union), maximally increases the score – which will then 

serve as the new top reference hit (Step 3; Fig. 1). Repeating this process until no 

further improvement to the cumulative score can be attained, the search output is a set 

of features (i.e. a meta-feature) whose union has the (local) maximum skewness score 

with respect to the input sample ranking. The significance of a CaDrA search and its 

cumulative score are determined by generating an empirical null distribution of scores 

based on the exact same data and search parameters, but with randomly-permuted 

sample rankings, providing a permutation p-value per search result. 
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CaDrA features 

Search modes: CaDrA supports multiple search modalities: it allows for the selection of 

a user-specified feature from which to start the search (rather than selecting the feature 

with highest score as depicted in Step 1 of Figure 1); alternatively, since the greedy 

search is not guaranteed to find the global maximum, it also allows for a “top-N” search 

modality, whereby the search is started from each of the first N features (as measured 

by their individual skewness scores), and the result of the best search can be 

determined by selecting the set of features with the best cumulative score over the top-

N runs. 

 

Visualization of search results: For a given search, CaDrA outputs a set of features 

(meta-feature), which can be visualized as a ‘meta-plot’. This includes (panels from top 

to bottom): an area plot of the sample-specific measurements used to obtain the sample 

ranks; a color-coded matrix of all features in the meta-feature (in the step-wise order 

that they were added), one feature per row, with the corresponding union of the meta-

feature (red) last; and a corresponding enrichment score (ES) plot below. Additionally, 

top-N search results can be visualized for overlapping features to evaluate robustness 

across different search starting points. 

 

Parallelization support: The generation of the empirical null distribution for significance 

testing is typically done for ≥ 500 iterations (i.e. permuted sample ranks). In order to 

speed up this potentially time-consuming task, CaDrA supports exploiting parallel 
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computing with the help of the parallel R package functionality, should multiple compute 

cores be available to users. 

 

Permutation caching: Since the generation of the null distribution used for significance 

testing is a time-consuming step, and since the null distribution of scores depends 

solely on the feature dataset and the search parameters specified (scoring method, 

starting feature versus top-N search mode etc.), and not on the input sample ranking, 

we can implement cacheing of the null distribution corresponding to each dataset and 

search parameters. When submitting multiple subsequent queries (each with its own 

sample ranking) that utilize the same dataset and search criteria, CaDrA can then fetch 

the corresponding cached null distribution to generate permutation p-values almost 

instantaneously, avoiding the need for repetitive computation, thus significantly reducing 

overall query run time.  

Data availability and processing 

CaDrA is freely available for download and use as a documented R package under the 

git repository https://github.com/montilab/CaDrA, and will further be deposited and 

maintained for future use under Bioconductor, including complete code, example use-

cases and results pertaining to this manuscript.   

RNASeq, DNA copy number (GISTIC2) and mutation data for the TCGA BRCA cohort 

was downloaded using Firehose v0.4.3, corresponding to the Feb 4th 2015 (RNASeq) 

and the Jan 28th 2016 Firehose release (SCNA and somatic mutations). Somatic 

mutation data was processed at the gene level by assigning either 1 or 0 based on the 
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presence or absence of any given mutation in that gene, respectively (excluding 

synonymous mutations). RNASeq version 2 data corresponding to Level 3 RSEM-

normalized gene expression values were used. CCLE genomic data were downloaded 

from https://portals.broadinstitute.org/ccle and processed as previously described [13]. 

Somatic mutation binary calls per gene were used as is, and SCNA data was processed 

using GISTIC2 [47] with all default parameters barring the confidence level, which was 

set to 99%. ActArea estimates pertaining to drug treatment sensitivity across CCLE 

samples was used as previously described [1].  

In all cases presented, SCNA and somatic mutation data were jointly analyzed as a 

single input dataset to CaDrA, thereby including samples for which both data were 

available. All input data to CaDrA were further pre-filtered so as to exclude alteration 

frequencies below 3% and above 60% to reduce feature sparsity and redundancy, 

respectively, across samples (CaDrA’s default feature pre-filtering settings).  

Simulated data generation 

To evaluate both the sensitivity and specificity of CaDrA, we generated simulated data 

to represent cases where there was a mix of left-skewed (“true positive”) and randomly 

distributed (“null”) features, as well as cases where there were only null features. The 

left-skewness of a feature is a measure of its association with the sample ranking, since 

samples are sorted from left (high rank) to right (low rank). The design and parameter 

specification of the simulated data matrix is shown in Figure S1. Each feature/row is a 

binary (0/1) vector, with 1 (0) in the ith position denoting the occurrence (non-

occurrence) of the genetic event (e.g., SCNA or mutation) in the ith sample. This 

simulation of binary features relies on the following parameters: 
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N: Dataset sample size (number of columns in the matrix) 

n: Total number of features in the dataset (number of rows in the matrix) 

p: Number of true positive features generated per dataset (a positive feature is a feature 

whose distribution of events (i.e. the number of 1’s) is significantly associated with the 

sample ranking, i.e., left-skewed). 

f:  Left-skew proportion. The proportion of samples that are cumulatively left-skewed in 

the sample ranking.  

λ: The mean (and variance) of the Poisson distribution from which the number of events 

in the null features is sampled. This is equal to the number of 1’s per skewed positive 

feature. A Poisson distribution is used so that we can partially control (through the 

mean) the number of 1’s in a null feature, which are then uniformly distributed across 

samples (see description of Null feature generation below). 

The resulting simulated binary data matrix will consist of two main types of features: 

True Positive (TP) features: A total of p TP features are generated. Events (i.e., 1’s) are 

assigned to the TP features in a mutually exclusive fashion, with each of these features 

having (f×N) / p entries set to 1, with their cumulative OR yielding an N-sized vector with 

the left-most f×N entries set to 1’s. For example, if we generate data for 100 samples 

and 5 positive features, with the left-skew proportion set to 0.5, each non-overlapping 

feature will have 10 among the 50 left-most entries (columns) set to 1, such that the 

union (logical OR) of the 5 features will have 1’s in the first 50 entries. 

Null features: Null features are generated for a total of (n - p) features. To generate 

these features, we sample the number of 1’s per null feature based on a Poisson 

distribution with mean parameter λ = (f×N) / p. In this fashion, the number of 1’s in the 
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null features will have a distribution centered on the corresponding number for the TP 

features. For instance, if we generate data for 100 samples and 5 TP features with left-

skew proportion f=0.5, then each of the TP features will have ten 1’s, and each of the 

remaining 995 null features will have a number of 1’s sampled from Poisson (λ=10), 

uniformly distributed over the N samples.  

A schematic representation of this data, along with the parameters that define its 

composition is shown in Figure S1. 

Evaluation of CaDrA performance on simulated data 

Evaluation of CaDrA performance was performed considering two main scenarios: 

a) True positive datasets: Data containing both true positive and null features (where 

the sensitivity of CaDrA is tested); and b) Null datasets: Data containing only null 

features (where the specificity of CaDrA is tested), with the following parameter 

specifications for data generation: 

N = {50, 100, 250 and 500} 

n = 1000 

p = 5 

f = 0.5 

CaDrA was run using default input parameters, returning a meta-feature which had the 

best score, along with a permutation p-value based on the empirical null search 

distribution (Fig. S2). These results were then used to determine performance estimates 

for different sample sizes, composition (i.e. distribution of TP versus null features per 
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returned meta-feature), size (i.e. the number of features within the returned meta-

feature) and statistical significance of the returned meta-features.  

YAP/TAZ signature projection and assessment in TCGA BRCAs 

A signature comprising YAP/TAZ-activating genes (n=717) in MDA-MB-231 cells was 

obtained based on a previous study [48]. The TCGA BRCA RNASeq data (n=1,186 

samples) was projected onto the signature genes and per-sample estimates of 

YAP/TAZ activity were derived using ASSIGN [49], which was then used as a 

continuous ranking variable with CaDrA. The association of YAP/TAZ activity with the 

CaDrA-derived meta-feature, and with BRCA subtype (i.e. triple-negative status) was 

determined using a linear regression model.  

Cell culture, siRNA knockdown and qRT-PCR 

HS578T BRCA cells were purchased from ATCC and cultured using media and 

conditions suggested by ATCC. For RNA interference, cells were transfected using 

RNAiMAX (thermofisher) with control siRNA (Qiagen, 1027310) or an equal molar 

mixture of siRNA targeting RELN (Sigma), RBCK1 (Sigma), or TAZ and YAP [50]. 48 

hours post transfection, RNA was extracted from cells using RNeasy kit (Qiagen) and 

the synthesis of cDNA was performed as previously described [50]. Quantitative real-

time PCR (qRT-PCR) was performed using Taqman Universal master mix II 

(thermofisher) and measured on ViiA 7 real-time PCR system. Taqman probes used 

included those recognizing CTGF (thermofisher Hs00170014_m1), CYR61 

(thermofisher Hs00155479_m1), RELN (thermofisher Hs01022646_m1), RBCK1 

(thermofisher Hs00934608_m1), WWTR1 (thermofisher Hs01086149_m1), and YAP 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 23, 2017. ; https://doi.org/10.1101/221846doi: bioRxiv preprint 

https://doi.org/10.1101/221846


23 
 

(thermofisher Hs00902712_g1) and GAPDH (thermofisher 4326317E). Expression 

levels of each gene were calculated using the ΔΔCt method and normalized to GAPDH. 

Knockdown efficiency of YAP, TAZ, RELN and RBCK1 was verified for each 

experiment. Mean transcriptional knockdown of YAP, TAZ and RBCK in HS578T cells 

was > 80%. Basal RELN levels in HS578T cells were low, and relative knockdown in 

these cells was 28.3% (±14.1). Data from qRT-PCR experiments are shown as mean ± 

S.D., with each knockdown compared with respect to the scrambled siRNA control 

(siCtl) using an unpaired, two-tailed Student's t-test. 

 

CaDrA search parameters 

For evaluation using genomic data, CaDrA was run in the top-N mode using the default 

of N=7, choosing the best resulting meta-feature. (see Methods; CaDrA features: 

Search modes). For evaluation of simulated data, only the top-scoring feature was 

considered as a starting feature per search run (i.e. N=1). All other default input search 

parameters were used for all cases presented.   

List of abbreviations 

CaDrA: Candidate Driver Analysis 

TCGA: The Cancer Genome Atlas 

CCLE: Cancer Cell Line Encyclopedia 

BRCA: Breast Carcinomas 

TN: Triple-negative 
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TPR: True Positive Rate 

FPR: False Positive Rate 

FDR: False Discovery Rate 

qRT-PCR: Quantitative Real-Time Polymerase Chain Reaction 
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Figures 

 

Figure 1. Overview of CaDrA workflow and implementation. CaDrA takes as input a 
sample-specific measurement to rank samples with, and a matrix of binary features of 
the same sample units. In Step 1 (blue box), CaDrA begins by choosing a starting 
feature, which is either the single feature having the best score based on its left-
skewness, or a user-specified start feature. In the next step (Step 2; orange box), the 
union (logical OR) of this feature is taken with each of the remaining features in the 
dataset, yielding ‘meta-features’ with their corresponding scores. If any meta-feature 
has a better score than the hit from the previous step (Step 3; green box), CaDrA uses 
this new meta-feature as a reference for the next iteration, reiterating over Steps 2 and 
3 until no further improvement in scores can be obtained. The final output is a set of 
features (meta-feature) whose union has the (local) maximal score. 
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Figure 2. CaDrA performance on simulated data. CaDrA was run on 500 independent 
simulated datasets containing both positive and null (a, b) and only null (c, d) features 
with different sample sizes (gray box above each sub-panel). In each case, the 
distribution of the number of features per meta-feature (i.e. the meta-feature size) 
returned by CaDrA is shown (a, c) as well as the corresponding number and fraction of 
searches that yielded significance for α=0.05 (b, d). For example, panel a shows that 
for datasets of size 100, about 375 of the 500 runs returned meta-features of size 5 (i.e., 
containing 5 features), and in 350 of those runs all five features were true positive (dark 
blue portion of the bar plot). At sample sizes of 250 and 500, all returned meta-features 
were of size 5 and all true positives, with statistically significant permutation p-values 
yielding 100% sensitivity, as indicated in panel b. Panel c shows CaDrA returned meta-
features of different sizes, with majority of these not statistically significant for α=0.05 for 
all sample sizes considered, as indicated by the weighted average FPRs shown in 
panel d. 
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Figure 3. CaDrA identifies mutations in MAPK/ErK signaling genes that contribute to 
hyper-sensitivity to MEK inhibition in vitro. ActArea measurements reflecting sensitivity 
to MEK inhibitor AZD6244 were used for rank CCLE cell lines (n=477). CaDrA was then 
run to identify sets of genomic features that were most-associated with decreasing 
ActArea (i.e. increasing sensitivity) scores. Through step-wise search iterations, CaDrA 
identified somatic mutations in known regulators upstream of MEK, including an 
activating mutation in BRAF (BRAFV600E) and NRAS, as well as those in APAF1, 
TGFBR2 and AMHR2, before terminating the search process. The resulting meta-
feature (red track) and its corresponding enrichment score (ES) is shown. 
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Figure 4. CaDrA identifies novel drivers of oncogenic YAP/TAZ activity in human breast 
carcinomas. a. TCGA BRCA RNASeq data (n=951) was projected in the space of a 
gene signature comprising YAP/TAZ-activating genes to yield a sample stratification 
based on YAP/TAZ activity estimates (blue area plot; see Methods). CaDrA was then 
run to look for features associated with elevated YAP/TAZ activity, returning two 
chromosomal deletions (Del5q21.3, Del20p13), and a somatic mutation in RELN (black 
tracks). The union of the three features (red track) and the corresponding running 
enrichment score (ES) is also shown. b. siRNA-mediated knockdown of 20p13-
harboring gene RBCK1, and RELN in HS578T cells resulted in significant increase in 
the expression levels of canonical YAP/TAZ targets CTGF and CYR61, as indicated by 
their relative qRT-PCR expression, confirming the identified CaDrA hits as potential 
regulators of BRCA-associated YAP/TAZ activity. Ctrl: Scrambled control; YT: 
YAP/TAZ; * FDR < 0.05; Student’s t-test.  
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Tables 
 

Sample 
Size (N) 

Mean 
TPR (%) 

50 7.69 

100 96.51 

250 100 

500 100 

 

Table 1. Overall true positive rate (TPR) of CaDrA on true positive simulated data for 
different sample sizes. Mean percentages shown are a result of weight-averaging TPRs 
corresponding to different number of true positive features per meta-feature, weighted 
by the total searches returning such meta-features (see Figure 2b). 

 

Sample 
Size (N) 

Mean 
FPR (%) 

50 7.2 

100 4.6 

250 4.6 

500 4.2 

 

Table 2. Overall false positive rate (FPR) of CaDrA on null simulated data for different 
sample sizes. Mean percentages shown are a result of weight-averaging FPRs 
corresponding to different meta-feature sizes, weighted by the total searches returning 
such meta-features (see Figure 2d). 
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Target Treatment CaDrA hits P-value 

MEK AZD6244 BRAF.V600E, NRAS, APAF1, TGFBR2, AMHR2 0.001 

MEK PD-0325901 BRAF.V600E, NRAS, TRIM33 0.001 

RAF PLX4720 BRAF.V600E 0.001 

RAF RAF265 TTK, BRAF.V600E, ZMYM2, IL21R, BCL11B, 
MAP3K5, TAF15 

0.005 

 

Table 3. Summary of mutation subsets identified by CaDrA as associated with elevated 
Mek and Raf inhibition in cancer cell lines. Mutation meta-features identified as 
associated with increased sensitivity to inhibitors targeting Mek (AZD6244, PD-
0325901) and Raf (PLX4720) are shown, along with the corresponding permutation p-
value of each search result. 
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