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Abstract 
 

Individual differences in cognitive function have been shown to correlate with 

brain-wide functional connectivity, suggesting a common foundation relating 

connectivity to cognitive function across healthy populations. However, it remains 

unknown whether this relationship is preserved in cognitive deficits seen in a range of 

psychiatric disorders. Using machine learning methods, we built a prediction model of 

working memory function from whole-brain functional connectivity among a healthy 

population (N = 17, age 19-24 years). We applied this normative model to a series of 
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independently collected resting state functional connectivity datasets (N = 968), 

involving multiple psychiatric diagnoses, sites, ages (18-65 years), and ethnicities. We 

found that predicted working memory ability was correlated with actually measured 

working memory performance in both schizophrenia patients (partial correlation, ρ = 

0.25, P = 0.033, N = 58) and a healthy population (partial correlation, ρ = 0.11, P = 

0.0072, N = 474). Moreover, the model predicted diagnosis-specific severity of working 

memory impairments in schizophrenia (N = 58, with 60 controls), major depressive 

disorder (N = 77, with 63 controls), obsessive-compulsive disorder (N = 46, with 50 

controls), and autism spectrum disorder (N = 69, with 71 controls) with effect sizes g = -

0.68, -0.29, -0.19, and 0.09, respectively. According to the model, each diagnosis’s 

working memory impairment resulted from the accumulation of distinct functional 

connectivity differences that characterizes each diagnosis, including both diagnosis-

specific and diagnosis-invariant functional connectivity differences. Severe working 

memory impairment in schizophrenia was related not only with fronto-parietal, but also 

widespread network changes. Autism spectrum disorder showed greater negative 

connectivity that related to improved working memory function, suggesting that some 

non-normative functional connections can be behaviorally advantageous. Our results 

suggest that the relationship between brain connectivity and working memory function 

in healthy populations can be generalized across multiple psychiatric diagnoses. This 

approach may shed new light on behavioral variances in psychiatric disease and 

suggests that whole-brain functional connectivity can provide an individual quantitative 

behavioral profile in a range of psychiatric disorders. 
 
Introduction 
 

Functional connectivity (FC) quantifies how brain regions are temporally 

coordinated, and offers potential insight into individual differences in behavior (Seeley 

et al., 2007; Lewis et al., 2009; Baldassarre et al., 2012). For instance, whole-brain FC 

models have recently demonstrated that sets of functional connections across 

widespread brain regions can predict performance on cognitive tasks (Finn et al., 2015; 

Smith et al., 2015; Yamashita et al., 2015; Rosenberg et al., 2016). These findings 

suggest that specific cognitive processes may be represented by interaction patterns 
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among distributed brain networks, and also that a general relationship exists between 

brain-wide connectivity and cognitive function, at least among healthy populations. 

Working memory is widely accepted as one of the most important cognitive 

functions in daily life. Working memory reflects a brain system that temporarily 

maintains and processes information to guide a range of cognitive tasks (Baddeley, 

2003; Cowan, 2014). Increasing evidence suggest that working memory emerges from 

widespread brain regions that engage in sensory perception, executive control, and 

motor action (Owen et al., 2005; Postle, 2006; Rottschy et al., 2012; Nee et al., 2013; 

D’Esposito and Postle, 2015; Eriksson et al., 2015). Working memory deficits have 

been commonly observed in a range of psychiatric disorders (Forbes et al., 2009; Millan 

et al., 2012; Snyder, 2014; Lever et al., 2015; Snyder et al., 2015), and while the 

severity depends on the specific psychiatric diagnosis (Forbes et al., 2009; Millan et al., 

2012; Snyder, 2014; Lever et al., 2015; Snyder et al., 2015), many different case-

control studies have revealed dysfunction in executive control systems such as fronto-

parietal networks (Koshino et al., 2005; Barch and Csernansky, 2007; Vasic et al., 

2009; De Vries et al., 2014).  

Functional connectivity has emerged as a promising tool in understanding the 

biological basis of psychiatric diagnoses, and different diagnoses have been shown to 

relate to unique patterns of FC (Harrison et al., 2009; Baker et al., 2014; Kaiser et al., 

2015; Yahata et al., 2016). For example, a whole-brain FC-based model has been shown 

to predict autism spectrum disorder (ASD) (Yahata et al., 2016), and specific 

connections within this model can predict individual clinical scores, suggesting that FC 

disruption is quantitatively relevant to patients behavioral abnormality. More broadly, 

therefore, this suggests that, a specific relationship between FC and behavior might 

exist across many disparate diagnoses. 

With the above issues in mind, we set out to examine three mutually exclusive 

hypotheses about the relationship between functional connectivity models of working 

memory ability (FC-WMA) and observed working memory performance across healthy 

populations and a range of psychiatric diagnoses. The first hypothesis proposes a 

distinct FC-WMA relationship for each diagnosis, rationalized by the fact that each 

psychiatric diagnosis is characterized by differential alterations in FC (Harrison et al., 

2009; Baker et al., 2014; Kaiser et al., 2015; Yahata et al., 2016) (distinct FC-WMA 

hypothesis). This hypothesis predicts that the FC-WMA relationship among healthy 
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populations will fail to generalize in predicting impairments across different diagnoses. 

The second hypothesis proposes a common FC-WMA relationship across health and 

multiple diagnoses, rationalized by the fact that disruptions in fronto-parietal network-

Figure 1. Schematic diagram of model development and application to independent 
datasets. (A) Model was developed using a whole-brain resting state FC and a learning 
plateau of a verbal 3-back task (Ver3-WMA) within healthy individuals from ATR dataset. 
(B) We applied the model to resting state FC patterns and predicted individual participant’s 
Ver3-WMA scores. (C) Predicted individual Ver3-WMAs were compared with observed 
WMAs in both healthy and clinical populations. We first examined the external validity 
using an independent USA dataset (HCP dataset) that included a visual-object N-back task 
with the performances of 0-back and 2-back conditions (ViO2-WMA). Then we examined 
the generalizability to a clinical population using a schizophrenia dataset that included Digit 
Sequencing Tests (DST-WMA). (D) Using the multiple psychiatric diagnoses dataset, degree 
of WMA impairment for each diagnosis was predicted as differences from corresponding 
controls. Note that the HCP dataset’s task stimuli images are just illustration purpose and 
different from the original stimuli. 
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related connections are sufficient to explain the different severity of working memory 

deficits of different diagnoses, because fronto-parietal network dysfunction is 

commonly associated with working memory impairments across multiple diseases 

(Koshino et al., 2005; Barch and Csernansky, 2007; Vasic et al., 2009; De Vries et al., 

2014) (common fronto-parietal network hypothesis). This hypothesis predicts that a FC-

WMA relationship, which is estimated purely from fronto-parietal network-related 

connections in healthy populations will generalize to predict working memory 

impairment across diagnoses. The third hypothesis proposes that both a common FC-

WMA relationship across healthy and multiple diagnoses, and multiple abnormal 

connections among distributed networks are necessary to explain the full range of 

working memory deficit severities (common whole-brain hypothesis). This hypothesis 

builds on the findings that the coordinated interplay across entire brain networks 

underlie working memory processes (Owen et al., 2005; Postle, 2006; Rottschy et al., 

2012; Nee et al., 2013; D’Esposito and Postle, 2015; Eriksson et al., 2015; Yamashita et 

al., 2015). This hypothesis predicts that a FC-WMA relationship estimated from whole-

brain functional connections in healthy populations will generalize to predict working 

memory impairment across diagnoses. Here, working memory impairment should be 

explained as an accumulation of bits of FC abnormalities, some of which are shared 

(e.g., fronto-parietal network-related connections), and others distinct among different 

diagnoses. 

To test these hypotheses, we built a prediction model of working memory 

ability (WMA) using whole-brain FC among a healthy population, and examined its 

generalizability to a series of independent cohorts, with a broad variety of imaging sites, 

ages, ethnicities, and even psychiatric diagnoses. As we present below, the results 

support the third hypothesis, the common whole-brain hypothesis. We show that a 

whole-brain FC-WMA model is applicable across healthy populations and a range of 

psychiatric disorders. Moreover, detailed examination of the FC-WMA relationship 

across specific individual connections suggest that the working memory deficits result 

from combination of both diagnosis-specific and diagnosis-invariant changes in FC. 

 
Methods 
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Design 
We developed a data-driven prediction model of WMA among healthy individuals 

recruited at ATR (Advanced Telecommunications Research Institute International), 

Japan (ATR dataset; Fig. 1A). Independently collected resting state fMRI (rs-fMRI) 

was entered into this model to predict individual WMA in both healthy and clinical 

populations (Fig. 1B). Specifically, we applied the model to two independent test 

datasets (Fig. 1C): (i) healthy individuals in the USA (the Human Connectome Project 

dataset, HCP dataset), (ii) patients with schizophrenia, and the predicted WMA was 

compared with actually measured WMA. Moreover, the model was applied to patients 

with psychiatric diagnoses, including schizophrenia, major depressive disorder (MDD), 

obsessive-compulsive disorder (OCD), and ASD and also their age- and gender-

matched healthy/typically developed controls (multiple psychiatric diagnoses dataset, 

Fig. 1D). The predicted WMA scores were compared with previous meta-analyses of 

working memory across the four psychiatric diagnoses. Throughout these three datasets, 

all participants provided written informed consent. 

 

ATR Dataset 
The first dataset was used to train the normative prediction model (N = 17, age 19-24 

years old, 11 males).  

Behavioral assessment of working memory 
The participants performed a letter-based verbal 3-back task (Ver3, Fig. 1A) over 25 

sessions (about 80-90 min of training period in total). We evaluated their performance 

by calculating the d-prime for each session, and then obtained an individual learning 

curve by calculating 5-session moving performance averages. The individual learning 

curve was fitted by an inverse curve (y = a – b/x), where y is a d-prime in the x-th 

session, while a and b is a parameter for learning plateau and learning speed, 

respectively. We used the estimated learning plateau (a) for a measure of individual 

WMA. The learning plateaus showed large inter-individual differences, ranging from 

1.38 to 3.87 (mean ± SD = 2.80 ± 0.72). More detailed information is described in our 

previous paper (Yamashita et al., 2015). 

 
Resting state-fMRI data and Functional Connectivity (FC) estimation 
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We recorded a rs-fMRI scan for each participant (5 min 4 sec). All fMRI data were 

processed using SPM8 and in-house MATLAB code. After removing the first two 

volumes, the data were preprocessed with slice timing correction, realignment, and 

spatial smoothing with an isotropic Gaussian kernel (full width at half maximum = 8 

mm). To remove several sources of spurious variance, we regressed out six motion 

parameters and the averaged signals over gray matter, white matter, and cerebrospinal 

fluid (Fox et al., 2005). The gray matter signal regression improves FC estimation by 

effectively removing motion-related artifacts (Power et al., 2014; Burgess et al., 2016; 

Ciric et al., 2017). Finally, we performed “scrubbing” (Power et al., 2012) in which we 

removed scans where framewise displacement was > 0.5 mm. 

Based on the 18 whole-brain intrinsic networks of BrainMap ICA (Laird et 

al., 2011), we calculated FC values for pair-wise between-network (18 x 17/2 = 153) 

connections and within-network connections. Between-network FC was calculated as 

Pearson’s correlation between blood-oxygen-level dependent signal time courses 

averaged across voxels within each network, and then transformed to Fisher Z values. 

Within-network FC was calculated as mean voxel-wise correlations within each 

network as follows. First, the time series for a voxel was correlated with every other 

voxel within a network, and this calculation was repeated for every voxel in the 

network. Next, the correlation coefficients were transformed into Fisher Z values. By 

averaging the Z values within each network, within-network FC for all 18 networks was 

calculated. 

Developing prediction model 
To predict individual learning plateaus in the Ver3-WMA, we performed a sparse linear 

regression analysis (Sato, 2001) (VBSR toolbox; 

http://www.cns.atr.jp/cbi/sparse_estimation/sato/VBSR.html) on the whole-brain FC 

values. In this framework, individual Ver3-WMAs were modeled as a linear weighted 

summation of a small number of FC values among the intrinsic networks. To build a 

single prediction model, we utilized all the data (N = 17) as the training set. More 

detailed information on the model development is described in our previous paper 

(Yamashita et al., 2015). 

 

Human Connectome Project (HCP) Dataset 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 3, 2017. ; https://doi.org/10.1101/222281doi: bioRxiv preprint 

https://doi.org/10.1101/222281


 8 

The second dataset was collected in the HCP (Van Essen et al., 2013), which is publicly 

available as “500 Subjects Release” (N = 542). We restricted our analysis to participants 

for whom all rs-fMRI, visual-object N-back (HCP: WM_Acc), and Raven’s progressive 

matrices with 24 items (HCP: PMAT24_A_CR) (Bilker et al., 2012) were available (N 

= 474; 194 males, 5-year age ranges in the Open Access Data: 22-25, 26-30, 31-35 and 

36+ years old). 

Behavioral assessment of working memory 
Individual WMA was briefly measured by the visual-object N-back with 0-back and 2-

back conditions (ViO2-WMA), which consisted of four different categorical stimuli: 

faces, body parts, tools, or places (Fig. 1C). The N-back task was performed in two runs 

of fMRI experiment, with 5 min scan acquisition for each run. The scores were 

evaluated by the accuracy percentage of 2-back and 0-back conditions (86.0% ± 9.5% 

(SD), range 45.8% to 100%) and showed non-normal distributions. Thus, we performed 

nonparametric statistical test, Spearman’s rank correlation, to examine the correlation of 

the model predictions with ViO2-WMA scores. Additionally, general fluid intelligence 

was assessed by Raven’s progressive matrices. The scores are integers that indicate the 

number of correct items (16.5 ± 4.8 (SD) from 4 to 24). 

 

Resting state-fMRI data and Functional Connectivity (FC) estimation 
We used rs-fMRI data that were already preprocessed and denoised by the FIX 

procedure (Salimi-Khorshidi et al., 2014). Realignment and spatial smoothing was 

performed with an isotropic Gaussian kernel (full width at half maximum = 4 mm). 

Nuisance regression was performed using average signals of gray matter, white matter, 

and cerebro-spinal fluid. Finally, a band-pass filter (0.009-0.08 Hz) was applied and 

volumes with framewise displacement > 0.5 mm were removed. FC estimation was 

performed in the same way as in the ATR dataset. 

Examination of model prediction 

We entered whole-brain FC values into the prediction model developed from the ATR 

dataset, and predicted individual’s Ver3-WMA. To examine whether the model 

significantly predicted individually measured ViO2-WMA, we shuffled the participant 

labels of the model predictions and compared the predicted Spearman’s rank correlation 

coefficient with the obtained null distribution by 10,000 permutations. 
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Multiple Psychiatric Diagnoses Dataset 
We recruited participants with four different psychiatric diagnoses: schizophrenia, 

MDD, OCD, and ASD. These data were collected across five universities and seven 

scanners among a Japanese neuropsychiatry consortium (Yahata et al., 2016) 

(Supplementary Tables 2 for demographic data; http://www.cns.atr.jp/decnefpro/). 

Patients and their age- and gender-matched healthy controls were recruited at each site: 

58 patients with schizophrenia (age 37.9 ± 9.3 (standard deviation, SD), 30 males) and 

60 controls (age 35.2 ± 8.4, 40 males) were recruited at Kyoto University; 77 patients 

with MDD (age 41.6 ± 11.2, 43 males) and 63 controls (age 39.3 ± 12.0, 29 males) were 

recruited at Hiroshima University; 46 patients with OCD (age 32.2 ± 9.9, 17 males) and 

50 controls (age 30.0 ± 7.3, 24 males) were recruited at Kyoto Prefectural University of 

Medicine. Patients with ASD and their controls were recruited at two sites; 33 patients 

with ASD (age 32.8 ± 8.4, 21 males) and 33 controls (age 34.7 ± 7.0, 18 males) were 

recruited at the University of Tokyo, and 36 patients with ASD (age 29.9 ± 7.2, 36 

males) and 38 controls (age 32.5 ± 7.4, 38 males) were recruited at Showa University. 

Additional details including inclusion/exclusion criteria, medication usage, and 

informed consent are described in Supplementary Methods. 

 
Resting state-fMRI data and Functional Connectivity (FC) estimation 
We collected rs-fMRI data for each participant (for scanning parameters see 

Supplementary Table 3). Preprocessing and FC estimation were performed in the 

same way as in the ATR dataset. We conducted quality control for the rs-fMRI data and 

excluded participants if more than 40% of their total number of volumes of their rs-

fMRI data were removed by the scrubbing method. After their data quality was assured, 

age- and gender-matched healthy control subjects were included in the analysis. 

Behavioral assessment of working memory 
In the schizophrenia patients, general cognitive ability was assessed by the Japanese 

version of Brief Assessment of Cognition in Schizophrenia (BACS-J) (Kaneda et al., 

2007). This cognitive battery is composed of six subtests including Digit Sequencing 

Test (DST) - a WMA measure. In the DST, sequences of numbers were auditorily 

presented, with increasing length from three to nine digits (Fig. 1C). Participants 

repeated the sequences aloud by sorting in ascending order. The DST-WMA scores 

were integers that indicate the number of correct trials among 28 trials (18.4 ± 4.1 (SD), 
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range 10 to 27). We examined the statistical significance on the prediction accuracy by 

permutation tests as described in HCP dataset. Furthermore, to examine whether the 

model specifically predicted DST-WMA independently of age and general cognitive 

performance, we performed a partial correlation analysis that factored out these two 

variables. Here, general cognitive performances were evaluated by composite score of 

BACS’s five subtests other than the DST. The composite score was obtained by 

averaging over five Z-scores of the subtests. 

Examination of model prediction 
In the model predictions, we detected outliers within each group (defined as values > 3 

SD from the mean) for a control participant of MDD and a patient with OCD (N = 1, 1, 

respectively). These two participants were excluded from further analysis. Patients’ 

predicted Ver3-WMA differences were evaluated by the Z-scores standardized to their 

age-and gender-matched controls collected in the same site. After confirming the 

homoscedasticity (Bartlett’s test, P = 0.19), the standardized WMA differences were 

entered in a one-way ANOVA with diagnosis as a between-participant factor. Post-hoc 

pair-wise comparisons were corrected using Holm’s method. 

 

Results 
 
Building Prediction Model Using Whole-Brain Functional 
Connectivity (FC) 
We used the ATR dataset as the training set to develop a normative model of individual 

WMA. Using sparse linear regression, individual Ver3-WMAs were modeled as a linear 

weighted summation of automatically selected 16 FC values among 15 intrinsic 

networks (Fig. 2). Ver3-WMA scores were positively correlated with three FC values 

(P1-P3) and negatively correlated with the remaining 13 FC values (N1-N13). Each 

network of the connections and the anatomical regions in the network are summarized 

in Table 1 and Supplementary Table 1, respectively. For example, FC within a left 

fronto-parietal network (P1) accounted for about 34% of the total variance of the model 

predictions. We did not find a significant correlation between the predicted Ver3-WMA 

scores and age (r = 0.21, P = 0.42), gender (r = 0.28, P = 0.28), or head motion (r = - 

0.37, P = 0.14). This provided a normative prediction model based on healthy young 

Japanese participants. 
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Prediction in Independent Test Set of Healthy Individuals 
We next tested the model’s generalizability to an entirely independent healthy cohort 

(HCP dataset). We found that the model significantly predicted ViO2-WMA scores 

(Spearman’s rank correlation, ρ = 0.09, P = 0.030). However, we found that ViO2-

WMA scores were also positively correlated with general fluid intelligence (ρ = 0.46, P 

= 3.3 x 10-26) and negatively correlated with average in-scanner head motion (ρ = -0.24, 

Figure 2. Circle plots of normative model of Ver3-WMA. Individual Ver3-WMAs are 
predicted by a linear weighted summation of 16 FC values. Connection thicknesses indicate 
contribution ratios (weight x FC at each connection: Table 1). Connections are labeled 
“Positive/Negative (P/N)” based on correlation coefficient signs with Ver3-WMA scores, 
whereas numbers indicate descending orders of contribution ratio magnitudes. Each network’s 
color indicates relevance with working memory function based on BrainMap ICA (Laird et al., 
2011); warmer colors indicate closer relevance to working memory function. Each network’s 
label and regions included in it are summarized in Supplementary Table 1. 
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P = 1.5 x 10-7). To examine whether the model specifically predicted individual WMA, 

we performed a partial correlation analysis while factoring out these two variables. This 

revealed a more significant partial correlation between the predicted Ver3-WMA scores 

from FC and the measured ViO2-WMA scores (Spearman’s rank partial correlation ρ = 

0.11; P = 0.0072, Fig. 3A). The null distributions created for all the permutation tests 

are illustrated in Fig. 3B. Therefore, the model captures FC variations specific to WMA 

independently of general fluid intelligence and head motion. 

 

Prediction in Independent Test Set of Individual Patients with 
Schizophrenia  
We also addressed whether the model could predict individual WMA differences among 

patients with a single psychiatric diagnosis, focusing on schizophrenia. We applied the 

model to an independent test set of schizophrenia patients in the multiple psychiatric 

patient dataset. We found that the model prediction was positively correlated with DST-

Figure 3. Generalizability to HCP dataset. (A) Significant Spearman’s rank partial 
correlation between predicted Ver3-WMA and measured ViO2-WMA scores while factoring 
out general fluid intelligence and head motion (ρ = 0.110, P = 0.0072). (B) Frequency of 
Spearman’s rank partial correlation of predicted Ver3-WMA with observed ViO2-WMA, 
general fluid intelligence, and head motion over 10,000 permutations. Bin width is 0.005. 
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WMA scores (r = 0.26, P = 0.025). However, DST-WMA scores also correlated 

positively with general cognitive ability in BACS (r = 0.60, P = 5.4 x 10-7), negatively 

with age (r = -0.37, P = 0.005), but not with head motion (r = -0.02, P = 0.90). To 

confirm that the model predictions were specific to WMA, we examined the 

relationship between predicted Ver3-WMA scores from FC, the measured DST-WMA 

scores, age, and general cognitive ability. After controlling the age and the general 

cognitive ability using a partial correlation analysis, the model predictions showed 

significant correlations with DST-WMA scores (ρ = 0.25, P = 0.033, Fig. 4A). The null 

distributions created for all the permutation tests are illustrated in Fig. 4B. Therefore, 

the model captures FC variations that are specific to WMA independently of age or 

general cognitive ability. 

 

Figure 4. Generalizability to Schizophrenia dataset. (A) Significant Pearson partial 
correlation between predicted Ver3-WMA and measured DST-WMA scores while 
factoring out general cognitive ability and age (ρ = 0.248, P = 0.033). (B) Frequency of 
Pearson partial correlation of predicted Ver3-WMA with observed DST-WMA, general 
fluid intelligence, and head motion while factoring out two other variables over 10,000 
permutations. Bin width is 0.01. 
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Prediction in Independent Test Set of Four Distinct Psychiatric 
Disorders 
We addressed whether our model could quantitatively reproduce degrees of WMA 

deficits across four psychiatric diagnoses. WMA impairments have generally been 

observed, in descending order of severity, in schizophrenia, MDD, OCD, and ASD 

(Forbes et al., 2009; Snyder, 2014; Lever et al., 2015; Snyder et al., 2015). First, we 

compared the model predictions between patients and controls for each diagnosis 

scanned at the same site to remove scanner and imaging protocols as disturbance 

variables. We identified significant differences in the model predictions between the 

patient and normal controls only for schizophrenia patients (two-tailed t-test for 

schizophrenia group: t116 = -3.68, P = (3.5 x 10-4) x 4 = 0.0014, Bonferroni corrected; 

Fig. 5A). Second, we calculated individual patients’ Z-score of the predicted WMAs for 

each diagnosis (Fig. 5B). A one-way ANOVA revealed a significant main effect of 

diagnosis on the Z-score (F3,245 = 7.49, P = 8.15 x 10-5). The severity of the predicted 

impairment in schizophrenia patients was larger than all other diagnoses (post-hoc 

Holm’s controlled t-test, adjusted P < 0.05). 

The predicted WMA alteration was more negative in the order of 

schizophrenia, MDD, OCD, and ASD with effect sizes (Hedge’s g) of -0.68, -0.29, -

0.19, and 0.09, respectively. Assuming that previous meta-analyses on digit span tasks 

(DSp-WMA) (Forbes et al., 2009; Snyder, 2014; Snyder et al., 2015) provide a ground-

truth for WMA impairment severity, the model predictions were quantitatively 

supported. Specifically, the predicted Ver3-WMA alteration effect sizes fell within 

confidence intervals of estimates for forward DSp-WMA in schizophrenia, MDD, and 

OCD and for backward DSp-WMA in OCD (Fig. 5C). Note that we only compared 

these three diagnoses since no meta-analysis was available for ASD. We identified no 
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significant differences in head motion between patients and their healthy controls in any 

diagnosis (two-tailed t-tests, P > 0.32, Bonferroni corrected). Importantly, the model 

was determined by capturing a normal range of variation in FC and WMA and 

reproduced an abnormal range of variation in FC and WMA, considering not only the 

order but also the quantitative aspects of WMA deterioration across the four distinct 

diagnoses.  

Figure 5. Quantitative prediction of diagnosis-specific alterations of WMA. (A) Predicted 
WMA for patients (N = 58, 77, 45, and 69 for schizophrenia, MDD, OCD, and ASD, 
respectively) and their age- and gender-matched healthy/typically developed controls (HC, N 
= 60, 62, 51, and 71) shown as kernel density. For illustration purposes, distribution of each 
HC was standardized to that of the ATR dataset, and the same linear transformation was 
applied to patients’ distributions. µ indicates mean value for each group. Significant 
impairment was predicted only in schizophrenia patients (t116 = -3.68, P = 0.0014, Bonferroni 
corrected). (B) Violin plots of Z-scores for predicted WMA alterations. We observed a 
significant main effect of diagnosis (one-way ANOVA, F3,245 = 7.45, P = 8.58 x 10-5) and 
significant differences between schizophrenia and all other diagnoses (Holm’s controlled t-
test, P < 0.05). White circles indicate medians. Box limits indicate 25th and 75th percentiles. 
Whiskers extend 1.5 times interquartile range from 25th and 75th percentiles. (C) Comparison 
of estimated effect sizes for WMA deficits. k indicates number of studies included in the meta-
analyses (Forbes et al., 2009; Snyder, 2014; Snyder et al., 2015). Error bars indicate 95% 
confidence intervals. 
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We conducted additional control analyses in which we made different 

prediction models: an fronto-parietal network model using only fronto-parietal network-

related FC values, and an fronto-parietal network-removed model using whole-brain FC 

values with fronto-parietal network-related connections removed (see Supplementary 

Results). The fronto-parietal network-removed model failed to yield significant 

prediction performance within the discovery cohort. The fronto-parietal network model 

yielded significant prediction performance among the discovery cohort, but still failed 

to predict WMA in individual patients with schizophrenia. Nor could the fronto-parietal 

network model reproduce the ordered severity of WMA impairments for the four 

diagnoses (see Supplementary Results). These results suggest that fronto-parietal 

network-related connections are necessary to predict individuals’ WMA but insufficient 

to predict WMA deficits across multiple psychiatric diagnoses. 

 

Figure 6. Accumulation of both shared and distinct Function Connectivity (FC) 
differences exhibits diagnosis-specific WMA. (A) Accumulation of averaged D-scores for 
all 16 connections. Bold black line indicates summation of contributions by all connections, 
corresponding to predicted WMA alteration. This figure shows how diagnosis-specific 
WMA impairment results from complex disturbances of multiple connections. Upper panel 
depicts two representative alteration patterns across diagnoses. While connection P1 
commonly decreased WMA across diagnoses, connection N6 distinctly altered WMA 
(decrease in schizophrenia and MDD and increase in OCD and ASD). (B) Z-scores 
(normalized D-scores) for each diagnosis. Left asterisks and lines indicate significant 
differences in mean Z-scores between two diagnoses (P < 0.05, Bonferroni corrected). 
Vertical lines across horizontal bars indicate Z-scores averaged across connections. (C) Z-
scores for each connection, sorted by small P values of diagnosis effect (Kruskal-Wallis test, 
Q < 0.05, FDR corrected). 
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Characterizing WMA-Related Functional Connectivity (FC) Patterns 
in Psychiatric Diagnoses 
Given a common FC-WMA relationship across these diagnoses, we examined how 

diagnosis-dependent WMA impairment resulted from FC alteration patterns that 

characterize each diagnosis. Since the model is the weighted summation of 16 FC 

values, increased/decreased WMA reflects the sum of the increased/decreased 

weighted-FC values of all the connections. To investigate the effect of each connection 

on WMA impairment, for each individual patient, we examined the difference in 

weighted-FC value at each connection from the corresponding control average. We call 

this difference the D-score (see Supplementary Methods). By averaging the D-scores 

within each diagnosis, Fig. 6A shows that diagnosis-dependent WMA impairment is 

attributed to the accumulation of diagnosis-dependent D-scores for all the connections. 

Some D-scores are relatively constant, while others are variable across diagnoses. For 

example, the D-score for P1 was commonly negative regardless of the diagnosis, while 

the D-score for N6 was negative or positive, dependent on the diagnosis (inset, Fig. 

6A). Therefore, Fig. 6A qualitatively suggests that diagnosis-dependent WMA 

impairment is derived from complex FC alterations patterns, where some connections 

are altered in a common manner across other diagnoses, while others are altered 

distinctly across diagnoses. 

Furthermore, we standardized the D-score and entered the Z-score in a two-

way ANOVA with diagnosis as a between-participant factor and connection as a within-

participant factor (see Supplementary Methods). We found a significant main effect of 

diagnosis (P < 1.0 x 10-4; Fig. 6B). Schizophrenia patients showed significantly more 

negative mean Z-scores across connections than the other diagnoses (post-hoc 

diagnosis-pair-wise comparisons, P < 0.05). This suggests that the global patterns of the 

WMA-related 16 connections in schizophrenia were more severely disrupted than the 

other three diagnoses. Additionally, MDD patients showed significantly more negative 

mean Z-scores than ASD patients, suggesting that MDDs have more severe 

deterioration in general WMA-related FC compared to ASD. 

Moreover, we found a significant interaction effect between diagnosis and 

connection in the Z-scores (P < 1.0 x 10-5; Fig. 6C), suggesting that FC alterations at 

particular connections are diagnosis-dependent. In seven connections that span 11 

intrinsic networks (Fig. 6C), the Z-scores were significantly different among the four 
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diagnoses (Q < 0.05, FDR corrected), suggesting that these connections are 

differentially altered across the diagnoses. Conversely, no significant differences in the 

Z-scores were observed across diagnoses in the remaining nine connections that span 13 

networks, suggesting no significant effect of diagnosis on these FC difference Z-scores. 

For example, the positive recurrent connectivity within the left fronto-parietal network 

(P1), which is crucial for executive functions and is commonly dysfunctional across 

psychiatric diagnoses (Anticevic et al., 2014; Baker et al., 2014; Kaiser et al., 2015), 

was commonly weaker than the controls and associated with a lower WMA. However, 

P1 deterioration accounted for just a part of the WMA impairment (7.5-34.9% of the 

total amount of negative D-scores in each diagnosis). 

Illustrating FC-WMA relationships for each individual connection, Fig. 6 

together indicates that the FC alterations are either shared (e.g., P1) or distinct (e.g., N6) 

across diagnoses. These results suggest that each FC alteration may be differently 

related to WMA across diagnoses. In contrast, by combining these diagnosis-invariant 

and diagnosis-specific patterns of FC alterations, the whole-brain model coherently 

transforms them into WMA alterations under the common whole-brain FC-WMA 

relationship. 

 

Discussion 
 

We investigated the brain-behavior relationship between FC and WMA across 

healthy populations and four psychiatric diagnoses. We built a prediction model of 

WMA using data-driven analysis of whole-brain FC among healthy Japanese 

individuals (ATR dataset). Using rs-fMRI scans independently collected at different 

sites, our model predicted individual differences of WMA not only in a healthy 

population (HCP dataset), but also in schizophrenia patients (schizophrenia dataset). It 

also reproduced the order and the degrees of WMA impairment for four distinct 

diagnoses (multiple psychiatric diagnoses dataset). These model predictions were not 

explained purely by age, general intellectual/cognitive ability, or in-scanner head 

motion. Our results provide the first evidence for the presence of a general whole-brain 

FC-WMA relationship across healthy populations and a range of psychiatric disorders. 

That is, our results support the idea that WMA impairment in psychiatric disorders is a 

continuous deviation from a normal pattern while preserving the common relationship 
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between brain-wide connectivity and WMA. Further investigation into how altered FC 

resulted in WMA impairment revealed overall disruptions in WMA-related connections 

in schizophrenia patients, suggesting that their severe WMA deficits are derived from 

distributed brain networks rather than local areas. Across diagnoses, altered FC at each 

individual connection showed a mixture of diagnosis-invariant and diagnosis-specific 

FC alteration patterns, suggesting that whole-brain modeling is required to coherently 

link such complex network disturbances with WMA. 

Our results support the common whole-brain hypothesis amongst the three 

proposed competing hypotheses, for several reasons. Our normative model built from 

healthy populations generalized to predict WMA impairments across distinct psychiatric 

diagnoses. It predicted individual differences in WMA among schizophrenia patients as 

well as a diagnosis-dependent pattern of WMA impairment in four distinct diagnoses. 

These results do not support the hypothesis that the whole-brain FC-WMA relationship 

is specific to each diagnosis (distinct hypothesis) but support two alternative hypotheses 

where the relationship is common to healthy populations and multiple diagnoses. 

Further investigations of individual FC alterations that cause WMA impairment 

identified both shared and distinct patterns of abnormality across diagnoses. These 

altered FC spanned widely distributed brain networks rather than restricted connections 

related to the fronto-parietal network. A control analysis using only fronto-parietal 

network-related FC yielded no significant prediction of diagnosis-dependent patterns in 

WMA (see Supplementary Results). These results do not support the hypothesis that 

WMA is simply determined by fronto-parietal network-related connections 

independently of diagnosis (common fronto-parietal network hypothesis), but instead 

support the hypothesis that diagnosis-dependent WMAs can be explained by multiple 

connections among widely distributed brain networks (common whole-brain 

hypothesis).  

Our model achieved generalization to test sets that differed from the training 

sets in terms of ethnicities, imaging sites, age groups, working memory tasks, and 

psychiatric diagnoses. Though prediction accuracy in a test set is inherently smaller than 

training accuracy (Gabrieli et al., 2015), our model’s accuracy was comparable with a 

previous neuroimaging marker of attention ability for an external test set (r ~ 0.3) 

(Rosenberg et al., 2016). Moreover, our model provided quantitative working memory 

impairments across the different diagnoses. Specifically, the effect sizes of working 
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memory impairment predicted by our model in schizophrenia, MDD, and OCD patients 

were comparable with previous meta-analyses on a digit span forward condition that 

assesses verbal WMA (Forbes et al., 2009; Snyder, 2014; Snyder et al., 2015). 

Although no meta-analysis was identified in ASD, previous studies generally showed 

few differences in verbal WMA from typically developed controls (Koshino et al., 

2005; Williams et al., 2005; Lever et al., 2015), consistent with the predictions of our 

model. Here we propose two possible reasons for the moderate generalizability of our 

normative model. First, since its network definition is based on thousands of fMRI 

experiments (BrainMap ICA) (Laird et al., 2011), FC is estimated based on general-

population intrinsic functional networks and allows generalization beyond ethnicities, 

imaging sites, and age. Second, we spent 90 minutes measuring each participant’s 

WMA in the discovery dataset (Yamashita et al., 2015). Such precise WMA 

measurements in the training data ensured that our model captured essential FC for 

WMA.  

Larger sample sizes in the training set generally improves prediction accuracy 

in machine learning (Bishop, 2006). Using identical methods in the ATR dataset (N = 

17), we tried to develop a new prediction model of ViO2-WMA using the HCP dataset 

as a training dataset (N = 474). However, this model failed to provide significant 

prediction within the training samples (R2 = 0.005). This seemingly unexpected result 

may partly result from differences in the way individuals’ WMA were evaluated. The 

HCP conducted the N-back task in a limited time (10 min), which may be insufficient 

for developing precise prediction model of individuals’ cognitive ability. In fact, with 

careful examination of cognitive performance, Rosenberg et al. built a model using 

modest (N = 25) training samples and demonstrated robust generalization to 

independent test sets (Rosenberg et al., 2016). 

We carefully excluded the possibility of spurious correlations (Whelan and 

Garavan, 2014; Siegel et al., 2016). At an individual level, we examined general 

intellectual/cognitive ability, age, and head motion and confirmed that these disturbance 

variables had a minimal effect on prediction. At a group level, we analyzed age- and 

gender-matched healthy/typically-developed controls from the same sites and compared 

the alterations from the controls (Z-scores), thereby minimizing the false positives that 

could be derived from age, gender, or imaging sites/parameters. 
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Schizophrenia is characterized by a more substantial impairment in working 

memory than other psychiatric disorders (Forbes et al., 2009; Millan et al., 2012; Park 

and Gooding, 2014), in keeping with the notion that this impairment may be an 

endophenotype in schizophrenia (Park and Gooding, 2014). Our model predicted 

individual differences in WMA in this diagnosis, suggesting that the abnormal range of 

WMA variations is continuous with WMA variations within normal populations. Note 

that our model of an individual WMA predicted significant group-level impairment, 

providing a direct link between individual brain connectivity and the characteristic 

symptoms of schizophrenia. The magnitude of the disruption in the network 

connections was generally more severe in schizophrenia than in any other diagnoses. 

Our results provide unique evidence that WMA impairment in schizophrenia is an 

extreme deviation from a normal pattern of the FC-WMA relationship.  

A single behavioral abnormality can result from a complex pattern of multiple 

FC alterations. We showed that the diagnosis-dependent pattern of WMA impairment 

results from the mixture of diagnosis-specific and diagnosis-independent differences in 

FC. Specifically, distinct alterations were identified in seven connections (Fig. 6C), 

suggesting that characteristic FC alterations in each diagnosis contribute to different 

degrees of WMA impairment. This explains why distinct diagnoses show a diagnosis-

dependent level of WMA impairment. Conversely, no significant FC differences were 

identified in the remaining nine connections across diagnoses. Since most of these were 

altered toward lower WMAs (i.e., negative Z-scores), they generally contributed to 

WMA impairment, explaining why a range of psychiatric disorders commonly shows 

WMA impairment. Importantly, such neurobiological insights into behavioral 

abnormality are consistent with recent transdiagnostic studies of genomics (Plomin et 

al., 2009; Smoller et al., 2013; O’Donovan and Owen, 2016) and neuroimaging 

(Goodkind et al., 2015; Clementz et al., 2016), which indicate that some 

neurobiological changes are shared across psychiatric diagnoses and that the behavioral 

abnormality in these diseases are quantitative traits rather than qualitative conditions. 

Our proposed two-stage approach, which builds a normative model and 

applies it to multiple diagnoses, is an effective technique to systematically compare 

neural substrates across multiple diagnoses under a unified framework. Clinical 

measures of attention deficit hyperactivity disorder were previously predicted by FC 

patterns that determine attention ability in healthy populations (Rosenberg et al., 2016), 
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suggesting common FC-cognition relationships across healthy and clinical populations. 

However, that study failed to directly examine the attention ability for participants with 

attention deficit hyperactivity disorder and was restricted to a single diagnosis. We 

investigated individual WMA in schizophrenia patients and examined it across multiple 

distinct psychiatric diagnoses. By combining whole-brain intrinsic FC patterns, 

machine-learning techniques, and relatively large independent samples including 

multiple psychiatric diagnoses (N = 969), our predictive modeling provides a general 

mechanistic explanation about cognitive abilities across healthy populations and 

psychiatric diagnoses. In this framework, cognitive deficits in a range of psychiatric 

disorders should be recognized as a relative quantitative deviation from normal patterns 

of FC-cognitive ability relationships. By coherently establishing FC-cognition 

relationships from normal to abnormal, our two-stage approach could potentially cluster 

multiple psychiatric disorders based on neurobiological measures and behaviors (Insel 

et al., 2010; Insel and Cuthbert, 2015). Note that since network identification was 

performed on healthy participants, there may be other diagnostic-specific intrinsic 

network connections that are blind to the testing phase of this approach. These untested 

issues could be better understood in the future by examining diagnosis-specific model’s 

generalizability to other diagnosis or to healthy populations. 

In our study, site differences could produce two types of confound: 1) from 

measurement settings such as scanners or protocols, and 2) population sampling bias 

such as participant recruitment. We analyzed the standardized difference (Z-score) 

between patients and healthy controls that were examined in the same site to eliminate 

site differences. This analysis is effective for the first type of confound because this 

confound is common to patients and controls. Therefore, our results cannot be explained 

by the differences in scanner type. However, our analysis cannot eliminate the second 

instance of confound when FC values in each control group are not identically 

distributed across different sites due to the sampling bias at each site. This issue is 

unresolved in our current study. 

In conclusion, our data provide a unified WMA framework across healthy 

populations and multiple psychiatric disorders. Our whole-brain FC model 

quantitatively predicted individual WMA in independently collected cohorts of healthy 

populations and patients with any of four psychiatric diagnoses (N = 969). Our results 

suggest that the typical FC-WMA relationship identified in healthy populations is 
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commonly preserved in these psychiatric diagnoses and that WMA impairment in a 

range of psychiatric disorders can be explained by the cumulative effect of multiple 

disturbances in FC among distributed brain networks. Our findings lay the groundwork 

for future research to develop a quantitative, brain-wide-connectivity-based prediction 

model of human cognition that spans health and psychiatric disease. 
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