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Abstract

A common feature of both biological and man-made systems is the use of feedback to control
their behavior. In this paper, we explore a particular model of biomolecular feedback implemented
using a sequestration mechanism. This has been demonstrated to implement robust perfect adap-
tion, often referred to as integral control in engineering. Our work generalizes a previous model
of the sequestration feedback system and develops an analytical framework for understanding the
hard limits, performance tradeoffs, and architectural properties of a simple model of biological
control. We find that many of the classical tools from control theory and dynamical systems can
be applied to understand both deterministic and stochastic models of the system. Our work finds
that there are simple expressions that determine both the stability and the performance of these
systems in terms of speed, robustness, steady-state error, and noise. These findings yield a holistic
picture of the general behavior of sequestration feedback, and will hopefully contribute to a more
general theory of biological control systems.

1 Introduction
Natural biological circuits display a broad rage of feedback systems, often involving post-translational
modification, gene regulation, and a variety of molecular and biochemical mechanisms [7, 8, 9, 12].
While these diverse architectures have been well-characterized in many systems, so far it has been
difficult to analyze the general functions, constraints, and performance tradeoffs inherent to different
feedback implementations. Recent work by Briat et al. made great strides in this direction by demon-
strating that feedback mediated by sequestration can give rise to integral control, which in turn can
implement robust perfect adaptation [4].

While integral control is a powerful tool, its stability and performance are not guaranteed to be
well-behaved [2]. Even if both the controller and the plant (the network being controlled) are stable,
their closed-loop dynamics can potentially be unstable, which results in poor regulation. Additionally,
the closed-loop system performance indicates how well the controller performs the task of tracking a
reference. Measures of performance include the tracking error, the speed of response, and the sensi-
tivity. Further complicating the situation, noise and delay can impact the stability and performance
of closed-loop control systems. To gain deeper insight into the system-level properties of biomolecular
controllers, we will study the hard limits and tradeoffs of both the deterministic and the stochastic
sequestration feedback system proposed in [4].

We find that there exists an analytic stability criterion for the linearized deterministic sequestration
feedback system with an arbitrary number of simple first-order reactions in the plant. This stability
criterion leads to a performance tradeoff between speed and sensitivity in the system - fast responding
controllers are intrinsically more fragile. These results are analyzed both in the case where there is no
controller degradation (as in the model from [4]) and in the more biologically-realistic context where
there is such degradation [15], where we observe yet another tradeoff between stability and steady-state
∗Equal contribution
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Figure 1: A Sequestration Feedback Architecture. This diagram shows an example of a fundamental
sequestration feedback network. This general model has two control species, Z1 and Z2, and n plant species.
Within this model is a simple set of possible plants where each species is only involved in the production of
the next species. This model is useful because it not only is able to capture the complexity of a system with
many species, but it also is simple enough to study analytically.

error. Finally, we demonstrate a close theoretical correspondence between stability in the deterministic
model of sequestration feedback and variance in a simplified stochastic model of the system. These
results provide a more precise framework for understanding the system-level properties of biomolecular
controllers.

These general theoretical results will provide an analytical framework to study many particular
implementations of biological control architecture, while maintaining a broad perspective regarding
how they relate to each other. For instance, we can begin to study the performance tradeoffs between
a controller implemented at different biological layers (e.g., genes, RNA, or proteins). Section 2.1
describes the model of the system and reviews basic results about integral control. Similar limits have
been studied in the context of general stochastic biological control systems [13] and in the particular
context of the control in the yeast glycolysis system [5]. Section 2.2 and Section 2.3 use control
theoretic tools to analyze performance in the sequestration feedback system. Section 3 considers the
biological implementation of the controller architecture. Section 3.1 incorporates the controller species
degradation into the model. Section 3.2 discusses the stability of the network. Section 3.3 derives an
optimal controller degradation rate. Section 4 clarifies the connection between the stability margin of
the deterministic controller and the variance of the stochastic controller output.

2 Results for a Simple Deterministic Model
This section presents a few interesting results for a simple sequestration feedback model proposed by
Briat et al. with two control states and two plant states. The stability of this feedback network is
analyzed, and fundamental tradeoff between the species’ production rates and the network’s robustness
with respect to external disturbances is described.

2.1 Model Description
We first describe the simple sequestration feedback model proposed by Briat et al. with two control
states (z1 and z2) and two plant states (x1 and x2), which corresponds to the general diagram in
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Figure 1 if n = 2. The biochemical reactions of the sequestration network with two plant species are
the following:

∅ µ−→ Z1 Z1
θ1−→ Z1 +X1 X1

k−→ X2 X2
θ2−→ X2 + Z2

X1
γ−→ ∅ X2

γ−→ ∅

Z1 + Z2
η−→ ∅.

Formally, their model is given as:

ẋ1 = θ1z1 − γx1, (1a)
ẋ2 = kx1 − γx2, (1b)
ż1 = µ− ηz1z2, (1c)
ż2 = θ2x2 − ηz1z2. (1d)

The variables θ1 and θ2 are production rates that provide an interface between the plant and the
controller. The variable θ1 is the production rate of the input of the plant (x1) that is affected by the
output of the controller (z1), and the variable θ2 is the production rate the input of the controller (z2)
that is affected by the output of the plant (x2). The rates k and γ are production and degradation
rates that are internal to the plant species. An external reference µ determines production of z1, and
the two control species z1 and z2 sequestrate at the rate of η.

While more realistic models of biological circuits will have more complex interactions and likely
have many more states, this model captures much of the important structural information about
the sequestration feedback system. In particular, Briat et al. found that the network defined by (1)
implements precise adaptation of x2 via integral feedback [4], as shown by the following relationship

ż1 − ż2 = µ− θ2x2 =⇒ (z1 − z2)(t) = θ

∫ ∞
0

(
µ

θ2
− x2(t′)

)
dt′. (2)

This relationship ensures that, if the system is stable, then at steady state, x2 = µ/θ2. However,
conditions that guarantee stability are not obvious at first glance. Briat et al. showed general algebraic
conditions that proved existence of both stable and unstable dynamics of the linearized sequestration
feedback system, however it is not obvious how to use their methods to explicitly describe stability in
general.

In this paper, we show that there exist particular limits (for example, strong feedback) for which
we can prove what the stability criterion is in closed form. Later, we will show that a one-state plant
is intrinsically stable for all parameters, and that there exists a simple stability criterion for a certain
class of plants with two or more states. For the analysis, we assume that both a set of plant parameters
(k and γ) and a desired set point (determined by µ and θ2) are given, and we study how stability and
performance relate to the rest of the control parameters (θ1 and η).

2.2 Linear Stability Analysis
A key difficulty in studying the sequestration feedback is the nonlinear term ηz1z2 that mediates
feedback in Equations (1c) and (1d). While there exist techniques to study nonlinear systems, there
are far more general tools available to study linear systems. To this end, we will study instead the
linearization of the sequestration feedback system, which has the form

ẋ1

ẋ2

ż1

ż2

 =


−γ 0 θ1 0
k −γ 0 0
0 0 −β −α/β
0 θ2 −β −α/β



x1

x2

z1

z2

 , (3)

where α = θ1θ2k/γ
2 and β = ηµ. From simulations (see Section 6.1), we find that the linearized model

well approximates the nonlinear one. The main distinction is that each variable in the nonlinear model
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remains positive at all times and cannot grow in an unbounded way. This distinction is primarily
apparent when the system is unstable: the linear system simply grows forever while the nonlinear
system simply oscillates indefinitely.

In general, stability of linear systems is determined by the sign of the real part of its eigenvalues.
If they are all strictly negative, then the dynamical system is stable and the system will converge to
the equilibrium point. Ideally, we would be able to directly compute the eigenvalues of the matrix

M =


−γ 0 θ1 0
k −γ 0 0
0 0 −β −α/β
0 θ2 −β −α/β

 ,
however this computation corresponds to finding the roots of a fourth-order polynomial p(s) = det(sI−
A). While this is difficult to do in general, it is possible to study stability by finding what has to be true
of the parameters for the system to have a pair of purely imaginary eigenvalues, which characterizes
the boundary between stable and unstable behavior. We find that, in the limit of strong feedback (i.e.

η large), M will have purely imaginary eigenvalues λ = ±iγ when γ = 3

√
θ1θ2k

2 . We can then show
that the criterion for stability is

3

√
θ1θ2k

2
< γ, (4)

a relationship we refer to as the production-degradation inequality. This result is proved in Section 6.2.
This relationship says that the closed-loop system will be stable so long as the degradation rate is

larger than a constant that is proportional to the geometric mean of the production rates ( 3
√
θ1θ2k).

In simpler terms, stability relies on the degradation rate out-pacing the mean production rate. We
note that in this strong feedback limit, Equation (4) is independent of the controller variables µ and
η. Thus, this relationship tells us that stability is purely a function of the parameters describing the
plant and its connection to the controller, and is independent of the controller itself. Intuitively, the
degradation rate sets the rate of adaptation of x1 and x2, so Equation (4) tells us that, so long as the
species have a rate of adaptation that is faster than the rate of change in production, the system will
be stable. Through a more technical argument (also in Section 6.2), we can show that an analogous
system with a chain of n plant species has a production-degradation inequality of the form

n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
< γ,

where ∆n is a constant that is only a function of the number of plant species. When the system has
purely imaginary eigenvalues, they have the form

λ = ±i tan
( π

2n

)
γ.

Finally, for simplicity, we focus only on the strong feedback regime. However, we show in the
supplement that there are also tractable and interesting results in the regime of weak feedback (η
small). The results have a similar form as in the strong feedback limit, however the difference in
assumption of the feedback strength flips the direction of the inequality. The stability condition for
weak feedback is:

n−1

√
∆nθ1θ2

∏n−1
i=1 ki

β
> γ.

One interpretation of these results as a whole is that stability occurs when either feedback or plant
degradation are sufficiently large, but not when both are.

2.3 Performance Tradeoffs and Hard Limits
While Equation (4) gives us a binary condition to classify stability, it tells us little about overall
performance of the system. We know when the system becomes unstable, but it is unclear how the
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Figure 2: Speed/Fragility Tradeoff. A) We see the relationship between speed and fragility in the
sequestration feedback system. Speed can be characterized in terms of any of the production rates of the
system, here we vary θ1, where higher production rates lead to a faster response. Fragility is defined as a
lower bound on the maximum value of the sensitivity function ‖S‖∞. B) Time-domain plots corresponding
to different points on the tradeoff curve in A. We see that speed and fragility naturally relate to the rise time
and settling time of the system. C) Sensitivity functions for various parameter values. We see what is known
in control theory as a waterbed effect, where better attenuation of disturbances at low frequencies necessarily
implies worse amplification of disturbances at higher frequencies. Dotted lines correspond to the lower-bounds
on the sensitivity function that can be analytically computed for use in panel A. D) Reference tracking
dynamics, analogous to the simulations shown in B. In these simulations θ1 is varied and k = θ2 = γ = 1,
η = 105, µ = 100 unless otherwise specified.

system behaves as it approaches instability. Conversely, we can increase the margin of stability by
decreasing the production rates θ1, θ2, and k, but this will slow down the dynamics of the system and
could potentially hurt performance.

To analyze this problem, we will study the sensitivity function S(s), which is the transfer function
between the output of the system and disturbances [2]. This transfer function captures the amplifica-
tion of external disturbances on the output of a system, in this case, x2. A system is termed robust
if the system output is not strongly affected by the external disturbances. Thus, S provides a way to
quantify system robustness. It is often useful to study S(s) in the frequency domain, i.e. when s = iω.
When |S(iω)| > 1, a periodic disturbances with frequency ω will be amplified, when |S(iω)| < 1
then they will be attenuated. Ideally all unwanted disturbance would be rejected (i.e. attenuated).
However, a classical result known as Bode’s integral theorem states that for any closed-loop control
system, ∫ ∞

0

| log(S(iω))|dω ≥ 0,

which means that the total magnitude of S at all frequencies is bounded below by 0 [2]. In other words,
if we wish to better attenuate disturbances at one frequency (decrease | log(S(iω1))| at ω1), they must
be amplified somewhere else (increase | log(S(iω2))| at ω2). This effect is often referred to in control
theory as a waterbed effect, since pushing down on one part of S necessarily causes a rise somewhere
else.

The robustness of a system can be formally quantified with ‖S‖∞ = maxω |S(iω)|, the maximum
magnitude of the sensitivity function across all frequencies. The quantity ‖S‖∞ can be thought of as
a measure of the robustness of the system, because it tells us how bad the worst-case disturbance is
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for the system. If ‖S‖∞ is in some sense small enough to be manageable, then values of |S| across all
frequencies are also small and the system is robust to any disturbance. If ‖S‖∞ is large enough to be
a problem, then there is at least one disturbance against which the system is fragile.

Directly computing ‖S‖∞ in terms of the parameters of a system is difficult in general, but it is
sometimes possible to compute good lower bounds that yield insight into a systems robustness. To
this end, we find that (see Section 6.3 for details):

‖S‖∞ ≥
1

1− θ1θ2k
2γ3

, (5)

with equality when

γ =
3

√
θ1θ2k

2
=⇒ θ1θ2k

2γ3
= 1 =⇒ ‖S‖∞ =∞.

Finally, Figure 2D shows reference tracking to step inputs for the system. We see again that there
is a tradeoff between speed and fragility as we move along different points in parameter space.

A key structural aspect of the model described so far is that z1 and z2 are only removed from
the system via sequestration. This is what ensures the precise adaptation in Equation (2). If the
control molecules also undergo intrinsic degradation of their own, the controller will not necessarily
exhibit perfect integral feedback. In the next section, we will explore what changes in the system when
controller species degradation is present.

3 The Implementation of Sequestration Feedback Networks
Sequestration feedback networks can be implemented using an array of biological parts for the two
sequestering controller species. Several examples of parts for the two controller species are illustrated
in Figure 3. They include transcriptional parts such an mRNA-antisense RNA pair, protein parts
such a sigma-antisigma pair or a toxin-antitoxin pair, or a protein and an enzyme, such as a scaffold
protein and a kinase.

Transcriptional parts can be obtained from natural systems such as the hok-sok Type I toxin-
antitoxin system in the E. coli or from parts already mined for synthetic biological systems. The hok
gene product is a toxin that kills cells without its antidote, the anti-sense RNA sok that is comple-
mentary to the hok mRNA [10]. A synthetic system of RNA-antisense RNA that originally performed
translation initiation control is adapted to regulate transcriptional elongation in [14]. Protein parts
can be obtained from Type II toxin-antitoxin bacterial systems such as CcdA/CcdB. The toxin CcdB
targets DNA gyrase and induces the breaking of DNA and subsequently cell death, while its antitoxin
CcdA inhibits CcdB toxicity by sequestering it into a very stable CcdA-CcdB complex [6]. Protein
parts can also be sigma-antisigma factors such as σ70 binding to bacteriophage T4 AsiA and inhibit-
ing RNA polymerase, which slows transcription and inhibits E. coli growth [16]. Lastly, sequestration
controller parts could be scaffold proteins, such as the synthetic scaffold and anti-scaffold proteins in
[11]. The scaffold molecule consists of a leucine zipper domain (LZx) linked to the SH3 ligand; the
anti-scaffold consists of the complementary LZx and SH3 ligand domains, which allows the two to bind
tightly.

Depending on the choice of parts for the controller species in sequestration feedback networks, the
binding affinity of the sequestration reaction can vary over several orders of magnitude, as illustrated
in Figure 3. However, as discussed in Section 2, the binding affinity of the sequestration feedback
influences the stability of the sequestration feedback network. Therefore, we need to carefully consider
whether our implementation choice for the controller parts results in stable closed loop control.

Additionally, depending on the implementation parts for the sequestration binding, the degradation
rates of the controller species can vary, as illustrated in Table 1. The degradation rate of mRNA or σ32
is small and can even be omitted in our modeling of the sequestration feedback network [1], unless the
controller species are also actively degraded. However, the degradation rate of the toxin and anti-toxin
is non-trivial and must be included in the model.

To recover near-perfect adaptation in the presence of non-trivial controller degradation rate, Qian
et al. propose a time-scale separation between the controller reactions and dilution [15]. In this section,
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Figure 3: The Biological Implementation Of The Sequestration Reaction. The controller seques-
tration reaction can be implemented with a multitude of biological parts. Example transcriptional parts are
mRNA and antisense RNA, whose kinetic binding affinity is calculated in [18]. Antisense RNA inhibits the
translation of complementary mRNA by base pairing to it and physically obstructing the translation machinery
of the cell. Antisigma factors bind sigma factors to inhibit transcriptional activity; sigma-antisigma factors
binding affinity was computed in [16]. Protein parts include the toxin-antitoxin module CcdA-CcdB in E. coli.
When CcdB outlives CcdA, it kills the cell by poisoning DNA gyrase. The antitoxin CcdA blocks the activity
of the toxin CcdB by binding together into a complex, thus allowing cells to grow normally. Their binding
affinity is very high [6]. Scaffold parts include the synthetic scaffold consisting of leucine zipper domain (LZX)
linked to the SH3 ligand and the anti-scaffold consisting of the complementary LZx and SH3 ligand domains.
Their binding affinity is given in [11].

mRNA σ32 CcdA CcdA:CcdB
2.1-6 min 1 min 30 min 60 min

Table 1: The half-life of mRNA, sigma factor σ32, antitoxin CcdA, and toxin-antitoxin complex CcdA-CcdB.
The median mRNA half-life is measured as 2.1-6 min in [3]. The half-life of σ32 factor proteins during steady-
state growth is 1min [8]. The antitoxin CcdA is degraded in wild-type cells with a half-life of 30 min in the
absence of toxin CcdB and a half life of 60 min in the presence of toxin CcdB [17].

we perform a general analysis of the stability and the performance of sequestration feedback systems
and we discuss how it informs our choices of biological implementation.

3.1 The Sequestration Feedback Network Model with Controller Species
Degradation

We assume that the controller species are subjected to degradation with rate γc, while the plant species
are degraded with rate γp. Therefore, the chemical reactions that describe the sequestration feedback

7

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/222042doi: bioRxiv preprint 

https://doi.org/10.1101/222042
http://creativecommons.org/licenses/by-nd/4.0/


network are modified from Figure 1 to the following

∅ µ−→ Z1, Z1
θ1−→ Z1 +X1, Xn

θ2−→ Xn + Z2,

Xi
γp−→ ∅, ∀1 ≤ i ≤ n, Z1

γc−→ ∅, Z2
γc−→ ∅,

Z1 + Z2
η−→ ∅.

When we incorporate the degradation of the controller species in the model, the description changes
the controller Equations (1c), (1d) to the following:

ż1 = µ− ηz1z2 − γcz1,

ż2 = θ2x2 − ηz1z2 − γcz2.
(6)

The sequestration feedback networks with and without controller degradation have different prop-
erties of stability and performance. First, the stability margins of the sequestration feedback network
with and without controller degradation can be tuned differently. While the stability margin of the
sequestration feedback network with no controller degradation can be improved by increasing the plant
degradation rate, the stability margin of the sequestration feedback network with controller degrada-
tion can be improved by increasing either the plant or the controller degradation rates. Additionally,
the stability criterion for the sequestration feedback network with controller degradation has a differ-
ent form, dependent on comparing the plant degradation rate and the controller degradation rate, as
discussed in Section 3.2.

Secondly, we consider how the controller species degradation rates influence the steady state error
of the sequestration feedback system. A stable sequestration feedback system with small controller
species degradation, such as for mRNA and sigma factor, implements near-perfect adaptation, which
implies close to zero steady state error. However, a sequestration feedback system with controller
species degradation rate on the order of cell dilution, such as for toxin and scaffold proteins, has
a steady state error that is sensitive to the controller degradation rate. In fact, there is a unique
critical value of the controller degradation rate that recovers the property of zero steady state error, as
demonstrated in Figure 4. We analytically derive the unique controller degradation rate that recovers
the property of zero steady state error in Section 3.3.

Finally, we uncover a tradeoff between the stability margin and the steady state error in sequestra-
tion feedback systems in Section 3.4. Increasing either the plant or the controller species degradation
rate improves stability, but this can result in poor steady state error. We find that the steady state
error is more sensitive to changes in the plant species degradation rate than the controller species
degradation rate. Therefore, we have more options to tune the controller species without negatively
impacting the sequestration feedback system’s performance.

3.2 Stability Analysis
The criterion for the stability of sequestration feedback networks with controller degradation is obtained
by comparing the plant degradation rate γp and the controller degradation rate γc. We consider three
possible comparisons between the plant degradation rate and the controller degradation rate: γp >> γc,
γp ≈ γc, and γp << γc.

The comparison between the plant and the controller species degradation rates is motivated by their
ratio of the two degradation rates appearing as a term in associated the characteristic polynomial:

(s+ 1)n

(
s+

γc
γp

)(
s+

γc
γp

+
α+ β

α

γp

)
= − β

γ2
p

(7)

The value of the ratio of the plant and the controller degradation rates informs the location of the
complex roots of the characteristic polynomial.

We formalize the stability criterion in Theorem 3.1 below and we include the derivation in the
supplement, Sections 6.6 and 6.7.

8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/222042doi: bioRxiv preprint 

https://doi.org/10.1101/222042
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Controller Degradation And Steady State Error. When γc = 0, there is no controller
degradation and therefore the sequestration feedback network exhibits perfect adaptation (blue). Therefore,
the output converges to the reference with zero steady state error. When the controller degradation rate is
γc = 0.25, the sequestration feedback network has non-zero steady state error (green). However, when the
controller degradation rate is γc = 0.5, the sequestration feedback network once again displays the property of
zero steady state error (red). Indeed, the degradation rate values γc ∈ {0, 0.5} are the only ones for which the
network output tracks the reference with zero steady state error.

Theorem 3.1. We consider the sequestration feedback network with controller degradation described in
Equation (6) under the strong feedback assumption. The closed loop stability criterion depends on the
relationship between the plant degradation rate γp and the controller degradation rate γc. We consider
the following three cases:

Case I: γc � γp If the controller’s degradation rate is much smaller than the plant’s degradation
rate, the stability criterion is the same as the production-degradation inequality in Section 2.2.

Case II: γc ≈ γp If the controller’s and plant’s degradation rates are comparable in magnitude,
then the closed loop system is stable under the following conditions:

γc ≈ γp,

γp >

n+1

√
θ1θ2

∏n−1
i=1 ki√

tan( π
n+1 )2 + 1

.
(8)

Case III: γc � γp If the controller’s degradation rate is larger than the plant species’ degradation
rate, then the closed loop system is stable if

γc � γp,

γp >

n

√
θ1θ2

∏n−1
i=1 ki

n
√
γc

√
1 + tan

(
π
n

)2 . (9)

First, when the plant degradation rate is much larger that the controller degradation rate, then
the ratio of the two degradation rates approaches value zero and the stability criterion is the same as
in the production-degradation inequality in Section 2.2. Secondly, when the plant degradation rate is
comparable to the controller degradation rate, then the ratio of the two degradation rates approaches
value one and the stability criterion states that the plant degradation be faster than the product of
its production rates. Lastly, when the plant degradation rate is much smaller than the controller
degradation rate, then the ratio of the two degradation rates is very large and the stability criterion
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states that the plant degradation be faster than the product of its production rates divided by the
controller degradation rate.

3.3 The Critical Controller Degradation Rate
When the controller degradation is negligible, then the sequestration feedback network exhibits the
property of perfect adaptation. The controller species implement integral control, which ensures that
the steady state error equals zero, provided that the closed loop system is stable.

When the controller degradation rate is not negligible, as in Table 1, we need to include it in the
model for the sequestration feedback network. In this case, the closed loop system has zero steady state
error only for a unique value of the controller degradation rate, which we call the critical controller
degradation rate.

In the supplement, Section 6.5, we analytically derive the critical controller species degradation
rate such that the steady state error of a general sequestration feedback network with n plant species
equals zero. We also derive conditions such that the critical controller degradation rate is achievable
by the network parameters and we demonstrate that it is unique. Here we only include the analytical
result for a cyclical plant network.

Theorem 3.2. The critical controller degradation rate for a cyclical plant network (i.e. each plant
species Xi is created by the previous plant species Xi−1 and creates the next plant species Xi+1, ∀2 ≤
i ≤ n− 1, as in Figure 1) is given by:

γc =
θ1θ2

∏n−1
i=1 ki

γnp
−

ηµγnp

θ1θ2

∏n−1
i=1 ki

. (10)

It can only be achieved if and only if

γp <
n

√
θ1θ2

∏n−1
i=1 ki√
ηµ

. (11)

We illustrate the effect of the controller degradation rate for a two-plant network in Figure 4. When
the controller degradation rate is negligible, then the steady state error equals zero (blue). Similarly,
at the critical controller degradation rate, the steady state error also equals zero (red). Indeed, the
degradation rate values of zero and of the critical degradation rate are the only ones for which the
network tracks the reference with no steady state error.

3.4 The Steady State Error and the Stability Margin
Even if the optimal value of the controller species degradation rate γc can be achieved mathematically,
it can not be implemented exactly in a biological system. Hence, a more interesting question is how
sensitive the steady state error and the stability margin are to the controller degradation rate. We
also compare their sensitivity to the controller species degradation rate versus sensitivity to the plant
species degradation rate.

It is clear from our derivation of stability criteria that increasing either γp or γc has a beneficial
effect of increasing the stability margin (see supplement, Section 6.6). However, increasing γc or γp can
result in a poor steady state error, as illustrated in Figure 5A. Therefore, there is a tradeoff between
stability margin and low steady state error.

Additionally, Figure 5A indicates that the steady state error is more sensitive to changes in the
plant species degradation rate than in the controller species degradation rate. Therefore, we have more
freedom to tune the controller species degradation rate without negatively impacting the network’s
performance.

Figure 5 suggests that a robust implementation of sequestration feedback networks uses a medium
to high degradation rate of the plant species, while allowing for a range of controller species degradation
rate values. According to Figure 3, one such implementation choice uses proteins parts for both the
plant and the controller species. We assume that there is no active degradation of these protein
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Figure 5: Stability Margin/Error Tradeoff. There is a tradeoff between good stability margin and low
steady state error in the sequestration feedback network with controller degradation. A. Increasing either the
plant species degradation rate γp or the controller species degradation rate γc improves the stability margin.
However, varying the plant species degradation rate γp results in a worse tradeoff than varying the controller
species degradation rate γc because the error ratio is more sensitive to the plant species degradation rate γp
than the controller species degradation rate γc. B. The thick black line indicates no error (i.e. the ratio between
the steady state error and the reference is one). It is clear from this plot that changing γp by a small amount
will deviate from the black line significantly more than changing γc by a small amount. C. The white region
is unstable. Increasing either γp or γc will improve stability margin.

species. Then the plant and controller degradation rates will match the cell growth rate. A less robust
implementation is to use RNAs for the plant species and proteins for the controller species. Then the
plant species will have high turnover, whereas the controller species will dilute more slowly with cell
growth. In this implementation, choosing the appropriate cell growth rate and cell growth medium
will be of importance as the sequestration feedback’s performance will be sensitive to the plant and
controller species degradation rate.

4 Stochastic Sequestration Feedback Networks
We connect the deterministic and stochastic sequestration feedback systems by examining the sta-
bility of deterministic sequestration feedback systems and the second moment of the output species
of stochastic sequestration feedback systems. Our results complement and expand on the stochastic
analysis in Briat et al. [4].

Our analysis is motivated by the performance of the stochastic sequestration feedback controller,
which can be slow or noisy, as illustrated by the coefficient of variation of the output species in
Figure 6B, C. Slow transient dynamics are time consuming and stochastic noise can be amplified by
connecting multiple controllers. Therefore, stochastic controllers should be fast and not very noisy, as
the illustrated in Figure 6A.

To connect deterministic and stochastic sequestration feedback systems, we derive an analytical
expression for the steady state mean and variance of the output species in a stochastic sequestration
feedback system with two plant species. We clarify the role of the second moment in informing the
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stability and performance of the closed loop stochastic sequestration feedback system. Additionally, we
demonstrate that only considering the first moment does not suffice to obtain good stochastic controller
properties. Indeed, the stochastic mean can be ergodic and well-behaved, while individual stochastic
trajectories are noisy or even oscillatory. This can occur when individual trajectories oscillate with
random frequencies that average out in the mean, as in Figure 7.

We also illustrate that the stability of deterministic sequestration feedback systems corresponds to
the size of the variance of the stochastic sequestration feedback system. The stability margin of the
deterministic sequestration feedback system appears in the denominator for the expression of the Fano
factor. Therefore, if the plant species degradation rate is small, the stochastic variance grows large
and the deterministic sequestration feedback system approaches instability.

Figure 6: Stochastic Controller Performance. The stochastic control objective is that the sequestration
network output species tracks the reference value µ

θ
= 5. In panels A-C, the left hand plots are the mean of

Xn across a population of 1000 independent cells as a function of time (blue-stochastic, orange-deterministic);
the right hand plots are the coefficient of variation (i.e. the ratio of the standard deviation to the mean) across
the cell population as a function of time. Panel A: the controller performance is good. Panel B: the controller
is very noisy. Panel C: the controller is slow. Poor stochastic controllers are noisy and have slow dynamics.

4.1 The First Two Moments of the Stochastic Feedback Network Output
We first demonstrate how averaging out individual stochastic trajectories often results in a well-behaved
stochastic population mean, as discussed in Briat et al. [4]. In Figure 7A, B, the output of the de-
terministic sequestration feedback system and the mean of the output of the stochastic sequestration
feedback system converge to the reference quickly, with damped oscillations. In Figure 7A, the indi-
vidual stochastic trajectories are not very noisy; however, the noise increases in Figure 7B.

In contrast, the stochastic controller is well-behaved in the mean output across a set of trajectories,
but noisy and oscillatory at the individual trajectory level in Figure 7C. This occurs because the

12

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/222042doi: bioRxiv preprint 

https://doi.org/10.1101/222042
http://creativecommons.org/licenses/by-nd/4.0/


Figure 7: Averaging Stochastic Trajectories. We illustrate how averaging individual stochastic trajec-
tories results in a well-behaved stochastic population mean. Even if the stochastic population mean is finite
and converging as a function of time, individual stochastic trajectories can be very noisy and oscillatory. A.
The deterministic and stochastic mean converge with good performance; individual stochastic trajectories are
not very noisy. B. The deterministic and stochastic mean have damped oscillations; individual stochastic
trajectories are noisy. C. The deterministic model oscillates; the stochastic mean has damped oscillations, as
demonstrated in [4]; however, the individual trajectories oscillate.

individual trajectories oscillate, but with random frequencies that average out when we compute the
stochastic mean. Thus, the population mean of the stochastic model does not match the controller
performance for individual trajectories and higher order moments must be considered. This motivates
our interest in the Fano factor as a quantity that better captures the stochastic controller’s noise
properties.
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4.2 Deterministic and Stochastic Feedback Systems
To explore the connection between deterministic and stochastic sequestration feedback control, we
derived an expression for the steady state Fano factor of a stochastic sequestration feedback system in
the limit of infinitely large sequestration affinity.

Here we describe the first moment model of the sequestration feedback system with two plant
species and no controller degradation:

d

dt
E[X1] = θ1E[Z1]− γE[X1]

d

dt
E[X2] = kE[X1]− γE[X2]

d

dt
E[Z1] = µ− ηE[Z1]E[Z2]− ηCov(Z1, Z2)

d

dt
E[Z2] = θ2E[X2]− ηE[Z1]E[Z2]− ηCov(Z1, Z2).

Here θ1 and k are the plant species production rates, γ is the plant species degradation rate, η is
the strength of the sequestration reaction, and θ2 is the rate of the plant output.

The stochastic sequestration feedback system’s model is described and analyzed in the supplement,
Section 6.8. The derivation for the Fano factor requires moment closure, which holds for an approximate
model when η is large and when Z2 is close to zero. Then the sequestration feedback system has Fano
factor

Fano[X2] =
Var[X2]

E[X2]
=
γ(2θ1k + kγ + 2γ2)

2γ3 − θ1θ2k
(12)

Simultaneously, the stability criterion for the deterministic sequestration feedback system with no
controller degradation is

γ >
3

√
θ1θ2k

2
, (13)

as obtained by applying the production-degradation inequality in Section 2.2.
We infer from Equations (12) and (13) that the denominator of the Fano factor expression 2γ3 −

θ1θ2k approaches 0 when γ = 3

√
θ1θ2k

2 , which is the critical point at which the deterministic seques-
tration feedback system crosses from stability to instability.

Furthermore, the variance of the stochastic sequestration feedback system increases as the deter-
ministic sequestration feedback system approaches the critical stability point, which corresponds to
increasingly larger oscillations. Moreoever, the deterministic sequestration feedback system exhibits a
tradeoff between response speed and instability (oscillations), while the stochastic sequestration feed-
back system has a tradeoff between the response speed of the mean and the variance. Thus, there is an
intimate connection between the sensitivity of the deterministic sequestration feedback system, which
appears as oscillatory behavior, and the sensitivity of the stochastic sequestration feedback system,
which appears as an increase in the variance.

5 Conclusion
Feedback is an integral aspect of biological circuits, capturing the basic notion of sensing and decision
making we often study in living systems. This works laid out an in-depth theoretical exploration of
a particular feedback mechanism involving the sequestration reaction, which is both general enough
to be implemented in a variety of biological contexts and sophisticated enough to yield many of the
interesting tradeoffs intrinsic to engineering control systems. We showed that it is possible to gain an
precise understanding of the relationships between speed, steady-state error, variability, and robustness
through a variety of theoretical tools borrowed from classical control theory.

The broader scope of this work is to motivate further exploration of the mathematical structure of
biological circuits. While our results yield insight into a particular model of biomolecular control, it is

14

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/222042doi: bioRxiv preprint 

https://doi.org/10.1101/222042
http://creativecommons.org/licenses/by-nd/4.0/


an open question how many of our results are intrinsic to any biological control system and what is
particular to the sequestration model. Further, our model assumes that all reactions in the plant are
first order linear reactions. In the future, we plan to explore how the many nonlinearities often found
in natural system (e.g., cooperativity, saturation) affect the qualitative nature of our results.

From an experimental perspective, we hope that our results will help guide both the analysis of
natural biological circuits and the design of synthetic ones. While natural systems will undoubtedly
be more complex than the ones studied here, we hope that our analysis will give a lens through which
experimentalist can understand which properties of biomolecular feedback are the result of fundamental
limitations on the system at hand and how tradeoffs can be an intrinsic aspect of circuit architecture.

6 Supplemental Information

6.1 Comparison of Linear and Nonlinear Model
Here we show simulations comparing the full nonlinear sequestration feedback system in Equation (1)
as compared to the linearized system in Equation (3). We see in Figure 8 colored lines representing non-
linear simulations with black dashed lines showing the corresponding linearized trajectory. Generally,
for stable and purely oscillatory regimes the two are indistinguishable.

The differences only becomes apparently when

n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
> γ

and the linear system has eigenvalues with positive real part. In this regime, the nonlinear model
remains oscillatory and the linearized model will grow in an unbounded manner. In this sense, the
nonlinear model is actually better behaved than its linearized counterpart. While the simulations here
are only show a particular range of parameters, the results are consistent with all simulations we have
attempted so far.

6.2 Stability Criterion
Here we consider a generalized sequestration feedback system with two control species (z1 and z2) and
n plant species (x1,...,xn) with dynamics

ẋ1 = θ1z1 − γx1

ẋ2 = k1x1 − γx2

...
ẋn = kn−1xn−1 − γxn
ż1 = µ− ηz1z2

ż2 = θ2x2 − ηz1z2.

We can then describe the block structure of the linearized system in terms of the following matrices:

A =


−γ 0 · · · 0
k1 −γ · · · 0

0
. . . . . .

...
0 · · · kn−1 −γ

 , B =

θ1 0
...

...
0 0

 ,

C =

[
0 · · · 0
0 · · · θ2

]
, D =

[
−α −β

α

−α −β
α

]
,

M =

[
A B
C D

]
,
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Figure 8: Comparison Of Nonlinear And Linearized Models. Here we see comparisons between nonlin-
ear (colored lines) and linearized (dashed lines) trajectories for the sequestration feedback network with n = 2
plant species. The top two plots show two different stable trajectories, where linearization is indistinguishable
from the original model. The bottom left plot shows oscillatory trajectories, where the linearized system has
purely imaginary eigenvalues. This still shows a tight correspondence with the nonlinear system. The final plot
shows the unstable regime of the linear system, where there are eigenvalues with positive real part. While the
nonlinear system simply oscillates indefinitely, the linearized system grows unboundedly. For all simulations,
k = θ2 = γ = 1, µ = 100, η = 100, and θ1 varies.

where α =
θ1θ2

∏n−1
i=1 ki

γn and β = ηµ. The linearized dynamics will then be of the form

v̇ = Mv,

where

v =


x1

...
xn
z1

z2


To prove our main stability result, we will analyze the characteristic polynomial of M , p(s). The roots
of p(s) correspond to eigenvalues of M . In general it is difficult to analyze these roots, however we
will see that the p(s) has a great deal of useful structure which we can exploit. First, we have to write
down what p(s) actually is.

Lemma 6.1. The characteristic polynomial of M is

p(s) = det(sI −M) = (s+ γ)n[s2 + (α+
β

α
)s] + γnβ.

Proof. We start by using the result that, for a block matrix such as M , we can use the classical result
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from linear algebra

p(s) = det(sI −M)

= det

[
sI −A −B
−C sI −D

]
= det(sI −A) det[(sI −D)−B(sI −A)−1C].

Since A is lower-triangular, we see immediately that the first term is

det(sI −A) = (s+ γ)n.

To analyze the second term, we first focus on computing B(sI−A)−1C. Because of the sparse structure
of B and C, we have

B(sI −A)−1C =

[
0 0

θ1θ2(sI −A)−1
n1 0

]
,

where (sI −A)−1
n1 is the bottom-left most entry of (sI −A)−1. Using Cramer’s rule, we can compute

(sI −A)−1
n1 =

1

(s+ γ)n
(−1)n+1 det


−k1 s+ γ · · · 0
...

. . . . . .
...

0 · · · −kn−2 s+ γ
0 0 · · · −kn−1


=

1

(s+ γ)n
(−1)n+1(−1)n−1

n−1∏
i=1

ki

=

∏n−1
i=1 ki

(s+ γ)n
.

Combing these results, we see that

p(s) = (s+ γ)n det

[
s+ α β

α

α− θ1θ2
∏n−1
i=1 ki

(s+γ)n s+ β
α

]

= (s+ γ)n
[
(s+ α)(s+

β

α
)− β +

γnβ

(s+ γ)n

]
= (s+ γ)n[s2 + (α+

β

α
)s] + γnβ. (14)

we can now use this result about p(s) to analyze the stability of the linearized sequestration feedback
system.

Theorem 6.2 (Eigenvalue Classification Theorem). For a given n and β � α2, αγ, the eigenvalues
λ of M has a parameter-independent classification of the form

∣∣∣arg
(
λ
γ

)
+ arg

(
λ
γ + 1

)∣∣∣ = mπ, for an
integer m.

Proof. To study the eigenvalues of M , we will analyze the roots of p(s). We begin by by substituting
s = γz in Equation (14) and setting p(z) = 0:

γ2z(1 + z)n
[
z +

α2 + β

αγ

]
= −β.

Taking the limit of strong feedback (β � α2, αγ), this equation reduces to

z(1 + z)n
[
1 + z

αγ

β

]
= −α

γ
.
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From this relationship we see that p(z) has one large real root at z ≈ − β
αγ . If we plug this into the

phase constraint equation, this gives a phase of (n+ 1)π. We will say the index of this root is n+ 1.
If |z| � β

αγ , we get the simplified magnitude constraint

|z||1 + z|n =
α

γ

and the phase constraint

arg(z) + n arg(1 + z) = π + 2kπ = (2k + 1)π.

We can see from this that the maximum phase possible is n + 1 and that any each of the indices
will be of the form 2k + 1 (i.e., odd integers). Because the magnitude constraint is independent of k,
fundamentally we can have phase indices for any odd integer m such that |m| ≤ n+ 1.

First we will see what conditions can produce purely real roots. If z is real and z > 0, then

arg(z) + n arg(1 + z) = 0,

which violates the phase constraint. This implies that, if there are unstable roots, they are not purely
real. If −1 < z < 0, then

arg(z) + n arg(1 + z) = π,

and we can have stable real roots with index 1. The magnitude constraint tells us that we will have
a pair of these real roots if α

γ < nn

(n+1)n+1 (which have index 1) with a bifurcation that generates
conjugate pairs of roots when α

γ ≥
nn

(n+1)n+1 . These conjugate roots will have indices ±1.
An immediate result of these observations is that, for any positive odd integer m such that 1 <

m < n+1, roots cannot be purely real and must come in conjugate pairs ±m. If n is odd, then we will
have a conjugate pair of roots for each m ∈ [3, n − 1], either a pair of small real roots or a conjugate
pair for m = 1, and a single large negative real root for m = n+ 1.

If n is odd, then the situation will be almost the same except for the fact that there will be a second
real root with index n + 1. By some simple accounting, this analysis accounts for all n + 1 roots of
p(z), which correspond to roots of p(s) by a simple rescaling by 1

γ .

Theorem 6.3 (Production-Degradation Inequality). LetM be the matrix corresponding to a lineariza-
tion of the sequestration feedback system with two control molecules (z1 and z2) and n plant species. In

the limit of strong feedback (β � α2, αγ), the system is stable if and only if n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
< γ, where

∆n is a constant that only depends on n. Further, when the system has purely imaginary eigenvalues
the frequency of oscillation will be ω = tan( π2n )γ.

Proof. We will prove the results by finding parametric conditions that will result in purely imaginary
eigenvalues, and then study what happens to the stability of the system when those parametric con-
ditions do not hold (i.e. equalities become inequalities). To do this, we generalize a technique from
[4], where we evaluate p(s) = 0 on the imaginary axis. In particular, we pick the change of variable
s = iδγ, where δ is a positive real number (which we can assume without loss of generality because
complex roots come in conjugate pairs), and evaluate p(δ). This yields the equations

p(δ) = 0 =⇒ γ2iδ(1 + iδ)n(ρ+ iδ) = −β, (15)

where ρ = α2+β
αγ . If we take the magnitude and phase of the the left-hand side of Equation (15), we

get the constraints
γ2δ(1 + δ2)

n
2

√
ρ2 + δ2 = β (16)

n tan−1(δ) + tan−1

(
δ

ρ

)
=
π

2
+ 2kπ. (17)

From Theorem 6.2 we know that, in the limit of strong feedback, all complex eigenvalues have mag-
nitude much less than ρ, therefore tan−1(δ/ρ) → 0. From these observations, we get the simplified
relationship

n tan−1(δ) =
π

2
+ 2kπ =⇒ δ = tan

(
π

2n
+

2k

n
π

)
.
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and Equation (16) becomes
δ(1 + δ2)

n
2
γ

α
= 1

=⇒ γ =
n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
, (18)

where ∆n = δ(1 + δ2)
n
2 . We can think of the parametric constrain Equation (18) as the boundary

between stable and unstable behavior in the system. Because the left-hand side of Equation (16) is
monotone in δ, we can infer that δ is unique and consequently there can only be one point in parameter
space where there exist purely imaginary eigenvalues.

The final step is to study what happens when Equation (18) does not hold. First we look at the

regime n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
< γ. Again using the uniqueness of δ, if we understand the stability behavior

of the system for a particular value of γ in this regime, the same stability behavior must hold for all γ in
this range. Because of this, we can first examine the range where γ is large. Intuitively, if degradation
is sufficiently stronger than production then all species subject to degradation should converge to 0.
To prove this rigorously, we will first search for roots with a large magnitude. If we apply the strong
feedback limit to the characteristic equation from Equation (14), we get

p(s) = s(s+ γ)n(s+
β

α
) + γnβ = 0

=⇒ s

(
s

γ
+ 1

)n(
s
γα

β
+ 1

)
+ γα = 0.

When |s| � γα, the characteristic equation will have the approximate form(
s

γ
+ 1

)n(
s
γα

β
+ 1

)
= 0,

which gives us n roots at −γ and one root at − β
γα . Since Equation (14) is order n+ 2, we know there

is one remaining root outside of this regime. Next, we search for the final small root (|s| � min(γ, βγα ),
which gives relationship

s+ γα = 0,

which gives a final small root at −γα. Since each of the n + 2 roots is negative, the system is stable

for all n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
< γ.

Now we examine the regime n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
> γ. Here we will use a different technique, as taking

the analogous limit of very small γ is less straight-forward to analyze. To start, we will perform a
change of variable s = γz, where z ∈ C. We will again using the strong feedback limit, and study roots
near the stability boundary, such that the characteristic equation still has the general form

z(1 + z)n = −α
γ
.

If we write z = a+ ib, we have the magnitude constraint

(a2 + b2)[(1 + a)2 + b2]n =

(
α

γ

)2

> ∆2
n.

We also get the phase relationship

tan−1(
b

a
) + n tan−1(

b

1 + a
) = π

=⇒ b

1 + a
< δ.
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Combining these relationships, we get

[a2 + δ2(1 + a)2](1 + δ2)n(1 + a)2n > ∆2
n.

=⇒
[(a
δ

)2

+ (1 + a)2

]
(1 + a)2n > 1.

Since a = 0 at the stability boundary, there must be a regime of parameters sufficiently close to the
boundary such that |a| � δ, for which we have the relationship

(1 + a)2(n+1) > 1 =⇒ a > 0.

This proves the existence of an unstable point when n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
> γ, which implies that all

parameters in this regime will yield unstable dynamics (so long as the strong feedback assumption still
holds).

We note that, thought previous results studied the regime of strong feedback (β large), the core
assumption that was made is that the quantity

α2 + β

αγ
� 1.

We note that there is an entirely different way to achieve this, by making α2 � β, αγ. In this regime,
all of the previous results follow in almost exactly the same way, except for changes to the constants
involved. It is relatively straightforward to show that the characteristic equation for the system reduces
to

z(1 + z)n = −βγ
α
.

Following the same steps from the previous proofs, we can find that instability now occurs when

n−1

√
∆nθ1θ2

∏n−1
i=1 ki

β
= γ.

Interestingly, the stable regime is now

n−1

√
∆nθ1θ2

∏n−1
i=1 ki

β
> γ,

the opposite of what occurs in the strong feedback limit. One interpretation of these results as a whole
is that stability is achievable when either controller sequestration or plant degradation are individually
large, but not when both are large simultaneously.

6.3 The Sensitivity Function
The sensitivity function S(s), s ∈ C is the transfer function between the output of a system and
disturbances to its state [2]. It is particularly useful to examine |S(iω)|, which corresponds to the
magnitude of S given a purely oscillatory disturbance. If |S(iω)| > 1, then the system will amplify
disturbances at a frequency ω. Conversely, if |S(iω)| < 1 then the system will attenuate disturbances
at frequency ω.

Define P (s) and C(s) to be the transfer function between inputs and outputs of the plant and
controller, respectively. It is a standard result in control theory that

S =
1

1 + PC
.

In general, for a linear system

ẋ = Ax+Bu

y = Cx,
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the transfer function has the form H(s) = C(sI − A)−1B. For the sequestration feedback system, we
have that

P (s) = [0, · · · , 1](sI −A)−1

 0
...
θ1

 =
θ1

∏n−1
i=1 ki

(s+ γ)n
,

where just as before we use

A =


−γ 0 · · · 0
k1 −γ · · · 0

0
. . . . . .

...
0 · · · kn−1 −γ

 .
Similarly, we have that

C(s) = [0,−1](sI −D)−1

[
0
θ2

]
=

1

s

θ2
β
α

[s+ (α+ β
α )]

,

where

D =

[
−α −β

α

−α −β
α

]
.

Here, the output has the form [0,−1] because in the standard formulation of these results it is assumed
that the output of the controller (z1 in our case) is used for negative feedback. Since z1 has a positive
sign in ẋ1, we flip the sign to be consistent. Note that C(s) has a factor if 1

s , indicating that it
corresponds to an integrator. From P and C, we see that

S =
1

1 +
β
α θ1θ2

∏
i=1 n−1ki

s(s+γ)n[s+(α+ β
α )]

=
s(s+ γ)n[s+ (α+ β

α )]

s(s+ γ)n[s+ (α+ β
α )] + βγn

.

If we again take the limit α+ β
α

γ � 1 and substitute s = γz we get the approximation

S(z) ≈ z(1 + z)n

z(1 + z)n − α
γ

.

Ideally we would like to analyze ‖S(iω)‖∞ = maxω |S(iω)|, however this is difficult to compute in
general. A lower bound for this term can, however, be easily computed by evaluating a particular
value of ω close to the maximum. Specifically, we will use ω = tan( π2n )γ = δγ. At z = iδ, we get

|S(iδ)| ≈ δ(1 + δ2)
n
2

δ(1 + δ2)
n
2 − α

γ

=
∆n

∆n − α
γ

.

From our previous results, we know that the system is purely oscillatory when ∆n = α
γ , which

corresponds to |S(iδ)| = ‖S(iω)‖∞ = ∞. This gives the intuitive result that the system is infinitely
sensitive to a periodic disturbance at ω = δγ when ∆n = α

γ . In general, we will have that

‖S(iω)‖∞ ≥
∆n

∆n − α
γ

.

6.4 Incorporating the Controller Species Degradation Into the Model
6.4.1 Integral Controller

Without the degradation of the controller species in the model description, Equations (1c), (1d) de-
scribe the controller species as:

ż1 = µ− ηz1z2,

ż2 = θx2 − ηz1z2.
(19)
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We define the error signal as e(t) = µ
θ − xn(t).

The controller species implement integral control since

d

dt
(z1(t)− z2(t)) = θ

(µ
θ
− xn(t)

)
. (20)

The control action z1(t)− z2(t) integrates the error signal e(t)

z1(t)− z2(t) = θ

∫ t

0

(e(s)) ds. (21)

If a steady state of the model exists, then the integral controller has the property that the steady
state error is zero since:

dz1(t)

dt
=
dz2(t)

dt
= 0 =⇒ xssn =

µ

θ
(22)

Achieving zero steady state error is a desirable property for the sequestration feedback system
because it does not directly depend on the dynamics of the plant. We investigate whether this property
is retained by including the controller species degradation in the model.

6.4.2 Lag Compensator

Incorporating the degradation of the controller species in the model description changes the controller
Equations (19) to the following:

ż1 = µ− ηz1z2 − γcz1,

ż2 = θx2 − ηz1z2 − γcz2.
(23)

The resulting controller is a lag compensator that integrates the error signal weighed by an expo-
nential of the controller degradation rate:

d

dt
(z1(t)− z2(t)) = µ− θxn(t)− α(z1(t)− z2(t)), (24)

z1(t)− z2(t) = θ

∫ t

0

eα(s−t)
(µ
θ
− xn(t)

)
ds. (25)

The exponential of the degradation rate biases the error measurement towards recent past over the
distant past.

Integral control has the property of perfect adaptation, provided that the closed loop system in
stable. This means that the closed loop system has zero steady state error. The lag compensator can
also exhibit perfect adaptation at a critical controller degradation rate.

6.5 The critical controller species degradation rate
We derive the critical controller species degradation rate γc such that the steady state error of a general
sequestration feedback network with n plant species equals zero. We also derive conditions such that
the critical controller degradation rate is achievable by the network parameters and we demonstrate
that it is unique.

We consider the general deterministic sequestration feedback network with n plant species (i.e. the
n plant species can be reactants in any bimolecular reactions within the plant network). Then the
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model of its dynamics is given by:

dx1

dt
= θ1z1 + α1,1x1 + · · ·+ α1,nxn,

dx2

dt
= α2,1x1 + · · ·+ α2,nxn,

...
dxn
dt

= αn,1x1 + · · ·+ αn,nxn,

dz1

dt
= µ− ηz1z2 − γcz1,

dz2

dt
= θ2xn − ηz1z2 − γcz2.

(26)

We define the following notation:

A =

 α2,1 α2,2 . . . α2,n−1

...
...

...
...

αn,1 αn,2 . . . αn,n−1

 ,

α1 = (α1,1, . . . , α1,n−1), αn = (α2,n, . . . , αn,n)T , and Γ = θ−1
1 (α1A

−1αn − α1,n).

Theorem 6.4. The critical controller degradation rate of a general sequestration feedback network
with n plant species is given by

γc =
θ2

Γ
− Γηµ

θ2
(27)

and it only exists if and only if the closed loop system has a steady state and Γ < θ2√
ηµ

Proof. In a 1-node sequestration feedback system, the degradation rate

γc =
θ1θ2

γp
− γpηµ

θ1θ2

results in zero steady state error. This degradation rate value can only be achieved when γp < θ1θ2√
µη .

Assuming that a steady state exists, then Equation (26) reduces to

0 = θ1z1 + α1,1x1 + · · ·+ α1,nxn

0 = α2,1x1 + · · ·+ α2,nxn

...
0 = αn,1x1 + · · ·+ αn,nxn

µ = ηz1z2 + γcz1,

θ2xn = ηz1z2 + γcz2.

(28)

Our system of equations in (28) reduces to

z1 = Γxn,

µ = ηz1z2 + γcz1,

θxn = ηz1z2 + γcz2.

(29)

First it must be the case that constant Γ > 0 and matrix A is invertible. Otherwise, the system
cannot have a positive steady state. This is equivalent to α1A

−1αn > α1,n. The input species should
not be depleted to create the output species. The system in Equation (29) simplifies to a single
equation
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x2
n(Γηθ2 + Γ2ηγc) + xn(Γγ2

c − Γµη)− γcµ = 0. (30)

Equation (30) always has a positive solution

xn =
(Γµη − Γγ2

c ) +
√

(Γγ2
c − Γµη)2 + 4γcµ(Γηθ2 + Γ2γcη)

2(Γηθ2 + Γ2γcη)
. (31)

Thus, the steady state error signal is

e =
−(Γγ2

c + 2Γ2γc
ηµ
θ2

+ Γµη) +
√

(Γγ2
c − Γµη)2 + 4γcµ(Γηθ2 + Γ2γcη)

2(Γ2γcη + Γηθ2)
. (32)

If we want the output of the dynamical system to follow the reference signal µ
θ2
, then it must be that

γc =
θ2

Γ
− Γηµ

θ2
, (33)

which can only be achieved if and only if Γ < θ2√
ηµ .

Therefore, lag compensation can result in perfect adaptation for optimal values of the controller
species degradation rate γc. Depending on the parameters of the sequestration feedback system, the
optimal value of the degradation rate may or may not be achievable.

Remark 1. If the n-species plant network has a cyclical structure (i.e. each plant species creates the
next species and is degraded by the previous species), then the critical controller degradation rate is
γc =

θ1θ2
∏n−1
i=1 ki

γnp
− ηµγnp

θ1θ2
∏n−1
i=1 ki

.

In this particular case,

A−1 =


1
k2

γp
k2k3

. . .
γn−2
p

k2...kn−1θ2

0 1
k3

. . .
γn−3
p

k3...kn−1θ2
...

...
...

...
0 0 . . . 1

θ2

 ,

β1 = (−γp, 0, . . . , 0), βn = (0, . . . , 0,−γp)T , β1,n = 0, and Γ =
γnp∏n−1

i=1 kiθ2
. Hence

γc =
θ1θ2

∏n−1
i=1 ki

γnp
−

ηµγnp

θ1θ2

∏n−1
i=1 ki

. (34)

It can only be achieved if and only if

γp <
n

√
θ1θ2

∏n−1
i=1 ki√
ηµ

. (35)

6.6 Stability analysis of the sequestration feedback network with controller
degradation

We derive criterion for the stability of the sequestration feedback system with controller degradation.
The criterion changes according to the relationship between the plant degradation rate γp and the
controller degradation rate γc.

We begin by denoting

α =
θ1θ2

∏n−1
i=1 ki

γnp
,
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β = ηµ,

where γp is the degradation rate of the plant species and γc is the degradation in the controller species.
The the matrix

D =

[
−α− γc −β

α

−α −β
α − γc

]
(36)

Therefore the characteristic polynomial is:

(s+ γp)
n(s+ γc)

(
s+ γc +

β

α
+ α

)
+ βγnp = 0 (37)

We study the characteristic polynomial’s roots to determine the stability of the closed loop system
with controller species degradation.

First we make the change of variable s = γpz and obtain a new formulation of the characteristic
polynomial in Equation (37) as the following:

(z + 1)n

(
z +

γc
γp

)(
z +

γc + α+ β
α

γp

)
= − β

γ2
p

(38)

Let z be a complex root of the characteristic polynomial in Equation (38).
We use the characteristic polynomial in Equation (38) to derive the stability criterion for the

sequestration feedback system. For simplicity, we make the strong feedback assumption. We consider
the following three cases: γc � γp, γc and γp the same order of magnitude, and γc � γp.

Case I: γc � γp
In this case, the controller species degradation rate is much smaller than the plant species degra-

dation rate and therefore it does not influence the stability of the closed loop sequestration feedback
system.

In particular, the characteristic polynomial in Equation (38) reduces to the following characteristic
polynomial:

z(z + 1)n

(
z +

α+ β
α

γp

)
= − β

γ2
p

. (39)

We know from the supplement, Theorem 6.3 that the solution of the stability problem is provided by
the production-degradation inequality. Therefore, in order for the closed loop sequestration feedback
system to be stable, we must have that:

γp >
n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
,

γp � γc.

(40)

Case II: γc, γp are the same order of magnitude
Then the characteristic polynomial is given by:

(z + 1)n+1

(
z + 1 +

α+ β
α

γp

)
= − β

γ2
p

(41)

We assume that we are in the strong feedback limit of β >> α2, αγp. We multiply both side of the
characteristic polynomial by factor γpα

β .
Hence we obtain that

(z + 1)n+1

(
z
γpα

β
+
γpα

β
+
α2

β
+ 1

)
= − α

γp
, (42)

which, under the strong feedback assumption, simplifies to

25

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/222042doi: bioRxiv preprint 

https://doi.org/10.1101/222042
http://creativecommons.org/licenses/by-nd/4.0/


(z + 1)n+1

(
z
γpα

β
+ 1

)
= − α

γp
, (43)

Therefore, the largest real root is at value ≈ −1− β
γpα

.
If n is even, then the characteristic polynomial in (43) has two negative real roots and the remaining

roots are conjugate complex pairs.
To determine the stability criterion, we analyze the bifurcation point at which the system goes from

stable to unstable. Therefore, we assume that there is a complex root z = iδ. Then the magnitude
and phase of the characteristic polynomial are given by

(δ2 + 1)
n+1
2 =

α

γp
,

tan−1(δ) =
π(2k + 1)

n+ 1
,

(44)

where 0 ≤ k ≤ n
2 .

The second real root corresponds to index k = n
2 .

We follow the proof in Theorem 6.3 and we obtain that stability is guaranteed if

n is even,
γc ≈ γp,

γp >

n+1

√
θ1θ2

∏n−1
i=1 ki√

tan( π
n+1 )2 + 1

.

(45)

If n is odd, then the characteristic polynomial in (43) has only one negative real root, located at
value ≈ −1− α+ β

α

γp
. The other roots are conjugate complex pairs. The rest of the argument is similar

and stability is guaranteed for an analogous criterion.
Case III: γc � γp
We can equivalently write the characteristic polynomial in Equation (38) as the following:

(z + 1)n

(
z
γp
γc

+ 1

)(
z

αγp
αγc + β

+ 1

)
= − α

γc
(46)

Since γp
γc

and αγp
αγc+1 are very small, we can infer that the characteristic polynomial (46) has two

large negative real roots at values ≈ − γc
γp

and ≈ − γc
γp
− β

αγp
. Here we have assumed that β � αγc in

addition to the strong feedback assumption.
We only consider the case n even. The case n odd has a similar proof with an additional real root.
Then the magnitude and the phase of the characteristic polynomial are given by:

(δ2 + 1)
n
2 =

α

γc
,

tan−1(δ) =
π(2k + 1)

n
,

(47)

where 0 ≤ k ≤ n
2 − 1.

All the roots are conjugate complex and they occur in pairs.
If the following conditions

γc � γp,

γp >

n

√
θ1θ2

∏n−1
i=1 ki

n
√
γc

√
1 + tan

(
π
n

)2 , (48)

hold, then the stability of the closed loop sequestration feedback system is guaranteed.
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6.7 Stability of the sequestration feedback system with two plant species
and controller species degradation

For this simple sequestration feedback system with two plant species and two controller species sub-
jected to degradation, we derive the stability criterion for general values of the plant degradation rate
γp and the controller degradation rate γc.

Here we compute the matrix

D =

[
−η2 − γc −η1

−η2 −η1 − γc

]
, (49)

where
η1 = ηµ

γnp

θ1θ2

∏n−1
i=1 ki

η2 =
θ1θ2

∏n−1
i=1 ki

γnp
.

The characteristic polynomial is:

(γp + s)n(γc + s)(η1 + η2 + γc + s) + η1θ1θ2

n−1∏
i=1

ki = 0 (50)

Assume µη is large, then:

(γp + s)n(γc + s) + θ1θ2

n−1∏
i=1

ki = 0 (51)

Let s = wi. Then,

(γp + wi)n(γc + wi) + θ1θ2

n−1∏
i=1

ki = 0 (52)

Consider the magnitude of the equation:

(γ2
p + w2)n(γ2

c + w2)2 = (θ1θ2

n−1∏
i=1

ki)
2 (53)

and the phase of the equation:
tan−1 w

γc
+ n tan−1 w

γp
= π (54)

If n = 2, when the imaginary component of (52) is set to 0, we can solve for w =
√

(2γc + γp)γp.
Then,

(γ2
p + w2)(γ2

c + w2) = θ1θ2k (55)

γp(γc + γp)
2 =

θ1θ2k

2
(56)

The stability criteria is (by Descartes’ rule of sign)

γp(γc + γp)
2 ≥ θ1θ2k

2
(57)
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6.8 Stochastic analysis
We derive the Fano factor of a stochastic sequestration feedback system with two plant species. We
describe the biochemical reactions of sequestration feedback system with two plant species:

∅ µ−→ Z1 Z1
θ1−→ Z1 +X1 X1

k−→ X2 X2
θ2−→ X2 + Z2

X1
γ−→ ∅ X2

γ−→ ∅

Z1 + Z2
η−→ ∅.

If we assume infinitely strong binding of the sequestration reaction, then limit η →∞ holds. Hence,
at any time, only one of species Z1 and Z2 can be non-zero. If both species are non-zero, then they
sequestrate each other infinitely fast through reaction Z1 + Z2 → ∅ until one of them become zero.
Therefore, we can define variable Z = Z1 − Z2, which has a one-to-one correspondence to species Z1

and Z2 counts, where positive Z indicates counts of Z1, and negative Z indicates counts of Z2.
With this simplification, the dynamics of the stochastic sequestration feedback system can be

described by a continuous-time Markov chain (CTMC) over the counts of species Z, X1 and X2 using
the following master equation dynamics [7]:

ṗ(x1, x2, z) = µ(p(x1, x2, z − 1)− p(x1, x2, z))

+ θ1 max{z, 0}[p(x1 − 1, x2, z)− p(x1, x2, z)]

+ kx1[p(x1, x2 − 1, z)− p(x1, x2, z)]

+ θ2x2[p(x1, x2, z + 1)− p(x1, x2, z)]

+ γ[(x1 + 1)p(x1 + 1, x2, z)− x1p(x1, x2, z)]

+ γ[(x2 + 1)p(x1, x2 + 1, z)− x2p(x1, x2, z)],

(58)

where p(x1, x2, z; t) denotes the probability for the system to have Z = z, X1 = x1, and X2 = x2 at
time t.

We observe that all the terms on the right hand side of Equation (58) are linear, except for the
max{z, 0} term. We can see this more clearly if we consider the first moment equation.

If we consider the steady-state master equation, we set the left hand side to 0 and we apply∑
x1,x2,z

x1 with the sum over all x1, x2 ∈ N, z ∈ Z, then we obtain that

θ1E(Z|Z ≥ 0)P(Z ≥ 0) = γEX1 (59)

Similarly, if we apply
∑
x1,x2,z

x2, and
∑
x1,x2,z

z, we get

kEX1 = γEX2 µ = θ2EX2. (60)

The term that prevents us from solving this set of linear equations for the first moments is the max{z, 0}
term, which results in the probability for Z to be non-negative in the moment equations.

Therefore, we make a second assumption that Z ≥ 0 with probability 1 at steady state. This means
Z2 is zero with probability 1 and this represents a good approximation if the system is stable, without
Z1 oscillating to a very low count.

Under this assumption, we then obtain that

θ1EZ = γEX1, (61)

which is a linear equation.
Similarly, if we apply sum

∑
x1,x2,z

x1z to the master equation, we obtain a system of linear
equations for steady-state moments of both the first and the second order terms. Solving this system
of equations then gives the following result for the Fano factor:

VarX2

EX2
=
γ(2θ1k + kγ + 2γ2)

2γ3 − θ1θ2k
(62)
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As γ →∞, we obtain an additional simplification

VarX2

EX2
∼ 1 +

k

2γ
(63)

We also derive the Fano factor for the three plant species stochastic sequestration feedback system
and we obtain an analogous result,

VarX3

EX3
=

8γ4 + 3k2γ
3 + 3k1k2γ

2 + 8θ1k1k2γ − 3θ1θ2k1k2

8γ4 − 9θ1θ2k1k2
. (64)

The denominator in Equation (64) matches the stability criterion for the three plant species deter-
ministic sequestration feedback system.
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