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SUMMARY

Knowledge of the phenotypic states of immune cells in the tumor microenvironment is
essential for understanding immunological mechanisms of cancer progression and
immunotherapy responses, as well as the development of novel treatments. By
combining single-cell RNA-seq data from over 45,000 immune cells collected from eight
primary breast carcinomas, as well as matched normal breast tissue, peripheral blood,
and lymph node, we created an immune map of breast cancer. We developed a
preprocessing pipeline, SEQC, and a Bayesian clustering and normalization method,
Biscuit, to address the computational challenges inherent to single-cell RNA-seq data,
enabling integration of data across patients. This atlas revealed significant similarity
between normal and tumor tissue resident immune cells. However, we observed
continuous tumor-specific phenotypic expansions driven by environmental cues. Our
results argue against discrete activation states in T cells and the polarization model of
macrophage activation in cancer, with important implications for characterizing tumor-
infiltrating immune cells.

INTRODUCTION

Recent evidence suggests that cells of the innate and adaptive immune system serve an
essential accessory function in non-lymphoid normal tissues and in tumors (Arpaia et al.,
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2015; Dunn et al., 2004; Green et al., 2017). The prevalent view is that relatively few
states of differentiation of lymphoid and myeloid cells define the local tumor
environment, and that these distinct states are linked to clinical outcomes such as
cancer progression and response to anti-tumor therapies.

Naive, activated, effector, and central memory T lymphocytes, as well as chronically
stimulated dysfunctional T lymphocytes, are considered to be the principal T cell
differentiation states. These states are distinguished by their antigen exposure history,
functional features (distinct spectra of inflammatory mediators, cytotoxic potential, self-
renewal, and migratory capacity), and characteristic yet not mutually exclusive patterns
of cell surface co-stimulatory and co-inhibitory receptor expression. The former
molecules, such as CD28, ICOS, OX40, CD40L, and CD137, markedly enhance TCR-
dependent T cell activation and effector function, whereas increasing levels of
combinatorially expressed inhibitory receptors CTLA-4, PD-1, TIGIT, LAG3, TIM-3, and
CD160 are characteristic of progressive T cell dysfunction and loss of self-renewal
potential (“exhaustion”). The success of cancer immunotherapy based on CTLA-4 or PD-
1 blockade has been attributed to prevention or reversal of intratumoral T cell exhaustion
or terminal differentiation (Das et al., 2015; Pauken and Wherry, 2015). Regulatory T
(Treg) cells, expressing high amounts of the transcription factor Foxp3, curtail the
differentiation and activity of effector T cells and other immune cell types under
physiologic conditions and are found in markedly increased numbers in solid organ
tumors (Josefowicz et al., 2012; Roychoudhuri et al.,, 2015; Tanaka and Sakaguchi,
2017). This dedicated lineage of anti-inflammatory suppressive cells is thought to play a
prominent role in cancer progression, and Treg cell targeting is considered a potentially
promising strategy for tumor immunotherapy.

Likewise, two principal functional states are standardly recognized in tumor-associated
macrophages: pro-inflammatory M1 macrophages, which partake in protective anti-
bacterial responses and are thought to oppose tumor progression, and tissue reparative
M2 macrophages, which promote tumor growth and metastasis (Mantovani and Locati,
2013; Mills et al., 2000; Murray et al., 2014). In addition, a heterogeneous group of
monocytic cells and neutrophils, summarily classified as myeloid derived suppressor
cells (MDSC), are capable of production of immunosuppressive mediators and have also
been suggested to support tumor progression and limit tumor immunity (Kumar et al.,
2016). These cell types are associated with poor clinical prognosis, and targeting them
may result in therapeutic benefit (Campbell et al., 2011; Engblom et al., 2016; Gholamin
et al., 2017; Pyonteck et al., 2013).

Although immunotherapy treatments targeting CTLA-4 and PD-1 have been successful
in treating late-stage treatment-resistant melanoma, lung cancer, and kidney cancer
(Topalian et al., 2015), meaningful clinical responses have only been observed in a
subset of patients and cancer types. The observed variation in treatment efficacy has
been connected to heterogeneity in the immune status and immune cell type
composition of individual tumors. This is also true in breast cancer, where significant
heterogeneity in immune composition is observed across subtypes as well as patients
(Dushyanthen et al., 2015; Garcia-Teijido et al., 2016).
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These observations raise the question of whether the aforementioned immune cell
states differ in normal tissue and in the tumor and whether they represent a limited
number of discrete differentiation or activation intermediates with defined gene
expression characteristics. Alternatively, these cell states may represent a continuum of
cell states occupying a single contiguous phenotypic spectrum, whose features,
including “volume” or “size,” may be affected by the tumor microenvironment.

Recent work has sought to characterize heterogeneity in cells of the innate and adaptive
immune system in lung adenocarcinoma and clear cell renal cell carcinoma using
CyTOF mass cytometry (Chevrier et al., 2017; Lavin et al., 2017). These studies,
together with bulk RNA sequence analysis of tumor resident immune cells, have
provided broad characterization of the composition and properties of main immune cell
subsets (Angelova et al., 2015; Li et al., 2016; Rooney et al., 2015; Senbabaoglu et al.,
2016). Further studies employing single-cell RNA-seq analysis have begun to explore
finer definitions of immune cell subsets in tumors (Singer et al., 2017; Tirosh et al., 2016;
Zheng et al., 2017). Yet, the scale of these recent analyses has been insufficient to
address the major general questions above.

Thus, we sought to undertake a large-scale, high-dimensional analysis of cells of
hematopoietic origin in human breast tumors of various types — as well as paired normal
breast tissue, peripheral blood, and a lymph node — using single-cell RNA-seq combined
with novel computational approaches. Our analyses revealed remarkably increased
heterogeneity of intratumoral cells of both lymphoid and myeloid cell lineages, which
occupy markedly expanded contiguous phenotypic space in comparison to normal
breast tissue. The observed continuum of cell states likely reflects their progressive
cellular activation and differentiation and argues strongly against the notion of few
discrete states of differentiation or activation of individual cell types shaping the tumor
microenvironment.

RESULTS
InDrop single-cell RNA-seq analysis of immune cells in breast carcinomas

To generate a deep transcriptional map of the immune cell states in human breast
cancer, we constructed an atlas of the tumor immune microenvironment comprising
47,016 CD45" cells collected from 8 primary breast carcinomas from treatment naive
patients including estrogen receptor (ER") and progesterone receptor (PR") positive,
human epidermal growth factor receptor 2 amplified (Her2"), and triple negative (TNBC)
cancers (see STAR Methods). To assess the effect of the tumor microenvironment
versus normal breast tissue residence on cell phenotypes, we also analyzed CD45" cells
isolated from matched normal breast tissue, peripheral blood, and lymph node obtained
from fresh surgical specimens. Viable, CD45" cell populations, FACS-sorted from single-
cell suspensions prepared from these samples, were subjected to single-cell barcoding
and RNA sequencing (scRNAseq) using the inDrop platform (Figure 1A,B, STAR
Methods) (Zilionis et al., 2017). We processed the data using our new SEQC scRNA-seq
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pipeline, which provides increased sensitivity and selectivity in its resulting single-cell
profiles (STAR Methods).

For each patient, we first verified that major immune cell types can be accounted for
based on transcriptional profiles isolated from individual CD45" cells. We began by
clustering each tumor sample using PhenoGraph (Levine et al., 2015). We annotated
each cluster using genome-wide correlations between the mean expression levels of
each cluster and previously characterized transcriptional profiles of sorted immune cell
subsets (Jeffrey et al., 2006; Novershtern et al., 2011), as well as evaluation of canonical
marker expression (see STAR Methods). We were able to identify the majority of
immune cell types expected to be present in human tumors, including monocytes,
macrophages, dendritic cells, T cells, B cells, mast cells, and neutrophils (Figure 1C,
S1C). Thus, we were able to capture a comprehensive representation of the immune
ecosystem from each individual tumor.

Variation between individual tumor immune microenvironments

In agreement with the aforementioned mass cytometry analyses (Chevrier et al., 2017;
Lavin et al., 2017), we found a large degree of variation in the immune cell composition
of each tumor (Figure 1D). For example, the fraction of T cells varied between 21%-96%
and the fraction of myeloid cells varied between 4-55%. To determine the reliability of
inDrop in representative sampling of heterogeneous cell populations, we compared the
proportions of cell types as measured by flow cytometry and inDrop scRNA-seq.
Although a comparison of the relative representation of major immune cell types
identified by scRNA-seq to those assessed by flow cytometric analysis revealed a
significant bias towards monocytic lineage cell subsets relative to expected input ratios,
we observed high correlation between cell type frequencies across all patient samples (r?
> 0.8, Figure S1D). The observed bias, likely due to the larger cytoplasmic volume and
higher RNA yield of monocytic/myeloid cells vs. T cells, was systemic and did not
adversely affect our analyses.

This genome-wide view allowed us to assess system-level differences between immune
cell consortia in individual patients in, for example, metabolic signatures, including
hypoxia (Figure 1E). It is interesting to note that while all tumors expressed a similar
average degree of a hypoxia signature, patients differed considerably in expression at
the level of individual genes included in the signature. Similar variation was observed in
fatty acid metabolism, glycolysis, and phosphorylation (Figure S1E-G).

Integration of data across multiple tumors

To enable an unbiased systematic comparison across patients, we merged the data
from all tumors to create a map of tumor-infiltrating immune cells. However, we observed
that cells from the same patient were often more similar than cells of the same lineage
from another patient (Figure 2A). This was likely due both to batch effects and standard
normalization procedures that conflate biological signal and technical differences, both
within and between the samples. We also observed an increase in the number of
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molecules captured from activated immune cells, likely due to an increase in total RNA
abundance upon activation (Blackinton and Keene, 2016; Cheadle et al., 2005; Marrack
et al.,, 2000; Singer et al.,, 2017). In addition, our analyses showed a gradient of
activation of CD8 T cells in tumors, and the most pronounced T cell activation in a TNBC
tumor (BC3), in agreement with previous reports (Figure 2B) (Dushyanthen et al., 2015;
Garcia-Teijido et al.,, 2016). To remove confounding technical effects while retaining
convolved biological variation, we clustered the combined data from all samples using
Biscuit, a hierarchical Bayesian model that infers clusters while simultaneously
normalizing and imputing dropouts, allowing us to fit and correct for cell- and batch-
intrinsic variation (Prabhakaran et al., 2016) (see STAR Methods). Cell type-specific
normalization is especially crucial in cases involving vast subtype diversity, such as
immune cells ranging from large macrophages to much smaller lymphocytes (Lun et al.,
2016; Vallejos et al.,, 2017). Using Biscuit, we normalized together cells that are
assigned to the same type, and extracted interpretable parameters associated with each
cluster for characterization of cell subsets (STAR Methods).

After applying Biscuit to the data from all tumors (Figure 2C), we found 67 clusters
covering various T cell, macrophage, monocyte, B cell, and NK cell clusters. We first
asked whether individual cells tended to be most similar to cells from their own samples
or if the resulting cell profiles were well mixed using an entropy measure (STAR
Methods). For each cell, this measure considers the neighborhood of its most similar
cells and evaluates the entropy of the sample distribution in each such neighborhood.
Low entropy indicates that most neighbors come from the same sample, whereas high
entropy indicates that the neighbors (most similar cells) are well distributed across the
different samples. Indeed, while cells were most similar within individual samples before
normalization, this was corrected after Biscuit normalization with significantly improved
mixing of cells across patients when compared against standard normalization methods
(Figure 2A, D) (U=1.7721e+09, p=0, Figure 2D). Using this approach, we successfully
retained information on immune cell activation while stabilizing differences in library size,
and uncovered a rich and robust structure in imputed data, suggesting diversity in
immune cell subtypes (Figure 2A, C).

Breast tumor immune cell atlas reveals substantial diversity of cell states

To construct a global atlas of immune cells, enabling characterization of the impact of
environment on immune cell states, we merged data from 47,016 cells across all tissues
and patients revealing a diverse set of 83 clusters, each identifying a cell type or state
(Figure 2E, F; S2A, B). This unexpectedly large number of clusters prompted us to test
their robustness using cross-validation on subsets of the data (STAR Methods), finding
assignments of cells to clusters were robust for most clusters (Figure S2C). Most
clusters were shared across multiple patients, indicating similar immune states across
patients, with only 10 being patient-specific (Figure 2G). We used entropy as a more
stringent metric for patient mixing within clusters and found that the clusters span a
range of different mixing levels (Figure S2D).
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We assigned each cluster to its associated cell type by comparing cluster mean
expression to bulk RNA-seq (Figure 2E, F) and found 38 T cell clusters, 27 myeloid
lineage clusters, 9 B cell clusters, and 9 NK cell clusters (Table S2). By examining the
expression of canonical markers in immune cell clusters, we were able to confirm and
build upon predictions made by the preceding analysis (Figure 2H). Of the T cell
clusters, we identified 15 CD8+ T cell clusters and 21 CD4+ T cell clusters, which were
together split into 9 naive, 7 central memory, 15 effector memory, and 5 Treg clusters.
We were additionally able to divide the myeloid lineage clusters into 3 macrophage, 3
mast cell, 4 neutrophil, 3 dendritic cell, 1 plasmacytoid dendritic cell, and 13 monocytic
clusters. Finally, we identified 9 B cell clusters, 3 CD56~ NK cell clusters, and 6 CD56"
NK cell clusters, 2 of which are likely NKT cells (Figure 2, J).

Since our characterization identified multiple clusters with the same cell type “label”
based on surface markers and prior characterization of the corresponding peripheral
blood cell phenotypes, e.g. 15 effector memory T-cell clusters (Figure 2F), we wanted to
confirm that all these clusters were indeed distinct. Biscuit identifies clusters based on
differences in both mean expression and covariance (i.e. co-expression) patterns for
groups of genes in the same cells. The distributions defined by the Biscuit parameters
identified differentially expressed genes between clusters, including canonical immune
genes, and defined multiple subpopulations within each major cell type (Table S3). Final
cluster annotations based on the above analysis are appended to Table S2. Moreover,
we observed a prominent effect of covariance in defining the T cell clusters by
comparing similarity of pairs of clusters with and without the effect of mean expression
(Figure S2E, F); large differences between most clusters remained even after mean
gene expression was equalized. Thus, our approach robustly identified cell states that
were distinct from one another and shared across multiple tumor microenvironments. As
T cell and myeloid cells represent the most abundant and diverse, and arguably most
biologically significant, immune cell subsets in the tumor microenvironment, we focused
our subsequent in-depth analyses on these two major cell types.

Tissue environment impacts the diversity of immune phenotypic states

A key goal of this study was to quantify the extent to which variation in immune cell
phenotypes is driven by their tissue of residence, i.e. cancerous vs. normal breast tissue,
using peripheral blood or the lymph node cells as references. To gain a qualitative
understanding of phenotypic overlap between tissues, we carried out tSNE co-
embedding (van der Maaten and Hinton, 2008) of the merged dataset annotated by
clusters. This analysis showed that T cells in blood and lymph node had dramatically
dissimilar phenotypes compared to cancerous or normal breast tissue resident T cells,
which exhibited considerable similarity (Figure 3A, B). We observed that gene
expression of T cells dramatically differed between blood and tissue resident cells,
resulting in a large cluster specific to blood-derived cells being phenotypically distinct
from T cells in normal and tumor tissue (shown in blue). Both T cells and myeloid lineage
cells exhibited considerable overlap between tumor and normal tissue samples, with
increased phenotypic heterogeneity creating an expansion of these populations
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observed in the tumor (Figure 3B). Figure 3C summarizes distributions of cell types
across tissues.

Quantifying differences between tissues, we confirmed that naive T cells were strongly
enriched in three blood-specific clusters (y?=361.4, df=1, p=3e-80), while B cells were
more prevalent in the lymph node than in other tissues (y?=1737.1, df=1, p=0.0). A
subset of T cell clusters was present in both tumor and normal tissue, but the cytotoxic T
cell clusters were more abundant in tumor (¥2=93.7, df=1, p=3e-25); Treg cells were
also highly enriched in the tumor as expected (¥?=336.0, df=1, p=5e-91). Moreover,
some myeloid clusters were shared between normal and tumor tissue, whereas clusters
of more activated monocytes and tumor-associated macrophages (TAMs) were specific
to tumor (y2=2420.6, df=1, p=0.0). Overall, we observed much more pronounced
overlap in phenotypes between tissue-resident immune cells than between any other
pair of tissues (z=2.68, p=1.4e-4), highlighting that tissue of residence is a significant
determinant of phenotypes of human cells of hematopoietic origin, and that states or
biomarkers identified from blood immune cells may not necessarily extend to tissue
embedded immune populations.

Tumor microenvironment drives an expansion of immune cell phenotypes

We observed a large number of normal breast tissue resident cell states, manifested by
13 myeloid and 19 T cell clusters that were not observed in circulation or in the
secondary lymphoid tissue, i.e. lymph node. Furthermore, our data showed that the set
of clusters found in normal breast tissue cells represented a subset of those observed in
the tumors; 14 myeloid and 17 T cell clusters were only found in the tumor, doubling the
number of observed clusters of these cell types relative to normal tissue, and there were
no clusters specific to normal tissue.

This increased diversity of cell states was driven by a significant increase in the variance
of gene expression in tumor compared to normal tissue (Figure 3D). We performed
Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) on the genes with the
largest increase in variance and found enrichment in targets of signaling pathways
activated in the tumor environment, including Type | (IFNa) and Il interferons (IFNy),
TNFa, TGFB, IL6/JAK/STAT signaling, and the aforementioned hypoxia (Figure 3E;
S3A, B; Table S5).

To understand whether the increase in variance of gene expressions in tumor tissue is
due to activation of additional phenotypes that are independent from those found in
normal tissue, we sought to define a metric for the “phenotypic volume” occupied by
cells. Specifically, this metric uses the covariance in gene expression to measure the
volume spanned by independent phenotypes, which grows with the number of active
phenotypes and the degree of independence between them (see STAR methods).
Moreover, our metric controls for the difference in the total number of immune cells
observed in tumor versus normal tissue. Using this metric, we compared the phenotypic
volume occupied by each cell type between normal and tumor tissue. Assessment of the
change in volume showed a significant increase in the phenotypic volume of all major


https://doi.org/10.1101/221994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/221994; this version posted November 25, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

cell types, including T cells (U-test p = 0), myeloid cells (p = 0), and NK cells (p = 0) in
the tumor compared to normal mammary gland tissue (Figure 3F). Precisely, the fold
change in volume was 7.39e4 in T cells, 1.18e14 in myeloid cells and 6.08e4 in NK cells,
indicating a massive increase in phenotypic volume in tumor compared to normal tissue.
These data suggest that increased heterogeneity of cell states and marked phenotypic
expansions found within the tumor in comparison to the normal tissue were likely due to
more diverse local microenvironments within the tumor, which differ in the extent of
inflammation, hypoxia, expression of ligands for activating and inhibitory receptors, and
nutrient supply (Finger and Giaccia, 2010; Jimenez-Sanchez et al., 2017).

Intratumoral T cells reside on continuous components of variation

To further explore the most significant sources of the observed phenotypic variation, we
carried out unbiased analyses by separately decomposing the gene expression of the T
cell and myeloid cell lineages using diffusion maps (Coifman et al., 2005; Haghverdi et
al., 2015; Haghverdi et al., 2016; Moignard et al., 2015; Setty et al., 2016). While some
components distinguished discrete clusters, the majority of components defined gradual
trends of variation across T cell clusters (Figure 4A, S4A). The top 3 informative
components correlate, respectively, with signatures for activation, terminal
differentiation, and hypoxia (Figure 4B-D; Figure S4B-F; STAR Methods).

The most informative component of variation, labeled activation trajectory, is highly
correlated with gene signatures of T cell activation and progressive differentiation
(p=0.0), along with IFNy signaling (p=0.0) (see STAR Method). The mean expression of
the activation signature steadily increases along the component (Figure 4B), with a
concomitant gradual increase in expression of activation-related genes (Figure 4C).
Intratumoral T cell populations are enriched at the positive end of the component relative
to T cells found in healthy tissue (t-test p=0.0, Figure 4A, D). Specifically, tumor-resident
effector memory T cells and Treg cells compose the most activated end, while mostly
naive T cells in peripheral blood congregate at the least activated terminus, consistent
with their quiescent state (t-test p=0.0, Figure 4D). However, while the mean expression
levels of clusters vary gradually along the component, there is also a wide range of
activation states within each cluster (Figure 4D). Examining the individual genes most
correlated with the component reveals a diverse set of genes whose expression is well
documented to increase upon T cell activation and progressive differentiation. These
include genes encoding cytolytic effector molecules granzymes A and K (GZMA and
GZMK), pro-inflammatory cytokines (IL-32), cytokine receptor subunits (IL2RB),
chemokines (CCL4, CCL5), and their receptors (CXCR4, CCR5) (Figure 4C).

The next most informative component of variation was labeled terminal differentiation
(Figure 4E); the genes most correlated with it include co-stimulatory molecules (CD2,
GITR, OX40, and 4-1BB) as well as co-inhibitory receptors (CTLA-4 and TIGIT) (Figure
S4B). This set also included Foxp3, IL2RA, and Entpd1 (CD39), genes whose high
expression is characteristic of Treg cells (Josefowicz et al., 2012). The same primarily
Treg clusters reside at the very terminal end of both the activation and terminal
differentiation components, and there is a moderate degree of overlap in the genes most
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correlated with the two (Figure 4A, C; S4B). However, there are also important
exceptions—including the markers of exhaustion listed above—and crucially, the two
trajectories traverse different paths through the rest of the clusters (Figure 4F). Indeed,
some clusters—notably T cells from the lymph node (e.g. cluster 16)—express higher
levels of activation than terminal differentiation (t-test p=0.0; Figure S4B-D), consistent
with the idea that T cell exhaustion and terminal differentiation largely occurs in non-
lymphoid tissues and not in the draining lymph node.

Interestingly, visualizing the T cell activation and terminal differentiation components
together revealed remarkable continuity, in essence representing a single continuous
trajectory of T cells towards a terminal state (Figure 4A, S4D). Thus, T cells reside along
a broad continuum of activation, suggesting that their conventional classification into
relatively few discrete activation or differentiation subtypes may grossly oversimplify the
phenotypic complexity of T cell populations resident in tissues.

Response to diverse environmental stimuli and covariance of gene expression
define intratumoral T cell states

Noting that only a few of the clusters were well delineated by the strongest components
of variation, we sought to understand the variation driving the observed clustering. We
examined the expression of gene signatures for response to environmental stimuli in
each T cell cluster and found that while most clusters were arranged in a continuous
fashion along the activation component, each cluster appeared unique when looking
across multiple components and signatures in a combinatorial fashion. Our data show
that CD4 effector and central memory clusters (Figure 5A) exhibit variable levels of
expression of genes contributing to signatures for Type | and Il interferon response (F-
test, p=1e-54 and 0.008 respectively), hypoxia (F-test, p=4e-64), and anergy (F-test
p=4e-69). Moreover, different CD8 effector and central memory clusters (Figure 5B) had
different expression levels of activation (F-test p=2e-114), proinflammatory (F-test p=1e-
39), and cytolytic effector pathway-related genes (F-test p=6e-32). These examples
suggest that in a heterogeneous tumor microenvironment, differing in degree of
inflammation, hypoxia, and nutrient availability, subpopulations of T cells either sense
different environmental stimuli or respond differently to these stimuli. While many of
these responses (e.g. activation or hypoxia) create phenotypic continuums, their
different combinations can result in more discrete behaviors.

In contrast to effector T cells, Treg clusters displayed less variation in expression across
these gene signatures: the majority of these clusters featured comparable patterns for
anti-inflammatory activity, exhaustion, hypoxia, and metabolism gene sets (Figure 5C).

To identify features distinguishing the Treg clusters, we examined the Biscuit parameters
differentiating them. We found that beyond mean expression levels, covariance
parameters varied significantly between clusters, driving the observed differences.
Specifically, two marker genes could exhibit similar mean expression in two different
clusters (e.g. highly expressed in both), while the clusters show opposite signs in
covariance between these genes. This occurs due to the genes typically being co-
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expressed in the same cells in one cluster (i.e. positive covariance), while being
expressed in the other cluster in a mutually exclusive manner (i.e. negative covariance)
(Fig. 5D). It is noteworthy that clusters were inferred based on the expression of over
14,000 genes; hence, negative covariance between two specific genes does not
necessarily imply the existence of sub-clusters.

As an example, our analysis showed that the CTLA-4 gene, which encodes a
prototypical inhibitory checkpoint receptor that is highly expressed in Tregs and activated
T cells, exhibited rich covariance patterns with other mechanistically related genes
(Figure 5E-G; S5A, B). CTLA-4 co-varied strongly with TIGIT and co-stimulatory receptor
GITR in Treg clusters 46, 56, and 87; with CD27 in clusters 46 and 80; and with co-
stimulatory receptor ICOS only in cluster 80 (Figure 5F,G). We observed considerable
differences in covariance patterns between numerous pairs of other checkpoint genes
across Treg clusters (Figure 5G). Additionally, covariance between other key immune
genes in Treg clusters exhibited modular structures, with groups of genes co-expressed
together, suggesting co-regulation and potential involvement in similar functional
modalities (Figure 5H). Since varied proportions of Treg clusters were observed in
individual patient samples, the differences in gene co-expression were present across
patients as well as clusters within a given patient (Figure 5l). We observed that the
majority of patients did not have all 5 subtypes of Treg cells, and in fact most were
dominated by only one subtype (cluster). It must be noted that we also observed similar
differences in co-variation patterns across activated T cell clusters, even if these did not
play as essential a role in their delineation (Figure S5C). Thus, co-variation of genes has
a role in defining T cell clusters, in particular Treg clusters (Figure 5G,H, SF2).

Activation and differentiation define components of variation of intratumoral
myeloid cells

Although myeloid lineage cells are commonly thought to be highly diverse and able to
markedly influence the state of the tumor microenvironment and, thereby, impact clinical
outcomes, the heterogeneity of intratumoral monocytes and macrophages remains
insufficiently characterized (Campbell et al., 2011; De Henau et al., 2016; Engblom et
al., 2016; Eppert et al., 2011; Gholamin et al., 2017; Pyonteck et al., 2013). A broad
survey of the major monocytic subsets suggests the existence of both gradual and
abrupt phenotypic shifts (Figure 6A). As with the T cells above, we employed diffusion
maps to assess heterogeneity in and across these monocytic populations, excluding
neutrophils and mast cells, which formed much more distinct clusters (Figure 6B). This
analysis revealed four major branches that displayed clearer segregation of cell states,
and moderately less continuity, than the analogous T cell maps (Figure S6A).

The first branch almost entirely comprises intratumoral macrophages from three clusters
(23, 25, and 28) (Figure 6B-F). Among the top genes correlated with the branch are
macrophage activation-associated genes APOE, CD68, TREM2, and CHIT1 (Figure
S6B); the branch thus likely reflects progression towards a distinct state resulting from
the differentiation and activation of either recruited or tissue-resident macrophages in the


https://doi.org/10.1101/221994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/221994; this version posted November 25, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

tumor microenvironment. Additionally, expression of genes typically implicated in a
polarization model of tissue-reparative and immunosuppressive M2 macrophage
activation, including scavenger receptor MARCO, extracellular matrix component FN1,
pro-angiogenic receptor NRP2, SPP1 (osteopontin), and inhibitory molecule B7-H3
(CD276), increased along this branch (Figure S6B). Concomitantly, pro-inflammatory
and immunostimulatory genes, including chemokine CCL3 (MIP-1a), typically associated
with M1 macrophages, likewise increased along the branch. Quite strikingly, we found
that M1 and M2 gene signatures in fact positively correlated in the myeloid populations
(Figure 6G). These findings support the idea that macrophage activation is markedly
impacted by the tumor microenvironment in a manner that does not comport with the
polarization model, either as discrete states or along a spectrum of alternative
polarization trajectories.

The second and third branches together captured a more gradual trajectory from blood
monocytes (mainly cluster 42, 97.5% present in blood) to intratumoral monocytes
(clusters 67, 91, 68 and 94) (Figure 6B-D; S6B-D). The “blood terminus” of the trajectory
correlated with expression of co-stimulatory gene ITGAL, but also with several tumor
growth-promoting genes, i.e. fibroblast and epidermal growth factors, as well as IL-4
(Figure S6B). The latter has been proposed to support the M2 type of macrophage
activation (Mantovani and Locati, 2013; Mills et al., 2000; Murray et al., 2014). The other
end of the trajectory, populated by intratumoral monocytes, was characterized by high
expression of activation and antigen presentation-related genes encoding CD74 and
HLA-DRA, but also an IFN-inducible gene encoding ISG15, which has been described to
be secreted by TAMs and enhance stem-like phenotypes in pancreatic tumor cells
(Figure S6B) (Sainz et al., 2014).

The fourth branch correlated with canonical plasmacytoid dendritic cell (pDC) markers
such as LILRA4, CLEC4C (CD303), and IL3RA. The most discrete of the myeloid
components, this branch separated the lone pDC cluster (41) from the other myeloid-
monocytic cell clusters (Figure 6B, E, G, H; S6C). This subset was also the only
monocytic cluster common between the tumor and the lymph node; it featured high
levels of granzyme B (GZMB) (Figure S6B), which has been proposed to be a means, by
which pDCs may suppress T cell proliferation in cancer (Jahrsdorfer et al., 2010; Swiecki
and Colonna, 2015).

Covariance patterns help distinguish TAM subpopulations

While the TAM clusters projected to a distinct region in the diffusion component,
separating them from other monocytic cells, they appeared very similar to one another
(Figure 6F; S6A). This similarity was supported at the genomic scale by shared patterns
of DEGs (Table S3) and short pairwise distances (Figure S2B). However, similarly to the
intratumoral Treg cells, co-variation patterns defined distinctions between intratumoral
myeloid cell subsets. Specifically, co-variation of canonical genes for M1 or M2
macrophages distinguished the TAM clusters. All three of the TAM populations,
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particularly clusters 23 and 28, were among the monocytic lineage clusters that exhibited
the most similarity to the canonical M2 signature (Figure 6G). However, both of these
clusters also expressed high levels of the M1 signature genes, and significant
expression of the two signatures was often coincident (Figure 6G, H).

We observed pronounced inter-cluster differences in co-expression patterns in TAM
clusters. One example among many was co-expression of two M2-type markers,
MARCO and B7-H3. In an unexpected manner, while TAM clusters 23, 25, and 28 all
expressed high levels of both genes, they co-varied positively in clusters 23 and 25, but
negatively in 28 (p = 0, p = 5e-06, p = 0, respectively; Figure 7A-C; S7A,B). The differing
covariance patterns were not an artifact of modeling as they were also significant in raw
un-normalized data (Figure S7A, STAR Methods).

The degree of co-expression of genes associated with M1 and M2 signatures also varied
widely within clusters in a manner not fitting the functional M1/M2 annotation. For
example, expression of CD64 in cluster 23 exhibited varying degrees of positive co-
variance with FN1, MMP14, MSR1, cathepsins, MARCO, and VEGFB, but co-varied
slightly negatively with chemokine CCL18 (Figure 7C). Taken together, these findings
demonstrate that co-variation patterns define TAM clusters, and further highlight the lack
of mutual exclusivity between the proposed prototypical M1 and M2 states.

DISCUSSION

Despite major clinical advances in cancer immunotherapy, our ability to understand its
mechanisms of action or predict its efficacy is confounded by the complex,
heterogeneous, and poorly understood composition of immune cells within tumors. Since
cancer is generally a disease that affects older, post-reproductive individuals, with the
exception of inherited genetic predispositions it is unlikely that specialized mechanisms
of adaptive or innate immunity evolved to facilitate tumor immune surveillance. It seems
reasonable to suggest that immune mechanisms affecting tumor progression must also
operate in non-cancerous tissues to maintain organismal integrity and tissue function in
the face of infection, stress, inflammation, and injury. A corollary to this notion is that
features of immune cells in tumors must, by and large, resemble features of cells in non-
cancerous tissues. A recent population-level RNA-seq analysis of Treg cells and
effector CD4 T cells in breast cancer and normal breast tissue identified a high level of
phenotypic similarity between tissue and tumor-resident T cells, thus providing
experimental support for this idea (Plitas et al., 2016). A similar RNA-seq study focusing
primarily on Treg cell analysis in colorectal and lung cancer suggested that cancer-
resident Treg cells differ considerably from those found in the normal tissue (De Simone
et al., 2016). Despite seeming differences in conclusions, distinguishing features of
intratumoral Treg cells as compared to normal tissue-resident ones detected in these
two reports were associated with their heightened activation and thus can not distinguish
between differences in immune states themselves or differences in immune state
proportions. Thus, the averaging of gene expression features in bulk cell population


https://doi.org/10.1101/221994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/221994; this version posted November 25, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

analyses and the lack of the assessment of a broad spectrum of immune cell subsets do
not allow for a definitive investigation of specific effects of the tumor environment on
immune cells.

To address this question, we undertook an unbiased comparative single-cell RNA-seq
analysis of all tumor versus normal tissue-resident immune cell subsets and constructed
an immune atlas in breast carcinomas, combining immune cells isolated from normal
and cancerous breast tissue, as well as peripheral blood and the lymph node. Our
analysis was empowered by a suite of novel computational tools for single-cell RNA-
seq data, including a data processing pipeline more sensitive in its ability to detect
immune molecules, a powerful clustering and normalization algorithm, and new metrics
for volume of phenotypic space. In particular, our computational method Biscuit infers
subpopulations of cells according to similarity in gene expression as well as gene co-
expression patterns, and iteratively normalizes cells based on their assignment to
subpopulations. This method allowed us to overcome strong batch effects typical of
clinical samples that would have otherwise dominated the signal and obscured the
identification of shared cell states across tumors. Moreover, Biscuit's parametric model
enabled us to characterize covariance patterns and more accurately capture complex
relationships between pairs of genes of interest.

The atlas revealed vast diversity in the repertoire of immune cells representative of both
the adaptive and innate immune systems. Our examination of hematopoietic nucleated
cells from treatment-naive human breast cancer and normal breast tissue across
different patients revealed that the biggest change to the immune cells was linked to the
tissue environment, resulting in cell states that are substantially different than those
present in the blood and lymph node. Interestingly, immune cell subpopulations in
normal tissue were observed to be a subset of those found in tumor tissue, an
observation that could not have been found with bulk gene expression measurements.
Furthermore, the diversity of cell states significantly expanded between normal tissue
and tumor, as quantified with our metric of “phenotypic volume” occupied by immune cell
states. We observed tremendous expansion of the immune phenotypic space occupied
by all major cell types in breast tumors as compared to normal breast tissue. It seems
reasonable to speculate that the majority, if not all, immune cell states found in cancer
can be found in corresponding non-cancerous tissues in response to different stresses
such as infection, wound healing, or inflammation.

The observation of an expanding T cell “phenotypic space” in the tumor argues against
the view of activated T cells rapidly traversing through sparse transitional cell states
towards a few predominant, discrete, and stable states, including Treg, effector,
memory, and exhausted T cells. Three major components contributed to this phenotypic
expansion in tumor tissue that helped explain the heterogeneity of T cells, including T
cell activation, terminal differentiation, and hypoxic response. The strongest of these
components was a predominant trajectory of progressive T cell activation and
differentiation across 38 T cell clusters, including Treg and terminally differentiated T cell
clusters, found at the extreme activation terminus. One obvious explanation for the
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"continuity” of intratumoral T cell activation is the presence of increasingly diverse
environments defined by a multitude of gradients including growth, pro-inflammatory,
and tissue repair factors, as well as oxygen, nutrient, and metabolite gradients which
exist to a lesser extent in healthy breast tissue (Buck et al., 2017). Indeed, we found
groups of genes within the corresponding signaling pathways, most prominently immune
activation (IFN/IL6/JAK/STAT) and hypoxia, to be differentially expressed across T cell
clusters.

A non-mutually exclusive possibility is that the wide range of TCR signal strengths
afforded by a diverse repertoire of T cell receptors (TCR) accounts for the continuous
spectrum of T cell activation, obscuring the transitional states. The latter may also be
accounted for by asynchrony in polyclonal T cell activation or heterogeneity in the types
of antigen-presenting cells, their activation status, and their anatomical distribution.
Unlike polyclonal T cell populations, activation of a monoclonal T cell population with a
“fixed” specificity for tumor “self” or neo-antigen may yield sparse discontinuous
“phenotypic” spaces reflecting discrete functional T cell states. In support of the latter
possibility, recent bulk gene expression and chromatin accessibility analyses showed
that cognate tumor neo-antigen recognition by TCR transgenic T cells results in an
orderly progression of activated T cells through a reversible dysfunctional intermediate
state towards an irreversible dysfunctional terminal state (Philip et al., 2017).
Additionally, diverse TCR specificities can contribute to the spatial distribution of T cells
and, therefore, facilitate their exposure to the distinct environments (“mini-niches”)
discussed above.

While T cells of various cell types exhibit continuous levels of activation, our inferred
subsets further show variable levels of responses to environmental stimuli, and the
combinations of these environmental exposures jointly define the identity of discrete
CD4+/CD8+ T cell subsets. We also identified 5 Treg subsets that showed similar
responses to environmental pressures and shared differentially expressed genes, but
exhibited drastic differences in gene covariance patterns. Particularly noteworthy was
co-expression of checkpoint receptor genes in some Treg subpopulations as compared
to mutually exclusive expression of the same genes in other Treg clusters. In this regard,
co-variant expression of CTLA-4, TIGIT, and co-stimulatory receptor GITR and other co-
receptors in multiple Treg cell clusters suggests that these Treg cell populations may
occupy different functional niches. Cells co-expressing CTLA-4 and TIGIT have been
demonstrated to selectively inhibit pro-inflammatory Th1 and Th17 responses but not
Th2 responses, promoting tissue remodeling (Joller et al., 2014). The observed co-
expression of functional cell surface and signaling molecules by intratumoral Treg cells
may enable targeted modulation of Treg cell activity in the tumor microenvironment
using combinatorial therapeutic approaches (Mantovani and Locati, 2013). We also
observed considerably different proportions of Treg clusters across patients, suggesting
that multi-dimensional profiling might be necessary to personalize such therapies. These
findings have implications in the way that tumor immune responses are described and
interrogated. It must be noted that the discrete cell states that are commonly utilized to
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describe immune responses are largely defined from highly polarizing conditions such as
acute and chronic infections.

Our analyses appear to offer a more nuanced view of tumor and normal tissue-resident
myeloid lineage cells, in comparison to T cells, in terms of continuity vs. separation of
cell states. Unlike T cells, which primarily displayed continuous activation transitions, we
observed sharper state delineations in myeloid populations. This difference between T
cells and myeloid cells was likely due to a markedly less appreciated developmentally
established myeloid cell heterogeneity, whose understanding has started to emerge only
recently (Perdiguero and Geissmann, 2016). Indeed, the phenotypic expansion in
myeloid cells was associated with activation of macrophages and monocytes and
emergence of pDC subsets distinct from mDCs (myeloid DCs, also known as
conventional DCs or cDCs). However, our analyses also showed common features to
those in T cells, including gene expression covariance identifying cell clusters, and an
expansion of immune phenotypic space in breast tumor as compared to normal breast
tissue.

Similarly to T cells, we have not observed discrete states of myeloid -cell
activation/differentiation such as M1 or M2 macrophages or myeloid derived suppressor
cells. In contrast, we found both M1 and M2 associated genes frequently expressed in
the same cells, positively correlated with one another and following the same activation
trajectory. Furthermore, we found that covariance patterns between gene markers
associated with the M1 and M2 model show rich diversity, and help distinguish the three
TAM clusters. These results challenge the prevailing model of macrophage activation,
wherein M1 and M2 activation states either exist as mutually exclusive discrete states or
macrophages reside along a spectrum between the two states with negatively correlated
expression of M1 and M2-associated genes. Our findings solidify and reinforce previous
reports from the bulk analysis of tumor-associated macrophages in mouse models of
oncogene-driven breast cancer and analysis of myeloid cells in lung and kidney cancer
using mass cytometry (Chevrier et al., 2017; Franklin et al., 2014; Lavin et al,
2017). Notably, we observed more patient-specific variation in myeloid lineage cells than
in T cells, with the frequency of the former ranging from just over 10% to over 50% in
individual patients. Individual clusters similarly exhibited ranges of patient specificity. The
large patient effect in myeloid cells suggests that attempts at generalized targeting or
reprogramming of suppressive myeloid cell populations are not likely to yield uniform
responses and personalization at the patient level may be needed.

In conclusion, these findings show that studying average gene expression across groups
of cells fails to characterize heterogeneity in co-expression of genes, and by extension
their potential suitability as therapeutic co-targets. Single-cell RNA-sequencing analyzed
using Biscuit, as shown here, allows for inference of accurate and meaningful
covariance parameters; indeed, the algorithm takes into consideration these covariance
values when defining clusters. This makes it possible to query in a precise manner how
numerous functionally and therapeutically important immune markers are co-expressed
at the level that matters: that of individual cells. Our characterization of the immune cell
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subsets inhabiting primary solid tumor and the corresponding normal tissue, and their
heterogeneity within a given patient and between different patients, revealed expansions
of a continuous “phenotypic space” as a principal feature of the two main cellular targets
of cancer immunotherapy - T cells and myeloid cells. These observations, along with the
resulting extensive immune single-cell RNA-seq datasets and the comprehensive
analytical platform, will facilitate better understanding of potential mechanisms behind
immune cell contributions to promoting and opposing tumor progression.
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Figure Legends

Figure 1: Single-Cell RNA Seq Experimental Design and Initial Data Exploration

(A) Flow chart displaying experimental design and analysis strategy.

(B) Summary of samples obtained and patient metadata; more details in S1A.

(C) t-SNE projection of complete immune systems from two example breast cancer tumors.
scRNA-seq data for each tumor is processed with pipeline in Figure S1B and library size-
normalized; each dot represents a single-cell colored by PhenoGraph clustering, and clusters are
labeled by inferred cell types. Additional tumors are presented in in Figure S1D.

(D) Pie charts of cell type fractions for each patient’s tumor-infilirating immune cells, colored by
cell type.

(E) Left: Boxplots showing expression of Hypoxia signature (defined as the mean normalized
expression of genes in the hypoxia signature listed in Table S4) across immune cells from each
patient. Right: Heatmap displaying z-scored mean expression of genes in hypoxia signature. Top:
Barplot showing total expression of each gene indicated in the heatmap, across all patients. See
Figure S1E-G for additional signatures.

Figure 2: Unbiased Characterization of the Imnmune System Across Breast Cancer Patients
(A) t-SNE projection of tumor-infiltrating immune cells from 4 breast cancer patients after library-
size normalization (left panel) and Biscuit normalization and imputation (right panel). Cells are
colored by tumor (patient). Less mixing of tumors indicates either batch effects or patient-specific
cell states.

(B) Left: Boxplots showing expression of CD8 T cell activation signature (defined as the
normalized mean expression of genes in the activation signature listed in Table S4) across
immune cells from each patient. Right: Heatmap displaying z-scored mean expression of genes
in activation signature. Top: Barplot showing total expression of each gene indicated in the
heatmap across all patients. Expression of T cell activation signature shows variability across
patients and increased expression in patients BC6 and BC3.

(C) t-SNE map of breast tumor-infiltrating immune cells from all 8 patients after Biscuit
normalization and imputation showing rich structure and diverse cell types. Cells colored by
Biscuit clusters and labeled with inferred cell types.

(D) Histogram depicting entropy of the patient distribution as a measure of sample mixing.
Entropy is computed per cell, based on the distribution of patients in (30-NN) local cell
neighborhoods after library-size normalization (left panel) as compared to Biscuit (right panel).

(E) t-SNE projection of complete atlas of immune cells, post-Biscuit normalization, from all
patients and all tissues including tumor, blood, lymph, and contralateral normal tissue,labeled by
inferred cell type (left panel) and normalized expression of 8 immune cell markers (right panel).
Figure S2 presents further details on inferred clusters with complete annotations in Table S2.

(F) Pearson correlations of cluster expression centroids to bulk RNA-seq data from purified
immune populations (from Jeffrey 2006 and Novershtern 2011). Scale bar displays r-values.

(G) Histogram of frequency of patients contributing to each cluster showing that 19 clusters (out
of 95) are present in all 8 patients and 10 clusters are patient-specific.

(H) Expression of canonical and cell type markers across clusters, z-score normalized across
clusters. T-exhausted denotes the mean expression of terminal differentiation signature listed in
Table S4.

(1,J) Differentially expressed genes in B cell (1) and NK cell (J) clusters, standardized by z-scores
within cell type. As an example, the expression of CD19 is standardized across all B cell clusters
to highlight clusters with higher or lower expression of the marker compared to the average B cell
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cluster, but is highly expressed in nearly all B cell clusters (refer to Table S3 for all DEGs in these
and other clusters).

Figure 3: Impact of Environment on Breast Immune Cells

(A) Breast immune cell atlas inferred from combining all patient samples and tissues, presented
after Biscuit and projected with t-SNE. Each dot represents a cell and is colored by cluster
label; major cell types are marked according to Figure 2F,H and Table S2,3.

(B) Subsets of immune atlas t-SNE projection in (A) showing cells from each tissue presented
separately on the same coordinates as 3A to highlight the differences between tissues
compartments.

(C) Proportions of cell types across tissue types in pie charts.

(D) Distribution of variance of normalized expression computed for each gene across all immune
cells (all patients) from tumor tissue compared to that in normal breast tissue.

(E) Hallmark GSEA enrichment results on genes with highest difference in variance in tumor T
cells vs normal tissue T cells. See Figure S3 for enrichment in monocytic and NK cells. Most
significant results are shown; full lists of enrichments are presented in Table S5.

(F) Phenotypic volume in log-scale (defined as determinant of gene expression covariance
matrix, detailed in STAR methods) of T cells, monocytic cells, and NK cells, comparing tumor
immune cells and normal breast immune cells after correcting for differences in number of cells.
Massive expansion of volume spanned by independent phenotypes active in tumor compared to
normal tissue is shown for all three major cell types.

Figure 4: Detailed Characterization of T Cells

(A) Visualization of all cells from T Cell clusters using first, second, and third informative diffusion
components (two uninformative components denoting isolated NKT and blood-specific clusters
were removed from further analysis). Each dot represents a cell colored by cluster, and by tissue
type in insert. The main trajectories are indicated with arrows and annotated using the signature
most correlated with each component. See Figure S4D for additional components.

(B) Traceplot of CD8 T cell activation signature (defined as mean expression across genes in
signature listed in Table S4) for all T cells along first informative diffusion component. Cells are
sorted based on their projection along the diffusion component (x-axis), and the blue line
indicates moving average over normalized and imputed expression, using a sliding window of
length equal to 5% of total number of T cells; shaded area displays standard error (y-axis).

(C) Heatmap showing expression of immune-related genes with the largest positive correlations
with activation component, averaged per cluster and z-score standardized across clusters;
columns (clusters) are ordered by mean projection along the component. See Figure S4 for
heatmaps for additional components.

(D) Violin plot showing the projection of T-cells along activation component aggregated by total
density (left), tissue type (middle), and cluster (right). See Figure S4 for violin plots for additional
components. Number of dots inside each violin are proportional to number of cells.

(E) Trace-plots (as in B) of (left) terminal differentiation signature along second informative
component and (right) hypoxia signature along third informative component, labeled respectively
as terminal differentiation and hypoxia components. List of genes associated with signatures are
presented in Table S4.

(F) Heatmap of cells projected on each diffusion component (rows) averaged by cluster
(columns).

Figure 5. Covariance Patterns Help Define Distinct T Cell Clusters
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(A, B, C) Heatmaps showing normalized and imputed mean expression levels for a curated set of
transcriptomic signatures (rows) important to T Cells (listed in Table S4) for (A) CD4 memory
clusters, (B) CD8 memory clusters, and (C) T Regulatory clusters. Only signatures with high
expression in at least one T cell cluster are shown. Signature expression values are z-scored
relative to all T cell clusters but only shown for clusters of the same cell type for ease of
visualization.

(D) Cartoon illustration of two clusters of cells showing similar mean expression for two example
marker genes but opposite covariance between the same two genes.

(E) Scatter plot showing mean expression of GITR vs. CTLA-4 for each T cell cluster
(represented by a dot). Treg clusters, labeled in red, have high mean expression levels of both
genes.

(F) Distribution of covariance between GITR and CTLA-4 across all T cell clusters (purple), with
values for Treg clusters labeled in red. Note that Treg cluster covariance values are present as
both positive (46, 56, 87) and negative (80) outliers, exhibiting differences in covariance despite
sharing high mean expression levels. See Figure S5A for similar computation on the raw, un-
normalized, and un-imputed data, verifying the result.

(G) Network visualization illustrating strength of covariance between pairs of checkpoint receptor
genes in Treg clusters. Edge width denotes absolute magnitude of covariance and color denotes
sign of covariance (red positive and blue negative); the example case of CTLA-4 and GITR is
highlighted in yellow. Distinct patterns in gene covariance, in addition to mean expression, drive
the definition of clusters in the Biscuit model. See figure S5C for similar networks for T cell
effector and effector memory populations.

(H) Heatmaps showing covariance between immune genes in T reg clusters 56 (left panel), and
87 (right panel). Note different modules of covarying genes.

(I) Pie charts showing proportion of the five Treg clusters in each patient, indicating that
differences in covariance patterns between clusters also translate to patients.

Figure 6: Detailed Characterization of Myeloid Cells

(A) t-SNE map projecting only myeloid cells across all tissues and patients. Cells are colored by
Biscuit cluster and cell types are circled and labeled based on bulk RNA-seq correlation-based
annotations.

(B through E) Projection of cells in myeloid clusters on macrophage activation, pDC, and
monocyte activation (first, second, and fourth) diffusion components. Cells are colored by (B)
cluster, (C) tissue type, (D) cell type (as explained in STAR Methods), and (E) expression of
example lineage demarcating genes. The main trajectories are indicated with arrows and labeled
in (B).

(F) Violin plots showing the density of cells along macrophage activation component and
organized by overall density (left panel), tissue type (middle panel), and cluster (right panel).

(G) Scatter plot of normalized mean expression of M1 and M2 signatures per cell (dark blue);
cells assigned to 3 TAM clusters have been highlighted by cluster (light blue, pink, yellow); each
dot represents a cell and cells are plotted in randomized order.

(H) Heatmap showing imputed mean expression levels in myeloid clusters for a curated set of
transcriptomic signatures important to myeloid cells (listed in Table S4), z-score normalized per
signature.

See also Figure S6 for additional violin plots and heatmaps representing the other components.

Figure 7: Covariance Patterns Help Define Distinct Macrophage Clusters
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(A) Scatterplot of mean expression of MARCO and CD276 in each myeloid cluster; each dot
represents a cluster. Average expression levels for the three TAM clusters (23, 25, and 28) are
marked in red, indicating high expression of both markers in macrophage clusters.

(B) Distribution of covariance between MARCO and CD276 across all myeloid clusters. TAM
clusters(23, 25, and 28) are marked in red and present substantial outliers. See Figure S7A for
similar computation on the raw, un-normalized, and un-imputed data, verifying the result.

(C) Heatmaps showing covariance patterns of M1 and M2 macrophage polarization marker genes
(including many current or potential drug targets) in 3 TAM clusters (23, 25, and 28).

Supplementary Figure Legends

Figure S1: Additional details on samples and individual immune systems, related to Figure
1.

(A) All clinical and related metadata for all 8 patients.

(B) Bioinformatics pipeline for processing single-cell RNA-seq data; inputs boxed on left, outputs
labeled in red. Each rectangle represents a processing step. Braces on bottom display file
formats as data moves through the pipeline. Quality control and metrics are provided in Table S1.
(C) t-SNE projection of complete immune systems from six breast cancer tumors. scRNA-seq
data for each tumor is processed with pipeline in Figure S1B and library size-normalized; each
dot represents a single-cell colored by PhenoGraph clustering, and clusters are labeled by
inferred cell types. Two additional tumors are presented in Figure 1C.

(D) Regression of flow cytometry cell type percentages in each patient against RNA-seq cell type
percentages for B cells (blue), monocytic cells (orange), and T cells (green).

(E-G) Expression of metabolic signatures: fatty acid metabolism (E), glycolysis (F), and
phosphorylation (G), summarized as boxplots (left) showing expression of each respective
signature (defined as the mean normalized expression of genes in each signature listed in Table
S4) across immune cells from each patient; and heatmap (right) displaying z-scored mean
expression of genes in each signature; (top) barplot showing total expression of each gene
indicated in the heatmap across all patients. See Figure 1E for one additional signature.

Figure S2: Details of inferred parameters for clustering and normalization using Biscuit,
related to Figure 2.

(A) Posterior probability of assignment of cells to clusters in the Biscuit model in the full immune
cell atlas of combined tissues and patients presented in Figure 2E; note broad distributions in
assignment of naive T cells (bottom) as compared to other cell types.

(B) Bhattacharyya pairwise distances between clusters of Figure 2F, H (blue: small distance to
yellow: large distance).

(C) Robustness analysis of clusters performed with 10-fold cross-validation; boxplots summarize
the probability of a pair of cells being assigned to the same final cluster across all 10 subsets.

(D) Boxplots showing entropy of distribution of patients in each cluster, computed with
bootstrapping to correct for cluster size. Note that cluster labels are given by size (cluster 1 has
the most number of cells and cluster 95 has the fewest) and ordering clusters by mean entropy in
this plot indicates that entropy does not correlate with size.

(E) Violin plot of pairwise Bhattacharyya distances between distribution of expression of each
gene between all pairs of clusters in the same or different cell types considering mean and
covariance of expression, averaged across all genes.

(F) Same as (E), but after removing the effect of cluster mean in computing similarity, thus
considering only covariance.
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(G) Distribution of Biscuit alpha parameters per cell vs log of library size, with cells colored by
clusters; Biscuit alpha parameters correct for differences in library size across and within clusters.
(H) Distribution of inferred cell-specific parameters alpha and () beta in Biscuit across cells from
each patient. These differences were corrected in normalizing with alpha and beta parameters.

Figure S3. Analysis of differences in gene expression variance between immune cells in
breast tumor compared to normal breast tissue, related to Figure 3.

Hallmark GSEA enrichment results on genes with highest difference in variance in tumor vs
normal tissue in (A) NK and (B) monocytic cells. See Figure 3E for enrichment in T cells;
complete lists of enrichments are presented in Table S5.

Figure S4. Additional details on T cell diffusion components, related to Figure 4.

(A) Hartigan’s dip test on density of cells projected on diffusion components, showing statistically
significant continuity (lack of “dips”) in cells along T cell activation component (component 3, third
panel from left), whereas other components exhibit more defined states (multimodality).

(B) Violin plot of cells projected on terminal differentiation diffusion component: terminal
differentiation components organized by tissue type (left panels) and cluster (center panel). Also,
heatmap showing expression of immune-related genes with the largest positive correlations with
component, averaged per cluster and z-score standardized across clusters; columns (clusters)
are ordered by mean projection along the component.

(C) Scatter plot showing mean expression levels of T Cell activation and terminal differentiation
signatures for all T Cell clusters. Red triangles denote T Reg clusters showing high expression in
both signatures. The dotted line denotes y = x.

(D) Visualization of all T Cell clusters using activation (component 3), terminal differentiation
(component 4), and tissue specificity (component 6) diffusion components. Cells are colored by
clusters, and by tissue type in insert. The main trajectories are indicated with arrows and
annotated with labels.

(E,F) Same as (B) for hypoxia (E) and tissue specificity (F) components.

See Figure 4 for additional component.

Figure S5. Details of covariance patterns in T cell clusters, related to Figure 5.

(A) Displaying null distributions and observed covariances between CTLA-4 and GITR in raw, un-
normalized data using hypothesis testing, subsampling, and permutation (see STAR methods);
shows that the differences in covariance shown in Figure 5F,G are also present in un-normalized
and un-imputed data, and hence are not an artifact of computation.

(B) Bivariate plots of expression levels of GITR and CTLA-4 in Treg clusters based on inferred
mean and covariance parameters from Biscuit. Dark blue color indicates the highest density of
cells and light yellow the lowest density of cells.

(C) Network graphs showing covariance between checkpoint receptors in activated T cell
clusters. Edge width denotes absolute magnitude (strength) of covariance and color denotes sign
of covariance (red positive and blue negative). Note diversity across clusters. Similar graphs for T
reg clusters are shown in 5G.

Figure S6: Additional details on diffusion component analysis of myeloid cells, related to
Figure 6.

(A) Hartigan’s dip test on density of cells projected on diffusion components indicating no
diffusion components across myeloid cells show statistically significant continuity, implying
myeloid cells reside in defined (multimodal) states along major components explaining variation.
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(B) Heatmap showing expression of immune-related markers with the largest positive correlation
with TAM activation, pDCs, and monocyte activation components.

(C) Violin plot showing the density of cells projected along pDC component and organized by
tissue type and cluster.

(D) Violin plot showing the density of cells projected along monocyte activation component and
organized by tissue type and cluster.

Figure S7. Details of covariance patterns in myeloid clusters

(A) Displaying null distributions and observed covariances between MACRO and CD276 in raw,
unnormalized data using hypothesis testing, subsampling, and permutation (see STAR methods),
showing that the differences in covariance in normalized data as shown in Figure 7B are also
present in un-normalized and un-imputed data, and hence is not an artifact of computation.

(B) Bivariate plots of expression levels of MARCO and CD276 in Treg clusters based on inferred
mean and covariance parameters from Biscuit. Dark blue color indicates the highest density of
cells and light yellow the lowest density of cells.

Methods Figure Legends

Figure M1. Data Driven Pipeline Construction

(A) Visualization of cell barcode GC content (percentage, x-axis) versus cell barcode read
coverage (y) displaying higher coverage at 50% GC content. Yellow to purple color represents
density of cell barcodes.

(B) Schematic of capture primer displaying amplification machinery, cell barcodes, UMIs,

and poly-T capture site.

(C) Cartoon showing common sources of barcode errors including (i) breakage and (ii)
substitution errors.

(D) Comparison of complete GENCODE annotation against a reduced annotation containing only
GENCODE-annotated lincRNA and protein coding RNA. Displaying drop-out events occurring on
x-axis as well as masking events on y-axis.

(E) Example cell filtering plot showing the empirical cumulative density of molecules (y-axis) per
cell barcode (x-axis). Note that a small number of cell barcodes contain most of the molecules in
the experiment. Dashed black lines represent cut-off points after which cell barcodes are
considered to consist of contamination. Red barcodes are excluded.

(F) Coverage plot comparing the total molecules in each cell (x axis) against the average
coverage in each cell (y axis). Densities of cells with aberrantly low coverage such as those with
lower than 5 reads / molecule are considered likely errors and are discarded.

(G) Mitochondrial (MT) RNA fraction plot displaying the total number of molecules in each cell vs
the fraction of those molecules that come from mitochondrial sources. Cells in red consist of more
than 20% MT-RNA and are considered to be likely dying cells. These cells (red) are discarded.
(H) Complexity plot displaying the number of detected molecules (x axis) vs genes (y axis). The
relationship is fit with linear regression and cells (red) whose residual gene detection is greater
than 3 standard deviations are removed.

(I) Heatmap of pairwise pseudo-bulk sample-sample correlations (r2) across all samples

and replicates in the experiment.

Figure M2. (A) Stochastic data generative process for Biscuit illustrated with a toy example. Top
panel: Left: shows 3 multivariate Gaussian densities with no technical variation. Middle: An ideal
cell (yj) is simulated as a random draw from any of these 3 Gaussians. Right: The covariance
matrix across 10 such randomly-drawn cells showing 3 block covariances across the diagonal
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corresponding to three clusters. Bottom panel: Left: shows 3 multivariate Gaussian densities
with means and covariances scaled using (j, j) to handle cell-specific variations. Middle: A cell (lj)
is simulated as a random draw from any of these 3 scaled Gaussians. Right: The covariance
matrix across 10 such randomly-drawn cells showing loss of signal in the 3 block diagonal
covariances. We assume the model for |j captures real single-cell measurements and the goal is
to normalize data by converting it to follow the model for yj.

(B). Finite state automata for Biscuit. The shaded circle denotes lj, which is observed gene
expression for cell j, white circles show latent variables of interest, rectangles depict the number
of replications at the bottom right corner, diamonds are hyper-parameters, and double diamonds
are hyper-priors obtained empirically. Inference equations are obtained by inverting the date
generative process.

(C) Left panel: Input count matrix to Biscuit. Middle panel: Inference algorithm with Gibbs
iterations are depicted where cell-specific (j, j) and cluster-specific (k, k) parameters are iteratively
inferred leading to cell assignments to clusters. Right panel: Output from Biscuit, which is the
normalized and imputed count matrix.

Supplementary Tables

Table S1. Aggregated quality control and metric information for each sequencing sample.
Columns A-C contain metadata on the patient, tissue of origin, and sample number. Related to
Figure S1B.

Table S2. Annotations of clusters inferred in full breast immune atlas (across all patients and
tissues) and their proportions across tissues and patients.

Table S3. List of differentially expressed genes in clusters listed in Table S2 (sheet 1); the subset
of differentially expressed immune-related genes (sheet 2).

Table S4. List of gene signatures (sources listed in STAR Methods)

Table S5. Full hallmark GSEA enrichment results for gene variance in T-cells (Sheet 1), NK cells
(Sheet 2), and Monocytic Cells (Sheet 3). These enrichments expand upon partial lists shown in
Figure 3 and S3.

Table S6. List of capture reads, molecules, cells, and genes per sample replicate
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STAR Methods

KEY RESOURCES TABLE
REAGENT or SOURCE IDENTIFIER
RESOURCE

Biological Samples
Breast carcinoma Fresh operative tissue samples MSKCC

Normal breast tissue Fresh operative tissue samples MSKCC

Lymph node Fresh operative tissue samples MSKCC

Peripheral blood Patient venipuncture MSKCC
Antibodies

anti-CD45 ab Biolegend RRID:AB_2566372
DAPI Stain Calbiochem SCR_014366
anti-Foxp3 ab Thermo Fisher RRID:AB_1834364
anti-CD3 ab Biolegend RRID:AB_1575008
anti-CD4 ab Biolegend RRID:AB_571945
anti-CD16 ab Biolegend RRID:AB_314207
anti-CD56 ab BD Biosciences RRID:AB_396853
anti-CD8 ab Biolegend RRID:AB_528885
anti-CD19 ab Biolegend RRID:AB_2562015
anti-CD11b ab Biolegend RRID:AB_2563395

Critical Commercial Assays

inDrop platform Custom build droplet Zilionis et al., 2017; Klein et al., 2015
microfluidics platform

HiSeq 2500 lllumina MSKCC

NEBNext mRNA NEB cat no. E6111S

Second Strand
Synthesis Module
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HiScribe T7 High
Yield RNA Synthesis
Kit

NEB

Kapa 2x HiFi HotStart Kapa Biosystems

PCR mix

Software and Algorithms

SEQC

Biscuit

t-SNE

PhenoGraph

Diffusion map

FACSDiva
FlowJo

FastQC

STAR 2.5.3a

This paper

This paper and
Prabhakaran, S., Azizi,
Carr, A., & Pe’er, D, 2016

van der Maaten and Hinton
2008

Levine et al 2015

Coifman et al 2010

BD Biosciences
BD Biosciences

Andrews 2010

Dobin et al 2013

E.,

cat no. E2040S

cat no. KK2601

https://github.com/ambrosejcarr/seqc.qgit

https://github.com/sandhya212/BISCUIT_Si
ngleCell IMM ICML 2016

https://lvdmaaten.qgithub.io/software/

https://github.com/jacoblevine/PhenoGraph

http://www.math.jhu.edu/~mauro/#tab_Diffus
ionGeom

RRID:SCR_001456
RRID:SCR_008520 https://www.flowjo.com/

https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

https://github.com/alexdobin/STAR

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by Lead
Contacts Dana Pe’er (peerd@mskcc.org) and Sasha Rudensky (rudenska@mskcc.org).

METHOD DETAILS

Sample Collection

Tissues were collected from women undergoing surgery for primary breast cancer. Normal
tissue was obtained from prophylactic mastectomies of the same cancer patients, and
peripheral blood mononuclear cells (PBMCs) were obtained from patients prior to their surgical
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procedures. All samples were obtained after informed consent and approval from the
Institutional Review Board (IRB) at Memorial Sloan Kettering Cancer Center.

Lymphocytes from tumor and normal tissues were isolated by mincing the freshly obtained
surgical specimens into 1 mm cubic pieces and subsequent enzymatic digestion using Liberase
TL (Sigma) for 20 min at 37°C. The digested tissues were then passed through a 100M filter
and washed twice with PBS prior to surface staining. Lymphocytes were stained at 1x106 cells
per ml for 20 min with anti-CD45 and DAPI for live-dead discrimination following Fc receptor
blockade (BioLegend). Viable lymphocytes (CD45+DAPI-) were sorted on a FACSARIA sorter
(BD Biosciences). Post-sort purity was routinely > 95% for the sorted populations.

Each sample was then divided into 10,000 cell aliquots and at least 2 technical replicates were
processed through the complete experimental protocol (see below), with the exception that
technical replicates were often processed on the same sequencing lane.

Library Preparation

We employed inDrop (Klein et al., 2015; Zilionis et al., 2017), a droplet-based single cell RNA
sequencing technology. inDrop was selected over alternative technologies because it makes
use of closely packed deformable hydrogel beads, ensuring that 75-90% of the input cells are
paired with a unique barcode. This efficiency allowed deep sampling of many immune cells from
individual patients, even in cases where immune infiltration was relatively low. As a result, we
were able to compare triple-negative breast cancer (TNBC) samples with Her2+ and ER+
samples, which in some cases had as few as 50,000 tumor infiltrating immune cells.

Isolated, FACS-sorted CD45+ cells were suspended in ice-cold 1X PBS supplemented with
16% (v/v) Optiprep and 0.05% (w/v) BSA and encapsulated into 1.5 nL droplets together with
custom-made DNA barcoding hydrogel beads and RT/lysis reagents. The microfluidics chip was
operated at a throughput of ~30,000 cells per hour, and over 75% of cells entering microfluidics
chips were co-encapsulated with one DNA barcoding hydrogel bead. The frequency of cell
doublets (droplets having two cells) was low (~0.59%) due to highly diluted cell suspensions
used for encapsulation, corresponding to approximately 1 cell for every 12" droplet. In general,
single-cell RNA-Seq library preparation was carried out following the protocol reported recently
(Zilionis et al., 2017), with some modifications as described below.

Construction of new barcode sets

GC content has a known impact on PCR efficiency (Mamedov et al., 2008): high or low fractions
of G and C nucleotides reduce sequence amplification efficiency. We analyzed data produced
with earlier version of DNA barcodes (Klein et al., 2015; Zilionis et al., 2017) and observed that
barcodes with balanced GC content achieved higher molecule number (Figure M1A). We
reasoned that balancing GC content across our barcodes would decrease variance across our
libraries, thus increasing the average number of mMRNA observed per cell. Further, we observed
that the original barcode sequences had a minimum Hamming distance of 2. This is adequate to
identify but not to correct single-base errors. We redesigned a library so that all barcodes had
balanced GC content, with Hamming distance of >= 3, such that all single base errors are
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correctable, and with an average Hamming distance between pairs of barcodes of 13.3. This
was done by performing a constrained optimization over barcodes of various lengths obtained
from Edittag (Faircloth and Glenn, 2012). As a result, the vast majority of barcode errors are
correctable and, as our results showed, the single-cell RNA-Seq libraries generated with new
DNA barcoding hydrogel beads produced an overall increase in molecules/million sequencing
reads of 5.3%.

The custom-made hydrogel beads carrying new DNA barcode sets were synthesized using the
Agilent Bravo Automated Liquid Handling Platform following the previously described protocol
(Zilionis et al., 2017). Before loading the DNA barcoding beads into the chip, they were washed
twice in 1X SuperScript-lll RT buffer and lysis reagent (1% (v/v) Igepal-CA630). In contrast to
the approach in Zilionis et al., the lllumina PE Read 1 sequence was placed on the RT primer,
thus the full-length primer sequence was as follows:

/5Acryd/PC/CGATGACGTAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGACG
CTCTTCCGATCT[12345678901]1GAGTGATTGCTTGTGACGCCTT [12345678 ] NNNNNNNNTTTT
TTTTTTTTTTTTTTTV,

where 5Acryd is an acrydite moiety, PC is a photo-cleavable spacer, the letters in bold indicate
T7 RNA promoter sequence, and underlined letters indicate the site for lllumina PE Read 1
Sequencing primer. The numbers indicate cell barcodes, which were specifically designed for
this experiment to have 50% GC content and Hamming distance of >= 3 between each pair of
barcode. Fluorescent in situ hybridization (FISH) analysis confirmed that hydrogel beads carried
~10”8 covalently-attached and photo-releasable barcoding DNA primers.

Increasing the throughput

To increase the cell isolation throughput we used a cell barcoding chip (v2) (Droplet Genomics)
and flow rates for cell suspension at 250 pl/hr, for RT/lysis mix at 250 pl/hr, and for barcoded
hydrogel beads at 75 pl/hr. The flow rate for droplet stabilization oil was 550 pl/hr. Such flow
parameters generated approximately 40,000 droplets an hour. After loading all components
(cells, beads and RT/lysis reagents) into droplets, the final composition of a reaction under
which cDNA synthesis was carried out was 155 mM KCI, 50 mM NaCl, 11 mM MgCl,, 135 mM
Tris-HCI [pH 8.0], 0.5 mM KH,PO,, 0.85 mM Na,HPO,, 0.35 % (v/v) Igepal-CA630, 0.02 % (v/v)
BSA, 4.4% (v/v) Optiprep, 2.4 mM DTT, 0.5 mM dNTPs, 1.3 U/ml RNAsIN Plus, and 11.4 U/ml
SuperScript-lll RT enzyme. After emulsion collection on ice the tube was exposed to 350 nm
UV-light to photo-release DNA barcoding primers attached to the hydrogel beads. The RT
reaction was initiated by transferring the tube to 65°C for 1 min followed by a 1-hour incubation
at 50°C and 15 min at 75°C. Post-RT droplets were chemically broken to release barcoded
cDNA, which was then purified and amplified as described previously (Zilionis et al., 2017)). At
the final step, libraries were amplified using trimmed PE Read 1 primer (PE1):

5-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA
and indexing PE Read 2 primer (PE2):
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5’-CAAGCAGAAGACGGCATACGAGAT[index]GTGACTGGAGTTCAGACGTGTGCTCTTCCG
ATCT,

where [index] encoded one of the following sequences: CGTGAT, ACATCG, GCCTAA,
TGGTCA, CACTGT or ATTGGC).

Multiplexing of PCR libraries allowed for the pooling of different samples onto one lane of
lllumina HiSeg2500 flow cell when desired.

Sequencing and fastq quality control

Data were sequenced on lllumina HiSeq 2500 instruments using paired-end sequencing (PE1
54 bp and PE2 66 bp). Each replicate was sequenced on one half of a HiSeq lane, at an initial
depth of approximately 100 million reads. scRNA-seq produces lower-complexity libraries than
bulk sequencing techniques, which can infrequently lead to reduced base quality. Because each
patient sample is precious, and because it is difficult to compare libraries with different average
molecule counts, we verified the quality of each sequencing library with FastQC (Andrews,
2010), a software package that estimates the number of un-callable and low quality bases.
Libraries that displayed significant (>25%) low quality bases were re-sequenced to maximize
inter-sample comparability. See Supplementary Table S1 for sample sequencing depths.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing: SEQC

Overview: At the time of data collection adequate analysis methods available to construct count
matrices from sequencing files for this data type were lacking. We therefore designed
SEquence Quality Control (SEQC), a package that takes lllumina fastq or bcl files and
generates a count matrix that is carefully filtered for errors and biases. The process is outlined
in figure S1B. We developed SEQC into a general purpose method to build a count matrix from
single cell sequencing reads, able to process data from inDrop, drop-seq, 10X, and Mars-Seq2
technologies.

Briefly, SEQC begins by extracting the cell barcode and UMI from the forward read and storing
these data in the header of the reverse read. This produces a single fastq file containing
alignable sequence and all relevant metadata. The merged file is carefully filtered for cell
barcode substitution errors, broken barcodes, and low-complexity polymers to eliminate errors
early in the pipeline, saving analysis cost.

Filtered reads are aligned against the genome with STAR (Dobin et al., 2013), a high
performance community-standard aligner. After alignment, minimal representations of
sequencing reads are translated into an hdf5 read store object, where cell barcodes are
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represented in reduced 3-bit coding. Reads are annotated with a reduced set of exon and gene
ids representing gene features—only the ones that are possible to detect with poly-A capture
based droplet RNA sequencing—and SEQC attempts to resolve reads with multiple
equal-scoring alignments.

In cases where genomic and transcriptomic alignments are present, the transcriptomic
alignments are retained. Unique alignments from the previous step are corrected for errors
using an enhancement of the method designed in Jaitin et al. (Jaitin et al., 2014), with an
additional probability model to constrain the false positive rate. The error-reduced,
uniquely-aligned data are grouped by cell, molecule, and gene annotation, and compressed into
count matrices containing (1) reads and (2) molecules. This matrix is thresholded in a similar
manner to what has been previously described (Macosko et al., 2015; Zheng et al., 2017).

Finally, SEQC outputs a series of QC metrics in an HTML archive that can be used to evaluate
the quality of the library and the success of the run. SEQC is fully modular, and as such has
been adapted to process drop-seq, 10x, and mars-seq data by switching de-multiplexing
modules. In addition, it can be configured either to run on a local high-performance cluster, or
can automatically initiate runs on Amazon Web Services compute platforms, for those without
access to local compute servers. The SEQC code is free and open-source, and can be found at
https://github.com/ambrosejcarr/seqc.qit, licensed under the MIT license.

Fastq Demultiplexing: The first stage of SEQC takes multiple fastq files containing genomic
information and barcoding metadata spread across multiple sequencing files, and merges that
information into a single fastq file using a “platform” class that comprises the locations of the cell
barcodes and UMIs, the type of barcode and UMI correction to be run, and the number of
T-nucleotides that are expected to be read from the capture primer. The merged fastq file
contains genomic, alignable sequence in the sequence field, and has read metadata prepended
to the name field, separated by colons. This step can be adjusted for novel sequencing
approaches by adding a new platform class, often with only 10 lines of code. This allows the
complete SEQC pipeline to be rapidly tested on iterations of new technologies.

For inDrop, which has variable-length cell barcodes, the description defines an additional
method to localize the constant spacer sequence, which is flanked on both sides by the cell
barcode (Figure M1B). The cell barcodes and molecular identifier are then extracted relative to
the position of the spacer. Finally, we count the number of T-nucleotides that follow the UMI,
where the poly-T spacer is supposed to be, and store this information for downstream filtering
steps. The generated fastq file has the following format:

@<CELLBARCODE>:<UMI>:<#T>; GENOMIC READ NAME (read 2)
<GENOMIC SEQUENCE (read 2)>

_|_
<GENOMIC QUALITY (read 2)>

Substitution Error Rate Estimation: Two pieces of information not retained by the
demultiplexing module are the cell barcode and UMI quality scores. Some pipelines, such as
10x Genomics’ Cell Ranger, posit that sequencing error is the major source of substitution
mutations in 3’ sequencing data. Our inDrop data does not support this view of library
construction. In inDrop, each read contains a 16-19 bp cell barcode selected from a whitelist of
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known barcodes. By examining barcodes for single base mutations, we estimated a positional,
nucleotide-specific error rate for each sample (Table S1). E.g. to calculate the probability of a
conversion from adenosine to cytosine, where 4 — C denotes this nucleotide conversion:

¥

M 5

:n._l i x;. 4 else 0}
. .

PAHC

J=1

where x;is a barcode, j; € {1,...,m} and each barcode has nbases.

The average observed per-barcode error rates are 4%, a number far in excess of the
abundance reported by the lllumina sequencer, which can be reliably calculated from errors in
phiX included in sequencing runs (mean error rate 0.2% F 0.1%) (Manley et al., 2016); a 4%
error rate is more in line with aggregate error rates of the enzymes used in the preparation of
sequencing libraries.

To verify that quality scores do not predict error rates, we tested the correlation between the
error state of the cell barcode (1 if the base contains an error and 0 otherwise) with lllumina
quality scores. If quality were predictive of substitution errors, we would expect to observe
strong negative correlations, suggesting that low quality implies high error probability. However,
we observed no relationship (mean r?=0.04, max r?=0.06; ‘C’ errors) on either inDrop or 10x
data.

In contrast, mutations to N bases produce the expected relationship, with base quality
negatively correlating with — N substitutions (r>=-0.87). However, N base errors made up less
than 1 /100,000 of the observed errors in our experiment, and we conclude (1) that base quality
is not meaningfully predictive of error rates, and (2) that most sequenced error is derived from
upstream library construction steps.

While a 4% barcode error rate is higher than the error rate observed by other technologies, the
use of linear amplification means that the errors we observe are non-cumulative: each transcript
is generated from the original captured mRNA molecule, and as a result, 99.94% of observed
barcodes have one or zero errors, all of which are correctable. This is in contrast to PCR-based
amplification approaches which propagate errors that occur in early cycles, requiring more
complex, graph-based correction methods, and larger Hamming buffers (see
https://github.com/vals/umis).

Pre-alignment filtering: This module takes as input a raw merged fastq file and outputs a
merged fastq file with corrected cell barcodes and full length UMI sequences (that may still
contain substitution errors).

Cell barcode correction: Cell barcode errors in inDrop are easy to detect by design: we have a
whitelist of 147,456 barcodes, each with Hamming distance >= 3. Thus, any single base
substitution error is resolved by creating a lookup table for all barcodes and all single
substitutions. If found in the table, the barcode is corrected. If not, it is discarded. As estimated
above, the probability of a cell barcode containing an error is ~2%, and thus the expected rate of
barcodes accruing 2 errors in a barcode is 1 / 2500. A 2-error lookup table has a very large
memory footprint and would significantly increase computational cost of processing each
experiment. Alternative algorithms have greater complexity and would increase run time. Thus,
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we accept this low rate of loss and proceed to correct single base errors, recovering
approximately 2% additional data for each sample.

UMI validation: In contrast to cell barcodes, UMIs are random, and correction cannot proceed
by the same strategy, so we devote a section later in the pipeline to the detection of UMI errors
after the gene and mapping position of a fragment are identified.

Another source of error in scRNA-seq experiments, including inDrop, cel-seq, mars-seq, and
likely drop-seq and 10x genomics, is the fracturing and random-priming of capture primers
(Figure M1C) (Jaitin et al.,, 2014). We often observe cell-barcode prefixes followed by
randomers. When fragmentation occurs at the cell barcode level, we can remove the fragments
using the whitelist approach above. To remove barcodes that break in the UMI, we determined
that we would sequence 5 bases into the poly-T tail of the primer, which we expect to be all
T-nucleotides. By excluding reads with more than 1 non-T nucleotide, we are able to exclude
most broken UMIs.

In aggregate, the filters in this section remove an average of 36% of reads (sd = 9.3%),
depleting the count matrix of spurious molecules (see Table S1 for detailed values). These
values are consistent with the results of running SEQC on drop-seq or MARS-seq datasets
(data not shown).

Annotation Construction

Because the genome annotation is designed to be broadly applicable across sequencing
modalities, it contains many features that are theoretically undetectable by inDrop and other 3’
sequencing technologies. To address this, we constructed a custom annotation by starting with
the current GENCODE genome and GTF file and removing all feature annotations that are not
theoretically detectable by inDrop.

Two characteristics of inDrop limit its ability to capture certain gene biotypes. First, it employs
poly-A capture, and thus will not detect non-polyadenylated transcripts. Second, it uses
SPRIselect beads at several stages to deplete primers from reaction media. These beads carry
out size selection, preferentially depleting primers but also small RNA species such as snoRNA,
miRNA, and snRNA. Thus, libraries are expected to contain only transcribed, polyadenylated
RNA of length > ~200 nt. Examining gene biotypes, this meant retaining protein coding and
IncRNA biotypes, and excluding others.

To determine the impact of this change of reference on our data, we aligned the same
single-cell immune dataset against the full reference and the reduced reference described
above. We constructed a pseudo-bulk dataset for each reference by summing the molecules
across all cells, producing an expression vector that contained a single value for each gene. We
hypothesized that the reduction in reference features would result in a concentration of
alignments in biologically relevant genes by depleting non-specific features, and that there
would be many drop-out events where genes would be detected in the complete reference, but
not the subset.

This is exactly what was observed (Figure M1D). The overall r2 value between the references is
0.94, with 93% of genes holding the exact same values in both reference alignments. In
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addition, information is concentrated in 35% fewer features, despite losing only 8% of the total
molecules. There is also a large drop-out contingent present only when aligned against the
complete reference. Gene ontology enrichment against this reference revealed high-level
biologically agnostic enrichments, such as “protein coding,” “translation,” and other enrichments,
which suggest a random sampling of high-expression genes.

Surprisingly, there was also a contingent of genes present only in the reduced alignment. These
genes were highly enriched for immunological pathways, including JAK/STAT signaling,
cytokine production, cytokine receptors, and immune growth factors, and further included critical
immune genes such as IL3RA, a plasmacytoid dendritic cell marker (Figure M1D). This
suggests that they are likely to represent true annotations for genes in this dataset, and that
reducing the annotation produces a gain in specificity. We reasoned that these genes were
uncovered in the reduced annotation because there are features in the complete set, such as
pseudogenes, which have high homology to transcribed genes. Including these annotations,
which should not be detectable, produces illogical multi-alignment to multiple genetic locations.
When such multi-alignment cannot be resolved, most pipelines (including this one) exclude
those multi-aligned reads, losing valuable signal. Given these results, we believe that the 8%
molecule loss is the result of correctly discarding low-complexity alignments that were spuriously
assigned a low-quality transcriptomic feature.

We note that Cell Ranger, the most commonly used 10x pipeline, carries out an extreme version
of this redesign: it removes any gene that is not protein coding. We believe that this is too harsh:
it excludes numerous transcribed pseudogenes and lincRNA which have been previously shown
to be expressed, have biological functionality, and to be detectable in scRNA-seq.

The extreme case of annotation redesign is to exclusively align to expected features. Several
methods exist to accomplish this, including Kallisto (Bray et al., 2016) and Tophat2 (Kim et al.,
2013). However, 3’ scRNA-seq data typically contains between 10-30% genomic contamination,
as identified by intergenic alignments. When we aligned directly against the transcriptome, we
found that approximately 1% of intergenic reads were mistakenly aligned to exonic locations
despite having higher alignment scores to genetic regions (data not shown). As a result, we
align to the genome, considering only detectable features, and prefer transcriptomic alignments
in cases where there are equivalent genomic and transcriptomic alignments, but remove reads
that score highest against the genome.

Alignment

The merged, single-ended fastq files are aligned to hg38 with STAR using the annotation file as
described. We selected STAR because it is a fast, highly parallel, cloud-scalable aligner that
benchmarks well against existing aligners (lllicic 2016). We note that STAR automatically trims
bases as necessary to find alignments, and as such no pre-trimming of reads based on quality
is carried out. Alignment parameters used are as follows: —outFilterType BySJout,
—outFilterMultimapNmax 100, —limitOutSJcollapsed 2000000 -alignSJDBoverhangMin 8,
—outFilterMismatchNoverLmax 0.04, —alignintronMin 20, —alignintronMax 1000000, —readFilesIn
fastqrecords, —outSAMprimaryFlag AllBestScore, —outSAMtype BAM Unsorted
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This module thus takes as input a fastq file and produces a bam file containing up to 20 multiple
alignments per input fastq record and with all unaligned reads contained in the same file. This
format is useful for archival purposes, as it can be used to reconstruct the original merged fastq
file without data loss.

Multi-Alignment Correction

Alignment algorithms aim to identify the unique portion of the genome that was transcribed to
generate the read that is being aligned. In some cases, this unique source cannot be identified,
and in these cases multiple possible sources are reported. These are commonly termed
“multi-alignments”, and because 3’ ends of genes have higher homology than other parts of the
genome, multi-alignments are more common in 3’ sequencing data than in approaches that
cover the full-transcriptome, such as Smart-seq2. Despite the increased frequency, most 3’
pipelines discard multi-alignments and deal exclusively with unique genes. This module is
designed to resolve all multiple alignments, producing an output that contains resolved (now
unique) alignments.

There are several existing approaches to resolving multi-alignments, of which transcriptomic
pseudo-alignment, such as that done by Salmon (Patro et al., 2017) and Kallisto (Bray et al.,
2016), and EM approaches, such as RSEM (Li and Dewey, 2011), are the most common.
However, both methods have the effect of decreasing signal-to-noise ratios for inDrop
sequencing data. For RSEM, low-coverage 3’ sequencing data contains considerable
uncertainty, which RSEM is designed to pass into the count matrix. This uncertainty is normally
removed by UMI-aware count based methods, although it incurs some data loss. Kallisto and
Salmon, in contrast, both pseudo-align and resolve multi-alignments, but only against the
transcriptome. This causes alignments from contamination that is of genomic origin to be
pseudo-aligned to transcriptomic positions, producing inflated and spurious alignments for
low-homology genes.

Of the high-throughput droplet-based approaches, inDrop has a unique combination of linear
amplification and UMIs, which produces high fragment coverage per UMI. Although individual
alignments are often ambiguously aligned to more than one location, it is often possible to look
at the set of fragments assigned to an UMI and to identify a unique gene that is compatible with
all the observed fragments. Here we implement an efficient method to find the unique genes
that generate each fragment set. When a fragment set cannot be attributed to a specific gene, it
is discarded.

Starting with all reads attributed to a cell, we begin by grouping reads according to their UMI,
producing “fragment sets” S. Typically, these fragment sets represent trivial problems, such as
s, = {4, A, AB}, a set with two unique alignments to gene A and a third ambiguous alignment
to genes A and B. In this case all three observations support the gene A model, while only one
observation supports the gene B model.

In cases of UMI collisions, where two mRNA molecules were captured by different primers that
happen to share the same UMI sequence, this can lead to problems wherein reads from these
merged fragment sets are mistakenly discarded as multi-aligning. However, because the
probability of two genes sharing significant homology is low, it is usually possible to recover
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these molecules by first separating fragment sets into disjoint sets. For example, if a fragment
set

s, =1{4, AB, B, B, C, CD, ABC, E, EF, EF},
it is broken into two disjoint groups:
s, =s3Usy; s;,Ns, =2 where: s, = {4, 4B, B, B, C, CD, ABC} and s, = {E, EF, EF} .

This is biologically reasonable, as molecule collisions are the only way to reasonably obtain a
group of molecules that covers two non-overlapping gene annotations.

To calculate disjoint sets efficiently, we utilize a Union-Find data structure (Aho and Uliman,
1983), which finds disjoint sets in O(log(n)) time. Pseudo-code is as follows:

summarize alignments as data = {cell=c, umi=u, gene=g}
sort data by ¢ >u > g
for fragment_set in datal[{c, u}l:
for disjoint_set in union_find(fragment_set):
find number_shared_genes in disjoint_set
if number_shared_genes ==
resolve disjoint_set

We note that this allows us to more accurately identify the alignment rates for each gene, build
better error models for barcode correction, and recover cases where reads align multiply to the
same gene. More critically, it gives us the ability to recover fragments that would otherwise not
be resolvable due to sequence homology, and these improved fragment counts per molecules
act as significant predictors of molecule likelihood and UMI quality. We note that a similar
strategy has since been published by (Klein et al., 2015) and a comparable logic underlies the
concept of transcript compatibility in Kallisto (Bray et al., 2016).

We had previously created a model wherein disjoint sets with more than 1 common gene could
also be disambiguated by calculating the probability of gene-gene multi-alignments from their
homology, by comparing gene sequences using a Suffix Array built from the final 1000 bases of
each gene. With this strategy, we could estimate the relative probability that genes were
generated from each potential candidate molecule shared across all reads in the fragment set.
However, the relative rarity of such events (<1% of data) combined with the additional run-time
complexity of this method caused us to omit it from the production version of SEQC. This
module typically resolves approximately 1M reads per hiseq lane. The result of this module is a
bam or h5 file containing only unique alignments to gene features.

Molecular Identifier Correction

Errors in molecular identifiers are well-known to introduce noise in sequencing experiments
(Jaitin et al., 2014), since undetected errors induce spurious increases in molecule counts. This
module takes an hdf5 read store, identifies errors in UMIs, and replaces them with their
corrected value. The most common approach, published in (Jaitin et al., 2014) for MARS-seq,
does a very good job of detecting and removing molecule errors in inDrop (due to similarity in
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the Cell-seq protocol used in both technologies). This approach deletes any UMI for which a
higher-abundance donor UMIs can be identified that (1) lies within a single base error (2) has
higher count (3) and contain all observed alignment positions of the recipient RNA. This results
in removal of approximately 20% of observed UMIs. However, we observed that this model can
be overly stringent, correcting UMIs when the donor molecule has as few as one read count
higher than the recipient.

We apply a modified version of the (Jaitin et al., 2014) approach, where we replace errors with
corrected barcodes instead of deleting them, and where we only eliminate errors when we have
adequate statistical evidence. To accomplish this, we utilize the spacer and cell-barcode
whitelist to empirically estimate a per-base error UMI error rate of approximately 0.2% per base.
e.g. to calculate the probability of a conversion from adenosine to cytosine, where 4 — C
denotes this nucleotide conversion:

¥

M 5

i
A
il

:._lm _1{1 if x4 else 0}

PA—»C
J

where x;is a barcode, ; € {1,...,m} and each barcode has nbases.

To calculate the probability a target read was generated in error from a specific donor molecule,
we calculate the product of the errors that could potentially convert a donor into the observed
molecule. To convert, for example, ACGTACGT into TTGTACGT, having one 4 —» TTandone C —» T
conversion:

e = {PA—>T)PC—>T}

The probability of the above conversion is
n
P yceracer — rreracer = Hei
1

Because there are multiple potential donors for each molecule, we calculate the conversion
probability for each molecule. Assuming errors are randomly distributed, they can be modeled
by a Poisson process, and Poisson rate term can be estimated from the data:

A= 1 jonor xP

conversion

where n,, . is the number of observations (reads) attributed to the donor molecule in the data.
Since the sum of multiple Poisson processes is itself Poisson, the rate of conversion from each
donor can be combined into a single rate A, for each target molecule. The set of conversions
s that we consider for each target molecule are all conversions that can occur with two or fewer
nucleotide substitutions, in other words, all molecules within a Hamming distance D, <2, where
D, is a matrix of pairwise Hamming distances between barcodes.

s= {h_; i Dy i) <2}
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Finally, given the probability of a molecule being observed via the substitution errors that are
corrected by the Jaitin method, we can calculate the probability that » observations of a specific
molecule x were generated via the Poisson process with rate A, :

oo €t

P = ==

x!

Cases that are very unlikely (p < 0.05) are not corrected. For inDrop experiments, this results in
a recovery of an additional 3-5% of molecules in the data that are otherwise error-corrected. We
note that this model is not applicable to all data; It is useful in this instance because we have
relatively high coverage (10 reads / molecule) that allows us to evaluate our confidence in
molecule observations. For lower-coverage data, it may be appropriate to err towards removing
molecules instead of retaining them.

Raw Digital Expression Matrix Construction

To create a digital expression matrix, the uniquely-aligned, error-corrected hdf5 read store is
de-duplicated by counting unique groups of reads with the same UMI, cell barcode, and gene
annotation. A single molecule then replaces each set, and those molecules are summed to
create a cells x genes matrix. sScCRNA-seq count matrices are often over 95% sparse, and thus
are stored in matrix market format and operated on as coordinate sparse or compressed sparse
row matrices. We call these count matrices “raw” count matrices because they contain all
barcodes observed in an experiment.

Cell Selection and Filtering

Size Selection: Barcoding beads are loaded into inDrop at higher rates than cells in order to
ensure that a high fraction of cells are encapsulated with exactly one bead. As a result, the raw
count matrix contains a mixture of cell barcodes that were encapsulated with cells and cell
barcodes that were encapsulated alone, but may nevertheless capture some ambient mMRNA
molecules that float in solution due to premature lysis or cell death in the cell solution. We
separate these by finding the saddle point in the distribution of total molecule counts per
barcode and excluding the mode with lower mean. In practice, we accomplish this by
constructing the empirical cumulative density function of cell sizes and finding the minimum of
the second derivative (Figure M1E) of the distribution. For typical inDrop runs, this results in the
elimination of over 95% of the cell barcodes, but retains as many as 95% of the molecules.

Coverage Selection: Molecule size alone is not adequate to remove all barcodes that were not
paired with real cells. Some barcodes appear to aggregate higher numbers of errors, and as
such we often see a bimodal distribution of molecule coverage: a higher mode that represents
real cells, and a smaller mode that represents aggregated errors (Figure M1F). We remove the
low-count density by fitting 2-component and 1-component Gaussian mixture models to each
axis and comparing their relative fits using the Bayesian information criterion. When the
2-component model’s difference in likelihood is at least 5% larger than the 1-component model,
we exclude the densities with the smaller mean (Figure M1G).
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Filtration of dead or dying cells: We score cells for mitochondrial RNA content, which is
widely used as a proxy for cell death in scRNA-seq. We observe that a small fraction of cells
contain a higher abundance of molecules annotated by this signature, as much as 20-95% of
their RNA. Since inDrop does not lyse mitochondria, we reason that these are likely to be cells
dying due to stress imposed on them by the inDrop procedure or prior sorting, and remove them
from further analysis. This filter may be turned off for studies where apoptosis is a relevant
phenotype.

Low-complexity cell filtration: Finally, we regress the number of genes detected per cell
against the number of molecules contained in that cell. We observe that there are sometimes
cells whose residuals are significantly negative, indicating a cell which detects many fewer
genes than would be expected given its number of molecules. We exclude these cells whose
residual genes per cell are more than 3 standard deviations below the mean (Figure M1H).

Information Storage & Run Time

scRNA-seq generates large volumes of data whose storage can be costly and onerous, thus we
store only aligned, barcode-tagged bam files which losslessly retain all information from the
original multiplex fastq files in small storage space. SEQC supports reprocessing of these files,
and backwards conversion into fastq files, if users desire the ability to process their data on
other platforms or reprocess with updated versions of SEQC. Additional metadata files take up
nominal space, and generated count matrices are stored in matrix market sparse format in light
of the sparsity of the data. SEQC requires approximately 8 hours to run on a standard 32 GB /
16 core Amazon c4.4xlarge, and costs $5.84 on on-demand or $0.88 on preemptible (spot)
instances to process an inDrop, drop-seq or 10x genomics experiment. In contrast, 10x
genomics commercial Cell Ranger alternative costs approximately $20, in large part due to high
RAM requirements.

Data Quality Analysis of Breast Leukocytes

We applied SEQC to each of the 14 samples and 61 replicates in our data. Each sample had a
minimum of 2 replicates (Table S1). Samples were sequenced such that each cell was covered
by an average of 22,000 reads. Cells contained on average 15 reads per molecule, and cell
saturation was 91% across all samples and replicates. On average, 20% of cells were excluded
due to high mitochondrial content, a proxy for cell death and stress. Samples obtained from
tissue requiring dissociation had significantly higher mitochondrial transcripts (25%) than those
obtained from blood (13%) (t=2.42, p=0.018). Small numbers of low-complexity cells displaying
fewer than expected genes for their molecule count were detected and removed, removing 1.2 ¥
2.3% of total molecules. A complete summary of read abundances, genes detected, and
number of cells can be found in Table S6. Having excluded non-viable cells from downstream
analysis, we shifted to examining within-sample consistency across technical replicates.

Library Consistency and Quality Control
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The inDrop encapsulation procedure runs 10,000 cell aliquots in series, leaving open the
possibility of batch-to-batch variation within technical replicates of patient samples. To
determine the magnitude of batch-to-batch variation, we compared the variation within patient
replicates to between-patient comparison. Each sample was collapsed into a pseudo-bulk by
summing over the cells of the digital expression matrix. We determined intra-patient consistency
by determining the average pairwise Pearson correlation between pairs of samples, and
compared that against the inter-patient correlations. After excluding one aberrant sample with a
sample-sample correlation of 0.6, we observed Pearson correlations with a minimum of r2=0.92,
a mean of 0.97, and a standard deviation of 0.02 (full pairwise correlation matrix in Figure M11).
This is in contrast to the complete pairwise correlation matrix, where the average correlation
between patients is 0.72. This suggests that patient-to-patient variation is primarily biological,
and that we have low technical variation between inDrop runs. These comparisons are
generated automatically by SEQC, and serve as an internal control for batch variation.

Individual Sample Normalization and Clustering

To characterize the immune cells extracted from patients in this study, we began by analyzing
samples independently to identify their cellular composition and cell type abundances (Figures
1C, S1C). Cells were first normalized by median library size.

The normalized data was then decomposed using randomized principle component analysis
(Halko et al., 2009). We selected the number of principal components to retain using the knee
point (Valle et al., 1999). This resulted in 6-10 principal components per sample. The
dimension-reduced PCA projection was used as the input to PhenoGraph (Levine et al., 2015),
which was used to cluster the data with default parameters (k=30 nearest neighbors). The same
principle components were used to generate tSNE projections (Maaten and Hinton, 2008),
which were generated with barnes-hut tSNE, implemented in the bhtsne package
https://github.com/Ivdmaaten/bhtsne. (Figure 1C, S1D)

Cluster Cell Type Annotation

As reference data, to facilitate the interpretation and labeling of clusters derived from
PhenoGraph and Biscuit, we collected previously generated bulk gene expression profiles of
sorted cells from a number of sources. To label our immune clusters we collected profiles from
several published datasets on sorted immune populations (Novershtern et al., 2011) (Jeffrey et
al., 2006), which provided 37 and 32 sorted populations, respectively. In addition, samples from
the ENCODE consortium were added as negative controls to identify and subsequently remove
contaminating stroma and tumor cells which may have infiltrated the sample due to low-level
CD45 expression or auto-fluorescence. To determine the gross cell types of the clustered
immune cells extracted in this experiment, we examined the correspondence between cluster
centroids for PhenoGraph clusters or mean parameters for Biscuit clusters and the collected
cohort of bulk profiles.

Bulk samples were library-size normalized and pre-processed by mean centering, and in the
case of microarray data from (Novershtern et al., 2011) (Jeffrey et al., 2006), the data was also
scaled by standard deviations. In the case of PhenoGraph clusters (Figures 1C, S1D), cells
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were library size normalized, clusters were mean centered, and low-expression genes with an
average of fewer than 1 count per cell were removed to ensure the correlations were based on
the highly expressed genes in each cell type. Then, cluster centroids were correlated with bulk
profiles. In the case of Biscuit clusters (Figures 2E,F), mean parameters for each cluster were
correlated with bulk profiles.

Each of the bulk profiles was marked as having derived from one of several major cell types:
B-cells; T-cells (naive, central memory, cytotoxic, Treg); Monocytic cells (monocytes, dendritic
cells, macrophages); Mast cells; Neutrophils; or NK-cells. The highest-scoring bulk profile for
each centroid was used to categorize each cluster by its type, and types were split for
downstream analysis.

Cells were also typed by examining expression of known marker genes. In this analysis, cells
were scored as detecting a marker gene if the cell contained a non-zero molecule count for that
gene. Each cell was corrected for its detection rate (the fraction of total genes detected in that
cell) and the marker detection rate was then averaged across cells of a cluster. Markers used to
type cells included NCAM1, NCR1, NKG2 (NK-cells), GNLY, PFN1, GZMA, GZMB, GMZM,
GZMH (cytotoxic T, NK), FOXP3, CTLA4, TIGIT, TNFRSF4, LAG3, PDCD1 (Exhausted T-cell,
T-regulatory Cell), CD8, CD3, CD4 (T-cells), IL7R (Naive T-cells), CD19 (B-cells), ENPP3, KIT
(Mast cells), IL3RA, LILRA4 (plasmacytoid DC), HLA-DR, FCGR3A, CD68, ANPEP, ITGAX,
CD14, ITGAM, CD33 (Monocytic Lineage). For all retained clusters, the two typing methods
agreed (Figure 2H).

Gene Signature Summarization

While attempting to interpret biological signals that were observed in the studied immune cells,
we realized that it was important to consider several facets of gene signature enrichment: (1)
the classically studied mean value of the signature across cells in the cluster, but also (2) the
marginal distribution of cell loadings across the signature and (3) the relative contribution of
each gene. Therefore, for plots of signature expression by patient we began by constructing a
barplot of the counts for each gene in the signature, corrected for cellular observation rate (the
total number of genes observed with molecule count > 1). This displays the contribution of each
gene to the signature (top panel in Figure 1E, S1E-G and 2B). The normalized values for each
signature, per cell, are then summarized as a box plot to display the variation of cells in each
patient (left panels). Finally, the cluster median of each gene is taken per patient, and the
cluster medians are z-scored across patients. The z-scored values are plotted as a heatmap
(center-right panel in Figure 1E, S1E-G and 2B), facilitating a comparison of signatures across
patients.

The full lists of compiled gene signatures used throughout this paper can be found in Table S4
and may serve as a valuable resource for additional investigations. To create these lists we
broadly surveyed the extant literature and manually curated consensus lists of genes to be
included. The relevant literature surveyed to form these signatures includes the following:

For the M1 and M2 macrophage polarization signatures we merged gene lists from (Sica and
Mantovani, 2012); (Biswas and Mantovani, 2010); (Bronte et al., 2016) (Ugel et al., 2015)
(Gabrilovich, 2017). For other myeloid-specific signatures we used (Villani et al., 2017) (pDCs,
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AXL/SIGLEC6 DCs, CD141/CLEC9A DCs, CD11C_A DCs, CD1C-/CD141- DCs, CD1C_B DCs,
New Monocytes 1, New Monocytes 2, CD14+CD16- Classical Monocytes, and CD14+CD16+
Non-Classical Monocytes); and (Gesta et al., 2007), (Perera et al.,, 2006), (Farmer, 2006;
Lefterova and Lazar, 2009) (Lipid Mediators).

For T Cell-specific signatures we used (Wherry and Kurachi, 2015), (Wherry, 2011), and
(Schietinger et al., 2012) (Exhaustion and Anergy); (Glimcher et al., 2004) (Cytolytic Effector
Pathway); and (Smith-Garvin et al., 2009), (Chtanova et al., 2005), and (Adam Best et al., 2013)
(T Cell Activation).

For gene signatures used across cell types we used (Mantovani et al., 2008), and (Grivennikov
et al., 2010) (Pro and Anti-Inflammatory); (Platanias, 2005) (Type | and Il Interferon Responses);
(Ho et al., 2015) (glucose deprivation); (Benita et al., 2009; Makino et al., 2003) (Hypoxia/HIF
Regulated); (Moreno-Sanchez et al., 2009), (Caton et al., 2010; Funes et al., 2007; Mues et al.,
2009), (Beale et al., 2007) (Glycolysis, Gluconeogenesis, TCA Cycle, Pentose Phosphate
Pathway, and Glycogen Metabolism), and (Whitfield et al., 2002) (G1/S).

Biscuit Clustering and Normalization for Merging Samples

When attempting to merge immune systems from multiple patients, we observed that in some
cases, cells are more similar to others from the same patient than they are to those of the cell
type. Figure 2A (left) shows scRNA-seq data from 9K immune cells from 4 breast cancer
patients after normalization of cells to median library size, suggesting large differences between
patients. Moreover, the tSNE projection does not suggest diverse subpopulations and structure
beyond two main cell types of lymphoid and myeloid cells (Figure 2A left).

The differences across patients are likely caused by a large number of factors, both technical
and biological. Technical factors include differences in machine, enzyme activity, lysis efficiency
or experimental protocol. These samples were also subject to operational variation during the
clinical resection, transport, and handling. These factors all impact cell viability, which in turn
affects the single cell RNA-seq library preparation, in particular molecular capture rate and
sampling. Because molecular capture is a binary event, and the capture rates are very low,
these technical variations often determine whether a given gene feature is observed in the data
for a given cell.

These more technical artifacts, particularly in capture rate, are confounded with biological
differences. This is particularly challenging in the case of immune cells, where activated cells
have higher transcription rates. Thus, the number of captured molecules may be higher in
activated immune cells and therefore activation of immune cells can be convolved with total
counts (Blackinton and Keene, 2016; Cheadle, 2005; Singer et al., 2016). As a result, methods
that normalize all cells together may remove critical cell type-specific biological variation in the
systems of interest such as immune activation and environmental response. Indeed, we see
large differences in the number of activated T-cells across patients (Figure 2B), with more
activated T-cells in the Triple Negative subtype as expected (Dushyanthen et al., 2015). Hence,
normalizing by library size will likely remove these biological variations.

To solve this problem we developed and applied the method “Biscuit” (short for Bayesian
Inference for Single-cell ClUstering and ImpuTing) to simultaneously cluster cells and normalize
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according to their assigned clusters (Figure M2). This is done through incorporating parameters
denoting cell-specific technical variation into a Hierarchical Dirichlet Process mixture model
(HDPMM) (Gorur and Rasmussen, 2010) (Figure M2A). This allows for inference of cell clusters
based on similarity in gene expression as well as in co-expression patterns, while identifying
and accounting for technical variation per cell (Figure M2B,C). Two key ideas that power Biscuit
are the use of gene co-expression as a more robust means to identify cell types, and the
normalization of each cell type separately to better account for cell type-specific effects on
technical variation. The main idea behind the use of co-expression is that cell types not only
share similar mean expression, but also share similar co-expression patterns (covariance)
between genes. While mean expression can be more sensitive to capture efficiency, covariation
is more robust to such effects. This similarity in co-variation can be used to improve
normalization and in turn improve the clustering, through the learning of cluster specific
parameters.

By jointly performing normalization and clustering, we retain biological heterogeneity and avoid
biases that result from independent clustering and normalization, and instead are able to match
cells to clusters of the same cell type from different patients which may have very different
sampling rates. Figure 2A (right) shows the same data from 4 tumors after normalization with
Biscuit. Note that Biscuit does not use any information on sample IDs in the normalization, and
normalization is only driven by cluster assignments. The Biscuit-normalized data shows that the
differences in library-size normalized data were largely artifacts of normalization and batch
effects. Furthermore, data from Biscuit shows richer structure suggesting diversity in cell types.
Hence, we then applied Biscuit to data from all 8 tumors to infer the full diversity of immune cell
types in the breast tumors, which identified 67 clusters indicating significant diversity in both
lymphoid and myeloid cell types (Figure 2C).

Summary of Biscuit model: Starting with the count matrix X = [x7, .... ,x; ] where each column
X; (1D contains the expression (number of unigue MRNA molecules) of d genes in cell j, the
model assumes the log of counts 17 = log(0.1+x;) for each cell j=(l,..,n) follow a
multivariate Normal distribution: l;|zj =k ~N(u ,B;Z,) where z; denotes the assignment of
cell j to cluster k£, and 1,,%, are the mean and covariance respectively of the k-th mixture
component (cluster), and scalars o;,B; are cell-dependent scaling factors used for
normalization. Note that the assumption of log Normality has been verified using model
mismatch and Lilliefors tests (Prabhakaran, S., Azizi, E., Carr, A., & Pe’er, D, 2016). Within a
Bayesian model setting, we assign conjugate prior distributions to the parameters, namely a
symmetric Dirichlet prior of the order K, a conjugate-family prior over p, as Normal and for X,
as Wishart (Diaz-Garcia et al., 1997). A noninformative Normal prior is set for o, and
Inverse-gamma for B; . The full model specification is thus as below:

.Vj ~ N(l’rka z:k)

W~ N, Z)
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3, ~Wish (H™', ")
W~ N, %)
2~ Wish (d, &)
H' ~ Wish (d, 12")
o' ~ InvGamma(l, 611 -1+d
zZj|m ~ Mult (z;|)
7| ¢, K ~ Dir(w|p/K, ..., p/K)
¢! ~ Gamma(1,1)
o ~ N(v,8)
B, ~ InvGamma (©,0)

where p",2" are the empirical mean and covariance across all cells, which are used to allow
priors to adapt to different datasets (Figure M2B).

Parameters are inferred through a scalable Gibbs algorithm using the Chinese restaurant
process (CRP) (Pitman, 2006) which also infers the number of clusters (K) (Figure M2C). The
conditional posterior distributions for model parameters {x,|i,Z,,d, B,z,w, X, H} have
analytical forms which we derived in (Prabhakaran, S., Azizi, E., Carr, A., & Pe’er, D, 2016).

Final cluster assignments were estimated from the mode of inferred distribution for assignment
of cells to clusters (z;; Vj)after removing a burn-in period. The mean of Gibbs samples for
cluster-specific parameters (u,%,; Vk=1,..,K) and cell-specific parameters (0, B;5 V) were
used for further analysis and interpretation.

The goal of normalization is to transform the data from 17 to y; in which the expression is
corrected for cell-specific factors o;,B; using a linear transformation y; = Al; +b such that
imputed expression for cell j follows N(y,,X,) and hence all cells assigned to the same cluster
follow the same distribution after correction. One transformation satisfying the above
distributions for /; and y, is 4 = ?/IE ,b=(1-04) .

This transformation also imputes dropouts in a cell by using the parameters of the cluster it has
been assigned to. The use of covariance parameter in the model ensures that intra-cluster
heterogeneity is preserved after imputing. We show a systematic evaluation of the algorithm

performance (on synthetic and real single cell data), its robustness, as well as the ability of this
method to impute dropouts in (Prabhakaran, S., Azizi, E., Carr, A., & Pe’er, D, 2016).

Biscuit Implementation: The joint distribution of Biscuit with cluster- and cell-specific
parameters is non-conjugate. Although inference of these parameters via MCMC-Gibbs is
possible as presented in (Prabhakaran, S., Azizi, E., Carr, A., & Pe’er, D, 2016), overall runtime
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of the algorithm was much slower due to multiple covariance matrix inversions leading to slower
chain convergence. In order to reduce the number of matrix inversions and enable faster chain
mixing, we make use of the conjugate prior for the multivariate Gaussian, namely the
Normal-inverse Wishart distribution, where the cluster means and covariances can be jointly
inferred (Murphy, 2007).

The Normal-inverse-Wishart (NIW) distribution is the conjugate prior to the multivariate
Gaussian distribution with unknown mean and covariance. It is a multivariate four-parameter
continuous distribution with probability density function defined as follows:

f(}rkﬂzk |7;9 lr()aAOv pOﬂKOaajaﬁj) ~ NIW(W(:Z/{ | l“_l"v A,a p',K', ajv B/)

The inference equations for parameters based on NIW also have closed-forms:

W=Kofl t e, K =Kg+n, p'=pytn
N oo 3 T - ~ 7
N = B XGDG T+ i+ i
Jj=
SE 7]-) ~ median (Bj:z, <) * InverseWish (A", p')
S| Tj) ~ median (o, 2 ek ) * Student t (', ﬁ)

where i, € RY, > 0, %, € R”’ and is positive semi-definite and v > (d— 1). This scalable
implementation of Biscuit in R can be found in:

https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016. The code is parallelized
at multiple stages - the NIW-based inference engine works in parallel across blocks of genes
ordered through the Fiedler vector. Next, cell assignments per block are consolidated into a
confusion matrix via further parallelisation and the overall cluster means and covariances are
computed using the law of total expectation, also performed in parallel. A dataset of 3000 cells
and 1000 genes takes under two hours on a Cloud platform such as Amazon Web Services
(AWS), which is at least 6 times faster than the implementation of the initial model. For the full
dataset, the DPMM dispersion parameter was set to 100, gene batches were set to 50, and the
number of iterations was set to 150.

Entropy Metric to Evaluate Batch Effect Correction

To evaluate Biscuit’s ability to correct batch effects across data from all eight tumors (Figure 2C)
and match immune subtypes across the tumors, we devised an entropy-based metric that
quantifies the mixing of the normalized data across samples. The entropy-based metric is
computed as follows: We constructed a k-NN graph (k=30) on the normalized data using
Euclidean distance and computed the distribution of patients (tumors) m=1,..,8 in the
neighborhood of each cell j, denoted as ¢;”. Then we computed Shannon entropy
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8
H;= - mgl q;" log q;" as a measure of mixing between patients, resulting in one entropy value

H; per cell j. High entropy indicates that the most similar cells come from a well mixed set of
additional tumors, whereas low entropy indicates that the most similar cells largely come from
the same tumor. Prior to Biscuit, most cells in the data had low entropy values, with 40% of the
cells residing in a neighborhood of cells purely from the same tumor. We compare the
distribution of entropies across all cells from all 8 tumors, before and after Biscuit, which reveals
that the median of entropy shifts significantly towards higher mixing of samples after processing
with Biscuit (Mann-Whitney U-test: U=1.7721e+09, p=0; Figure 2D). Thus, we conclude that
Biscuit substantially corrected batch effects in this data.

Quantification of Cell Type Enrichment in Tissues

To calculate cell type enrichments in each tissue (Figure 3B), we normalized each tissue to
have equal cell count and created a 2-factor contingency table of cell types versus tissues. We
then calculated y? enrichments for each tissue type and reported the test statistic and p-value.

Next, we wished to identify which pair of tissues had the greatest phenotypic overlap. To assess
similarity in phenotype, we constructed a kk-nearest neighbor graph (with k=10) in a uniformly
selected subset of n=3000 cells from each tissue, reasoning that a cell’'s closest neighbors in
this high-dimensional embedding are the cells with the closest phenotypes. We then examined
the overlap between each pair of tissues uand v, where n is the number of cells in the subset,
k is the number of neighbors, and u, v € {tumor, normal, lymph node, blood }

™M=

Y{lifo,=uando; = v else 0}
1j=1

_ 1
Ouy = %

with ®; denoting the tissue for cell i and j =1, ...,k denotes the neighbors of cell i . We build a
null distribution from all overlaps between all pairs of tissues, and identified tumor and normal as
having the highest frequency of being co-identified as neighbors. To test if this enrichment was
significantly higher than the other shared-neighbor overlaps, we calculated the z-score of
O umor. norma; COMpared to the population of all pairwise overlaps (z=2.68), for which a z-test
confers a p-value of p=1.4e-4. Thus, we conclude that tumor and normal have the highest
phenotypic overlap between any pair of tissues in our data. Both z-scores and p-values are
reported. The above statistics are reported under the section “Environmental impact on the
diversity of immune phenotypic states”.

Creating a Global Immune Atlas using Biscuit

To generate a global atlas of immune cell types, we combined samples from all patients and
tissues by applying Biscuit to the full set of n=62024 cells and d=14875 genes, resulting in a
global atlas of K=95 clusters (Table S2) in which n=57143 cells had statistically significant
cluster assignments. The remainder of cells had low library size and were hence removed from
further analysis.
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A subset of these clusters were identified as probable cancer or stromal populations through
correlation with bulk gene expression datasets and marker gene expression. While these
non-immune clusters may be of significant interest in their own right, they were beyond the
scope of this paper and were therefore excluded from downstream analysis, leaving 47,016
cells in 83 clusters (Table S2).

Biscuit is a probabilistic model; hence, we inferred a probability distribution for all parameters.
Figure S2A shows the posterior of assignment of cells to clusters, which shows a broader
distribution for most naive T cell clusters, suggesting that these clusters are less distinct as
compared to other clusters. Other cell types exhibited a distinct, well separated mode. For
simplicity, all further analysis is based on the mode of the probability of assignment of cells to
clusters, such that each cell is assigned to one cluster only (Figure 2E).

Biscuit captures cell-type specific scaling factors using parameters o, ;. Figure S2G shows
that o, values capture variation in library size (sum of total counts per cell ;). Moreover, we
observe different relationships with library size based on assigned clusters, highlighting the
cluster-specific normalization that is done in Biscuit. We also observe prominent differences in
distributions of o, B; parameters across cells from different patients (Figure S2H,1), emphasizing
the differences resulting from technical factors across patients that are captured in Biscuit. The
o;, 3, parameters represent each cell’s translational and rotational shifts within the Multivariate
Normal distribution associated with the cluster assigned to that cell, by scaling the moments. By
correcting these shifts, cells assigned to the same cluster will be normalized and follow the
same distribution N(5,%,) .

Cluster Robustness

To evaluate cluster robustness, we performed 10-fold cross-validation, independently clustering
and normalizing on random subsets of data. For each of 10 subsets, we ran Biscuit to obtain a
set of clusters. To compare the results across the 10 subsets, we computed the confusion
matrix, which indicates the probability of each pair of cells j,j’ being assigned to the same
cluster: P(z; =z;). Figure S2C illustrates box plots for the probabilities of co-clustering (across
10 subsets) for every pair of cells that are assigned to the same cluster in the analysis of the full
dataset. The average co-clustering probability in each cluster ranges between 92%-100%,
showing remarkable robustness of clusters.

Mixing of Samples in Clusters

We observed that clusters displayed differing amounts of mixing between samples (Figure 2G).
To further quantify the exact degree of mixing (between patients) in each cluster, we defined an
entropy-based metric. We used bootstrapping to correct for cluster size (which ranged from over
8900 cells to just over 30 cells), such that we uniformly sampled 100 cells from each cluster and
computed the distribution of patients across these cells, and then computed the Shannon
entropy for this distribution. We repeated this procedure 100 times for each cluster, to achieve a
range of entropy values per cluster. Figure S2D shows box plots for entropy values for each
cluster, with the order of clusters based on their mean entropy. Clusters with entropy of 0
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denote entirely patient-specific clusters. Figure S2D shows that there is a continuous range of
entropies, and thus a full range of sample specificity versus mixing, across clusters.

Distances between Clusters

Biscuit provides a parametric characterization of each cluster using a multivariate Normal
distribution, which allows us to directly compare the distributions that define these clusters.
While Euclidean distances are defined for vectorial objects and operate under a Cartesian
coordinate system, Euclidean distance with non-vectorial objects such as probability
distributions requires embedding them in Euclidean space. Such embeddings are non-unique
and lead to loss of information. It is therefore advisable to use the non-vectorial objects as is
and to work with the objects’ pairwise similarities or distances instead. One such distance
metric, which is effective at comparing pairwise probability distributions, is the Bhattacharyya
distance (BD) (Bhattacharyya, 1990).

We defined distances between each pair of clusters k&' with distributions p, and p,, as
BD =—log(BC(p, ,p,)) Where BC is the Bhattacharyya coefficient measuring similarity
(overlap) of the distributions. We use the BD to compute distances between pairs of inferred
clusters’ moments to create the Bhattacharyya kernel. The Bhattacharyya kernel has closed
forms for any exponential distribution including the (multivariate) Gaussian distribution (Jebara,
T., Kondor, R., & Howard, A., 2004), which is Biscuit's underlying data-generation distribution.
For the case of multivariate normal distributions: p, ~ N(11;,Z;) and p;, ~ N(1., %) -

_ 1o _ Tsg1/- I l det Y —
Dy = E(Mk W) X (g — ) T+ 2log(m) where X = (X, +X,)/2.
Figure S2B shows the heatmap of pairwise distances between all pairs of clusters.

A geometric interpretation of BD is that, via its cosine formulation, the distance subsumes a full
hypersphere and the centre of the hypersphere is the centroid (mean) of the cluster, whereas
the Euclidean distance only covers a quarter of the hypersphere with the center at the origin.

Contribution of Covariance in Defining Clusters

We used the above Bhattacharyya distance (BD) metric to study the contribution of Biscuit’'s
covariance parameters to characterizing clusters of different cell types. First, we computed the
BD distance between pairs of clusters of the same type (T, monocytic, NK, B) and compared
these to distances between pairs of clusters of different cell types (e.g. a T cell cluster and a
monocytic cluster). Figure S2E shows violin plots for distances between pairs of clusters with
dots (overlaid on violins) representing cluster pairs; violins are sorted based on median
distance. As reference, we also split each cluster into two halves and computed the empirical
BD between two splits (shown at the left end in Figure S2E). We observe that, overall, pairs of
clusters of different types are more distant than pairs of clusters from the same type, as
expected.

We then computed these same pairwise distances while removing the contribution of mean
parameters for each cluster, via setting 1, — 1, =0 and computing the distance only based on
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covariance parameters of the pair of clusters X,,%, (Figure S2F). We observed that pairs of T
cell clusters or monocytic clusters still show prominent distances, and therefore covariance
parameters have a crucial role in defining these clusters.

Defining Phenotypic Volume

One of the main aims of this paper was to compare immune phenotypes across tissues,
including peripheral blood and lymph node tissue as references in which the immune
phenotypes typically present are better understood. The global atlas from merged tissues
revealed that clusters differ appreciably in their proportions across tissues (Figure 3A-C). For
example, we observed 3 blood-specific clusters with CD4+ naive characteristics, as well as a
lymph node-specific T cell cluster. Conversely, we observed a large range of shared clusters
between normal and tumor tissues (Figure 3B; Table S2). Interestingly, the clusters observed in
normal tissue were a subset of those observed in tumor tissue. We also observed an increase in
the variance of gene expression in tumor compared to normal tissue (Figure 3D,E; S3A,B),
which prompted us to explore further the range of phenotypic diversity between normal and
tumor tissue. We were especially interested to find whether the observed increase in variance of
expression is due to activation of additional processes in tumor that are independent of those
active in normal.

Hence, to quantify the diversity of phenotypes, we defined a metric of phenotypic volume or
space occupied by a cell type (e.g. T, NK, or monocytic), such that if more independent
phenotypes are active, the total volume spanned by the phenotypes would be larger than an
alternative case wherein phenotypes are dependent.

We therefore defined “phenotypic volume” (V) for a subpopulation of cells as the determinant
of the gene expression covariance matrix in that subpopulation, which considers covariance
between all gene pairs in addition to their variance. The (symmetric) covariance matrix can be
written as X =[s},..., s;] where s for i=1,..,d is a vector containing covariance between
gene i and all other genes. Its determinant det (X) is equal to the volume of a parallelepiped
spanned by vectors of the covariance matrix (Tao and Vu, 2005).

For example, if the covariance values between a gene i and other genes is very similar to that
of another gene i’ and other genes, such that s, s; are dependent, gene i’ does not add to the
volume. Extending this to all genes, we sought to evaluate whether the increase in expression
variances (Figure 3D,E) are associated with phenotypes activated in tumor that are independent
from those in normal tissue, i.e. are novel independent phenotypes observed in tumor that
suggest additional mechanisms and pathways being activated in tumor.

For example, in a simplified case with only two phenotypes the determinant, which is equal to
the area of the parallelogram spanned by two vectors representing the phenotypes, is larger if
the phenotypes are independent, but would be equal to zero if they are dependent. With more
than two phenotypes, we are then interested in measuring the volume of the parallelepiped
spanned by these phenotypes. The (pseudo-)determinant can also be computed as the product
of nonzero eigenvalues of the covariance matrix:
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To quantify the change in phenotypic volume from normal to tumor, we computed this volume
metric for each major cell type of T, monocytic, and NK cells. To correct for the effect of
differences in the number of cells across cell types and tissues, we uniformly sampled 1000
cells with replacement from each cell type per tissue and computed the empirical covariance
between genes based on imputed expression values for that subset of cells. This was followed
by singular-value decomposition (SVD) of each empirical covariance matrix and computation of
the product of nonzero eigenvalues as stated in the equation above. B cells were not included in
this comparison due to the very small number of B cells in normal tissue. Given the high number
of dimensions (genes), the volumes were normalized by the total number of genes (d). For
robustness, this process was repeated 20 times to achieve a range of computed volumes for
each cluster in each tissue, which are summarized with box plots (Figure 3F) showing
statistically significant expansions of volume in tumor compared to normal in all three cell types
(Mann-Whitney U-test p=0 for all three cell types).

Diffusion Component Analysis

We used diffusion maps (Coifman et al., 2010) as a nonlinear dimensionality reduction
technique to find the major non-linear components of variation across cells. We computed
diffusion components in each cell type separately using the Charlotte Python package, which
implements diffusion maps as described in (Coifman et al., 2005). To account for differences in
cell density and cluster size, we used a fixed perplexity Gaussian kernel with perplexity 30, with
symmetric Markov normalization and t=1 diffusion steps. We selected t=1 diffusion steps
because this approximates diffusion of information for each cell through its 20 nearest neighbors
in our data. This is a conservative value, but we wanted to ensure that information did not
diffuse beyond the borders of our smallest cluster (30 cells). To focus on processes explaining
variation specifically within major cell types, we performed diffusion map analyses separately on
all cells labeled as T cells and myeloid cells, respectively.

In the case of T cells, the first two diffusion components identified two isolated clusters (Figure
3A): The first was cluster 9, which is quite distinct from other T cell clusters as measured by
Bhattacharyya distance (Figure S2B) and shows characteristics similar to NKT cells (Table S3);
the second was cluster 20, which is a blood-specific naive T cell cluster predominantly from one
patient (Table S2). Since these two clusters were very distant from other T cell clusters
according to a variety of comparison metrics, the two components corresponding to them were
removed from further analysis, as we wished to focus on studying components that are
informative of heterogeneity across multiple clusters.

The next components were labeled as T cell activation, Terminal Exhaustion, and Hypoxia,
respectively, (Figure 4A) as they were most highly correlated with the corresponding gene
signatures (Table S4). The subsequent component is labeled as Tissue Specificity, as it
separates cells primarily on the basis of their tissue of origin and helps explain heterogeneity in
T cells across tissues.
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In the separate analysis of myeloid cells, several isolated clusters, namely neutrophils and mast
cells, were not considered in the analysis, with the goal of identifying components explaining
variation across multiple monocytic clusters (Figure 6B, S6A). The first component identified a
trajectory of macrophage (TAM) activation. Though a remaining component segregated cluster
41 (labeled plasmacytoid dendritic cells - pDCs), it was retained in our analysis due to several
generally illuminating facets of the component, including the stark contrast between pDCs
primarily found in the lymph node and mDCs found in other tissues. The third diffusion
component explained heterogeneity across tissue resident monocytes, and the fourth
component further separated monocytes by tissue, delineating a trajectory from monocytes in
blood to activated monocytes in tissue.

Significance of Differences in Covariances in Raw Data

To verify that the differing covariance patterns in Figures 5 and 7 were not the result of
computational modeling decisions, we tested the difference in covariance in raw unnormalized
data (prior to Biscuit). As the raw data involves significant amount of dropouts, co-expression
patterns and their signs cannot be easily visualized or inferred.

Hence, we performed hypothesis testing accounting for the level of dropouts by comparing the
observed empirical covariance between a pair of genes i, i to a null distribution for the gene
pair in which co-expression patterns are removed. We assume the null hypothesis to be the
case where covariance between a specific gene pair for a given cluster is the same across all
clusters.

Specifically, to test whether cov(x;,x;)in a cluster k, with x;,x;, being expressions of genes i, i’
across cells assigned to cluster k, is significantly different from that in all other clusters, we
used bootstrapping and permutation testing as follows: We started by generating a null
distribution for the covariance between a pair of genes by first uniformly sampling a subset of
cells from all clusters, with the subset being the same size as cluster k. Then, to further remove
existing structures of co-expression in cells, we permuted the cell labels for gene i’ (while
retaining labels for gene i) and computed empirical covariance between the two genes in this
subset of “scrambled” cells. We repeated this on 10,000 subsets to achieve a null distribution of
cov(w;, w;)where w,,w, are the expressions of gene i,i' in the sets of scrambled cells. We then
compared the observed cov(x;,x;)(marked with a star in Figure S5A, S7A) to the null
distribution, which was rejected for that pair of genes if p-value<0.05 indicating that the
covariance is significantly different in cluster £ compared to all other clusters.

We concluded that the signal is also apparent in raw unnormalized data for all the
aforementioned clusters and we observe a range of covariance values with different signs
between GITR and CTLA4 across Treg clusters (Figure S5A), and similarly different values in
covariance between MARCO and CD276 in TAM clusters (Figure S7A).

Continuity of Cells along Components

We were interested to know whether cells show continuity as opposed to defined cell states
along various diffusion components. For example, we were interested to know whether T cells
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exhibit defined states with different activation levels. For this, we computed the distribution of
cells projected on each diffusion component and then used Hartigan’s Dip Test (Hartigan and
Hartigan, 1985) to test whether the distribution of cells is unimodal (broad continuum of cells) or
alternatively multimodal (representative of multiple defined states) with p<0.01. In Figure S4A,
we observe that in the case of the T Cell Activation component, the null hypothesis of
unimodality is not rejected, indicating that the distribution of cells is similar to a broad unimodal
distribution as opposed to a multimodal distribution with defined states. In contrast, other
components (such as the Tissue Specificity Component) exhibit multimodal distributions with
distinct modes implying distinct states (in this case corresponding to various tissues).

In the case of myeloid cells, the null hypothesis of unimodality is rejected in all diffusion
components, indicating that myeloid cells lie in distinct states along all major components
explaining variation across cells that were analyzed (Figure S6A).

DATA AND SOFTWARE AVAILABILITY

The sequencing data presented in this paper will be available for download on GEO data
repository.

SEQC is available on https://github.com/ambrosejcarr/seqc.qit and Biscuit is available on
https://github.com/sandhya212/BISCUIT SingleCell IMM ICML 2016.
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Figure 5
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Figure S3
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Figure S5
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Figure S6
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Figure S7
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Figure M1
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Figure M2
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