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Abstract  19 

Treatment with antibiotics is one of the most extreme perturbations to the human 20 

microbiome. Even standard courses of antibiotics dramatically reduce the microbiome’s 21 

diversity and can cause transitions to dysbiotic states. Conceptually, this is often described 22 

as a ‘stability landscape’: the microbiome sits in a landscape with multiple stable equilibria, 23 

and sufficiently strong perturbations can shift the microbiome from its normal equilibrium to 24 

another state. However, this picture is only qualitative and has not been incorporated in 25 

previous mathematical models of the effects of antibiotics. Here, we outline a simple 26 

quantitative model based on the stability landscape concept and demonstrate its success 27 

on real data. Our analytical impulse-response model has minimal assumptions with three 28 

parameters. We fit this model in a Bayesian framework to previously published data on the 29 

year-long effects of four common antibiotics (ciprofloxacin, clindamycin, minocycline, and 30 

amoxicillin) on the gut and oral microbiomes, allowing us to compare parameters between 31 

antibiotics and microbiomes. Furthermore, using Bayesian model selection we find support 32 

for a long-term transition to an alternative microbiome state after courses of ciprofloxacin 33 

and clindamycin in both the gut and salivary microbiomes. Quantitative stability landscape 34 

frameworks are an exciting avenue for future microbiome modelling.  35 

Keywords 36 

Antibiotics, microbiome modelling, gut microbiome, oral microbiome, Bayesian inference, 37 

potential landscapes 38 
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Introduction 40 

Stability and perturbation in the microbiome 41 

The human microbiome is a complex ecosystem. While stability is the norm in the gut 42 

microbiome, disturbances and their consequences are important when considering the 43 

impact of the gut microbiome on human health (1). A course of antibiotics is a major 44 

perturbation, typically leading to a marked reduction in species diversity before 45 

subsequent recovery (2). Aside from concerns about the development of antibiotic 46 

resistance, even a brief course can result in long-term effects on community composition, 47 

with species diversity remaining lower than its baseline value for up to a year afterwards 48 

(3). However, modelling the recovery of the microbiome is challenging, due to the difficulty 49 

of quantifying the in vivo effects of antibiotics on the hundreds of co-occurring species that 50 

make up typical microbial communities within the human body.  51 

Artificial perturbation experiments are widely used to explore the underlying dynamics of 52 

macro-ecological systems (4). In the context of the gut microbiome, the effects of 53 

antibiotics have previously been investigated descriptively (5–7). However, despite interest 54 

in the application of ecological theory to the gut microbiome (8), there has been limited 55 

quantitative or mechanistic modelling of this response. In general, the diversity of the 56 

microbiome falls before recovering, but the nature of this recovery remains unclear. While 57 

responses can appear highly individualized (7) this does not preclude the possibility of 58 

generalized models applicable at the population level.  59 

Applying mathematical models to other ecological systems subject to perturbation has 60 

given useful insight into their behaviour (9–11). Crucially, it allows the comparison of 61 

different hypotheses about the behaviour of the system using model selection. Developing 62 
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a consistent mathematical framework for quantifying the long-term effects of antibiotic use 63 

would facilitate comparisons between different antibiotics and different regimens, with the 64 

potential to inform approaches to antibiotic stewardship (12).  65 

Previous modelling approaches 66 

A great deal of modelling work has focused on the gut microbiome’s response to antibiotic 67 

perturbation. We mention a few important examples here. Bucci et al. (13) used a two-68 

compartment density model with species categorised as either antibiotic-tolerant or 69 

antibiotic-sensitive, and fitted their model to data from Dethlefsen and Relman (7) to 70 

demonstrate that these broad categories were appropriate. In a later review, Bucci and 71 

Xavier argued that models of wastewater treatment bioreactors could be adapted for the 72 

gut microbiome, with a focus on individual-based models (14). The most commonly used 73 

individual-based model is the generalized multispecies Lotka-Volterra model, which 74 

describes pairwise interactions between bacterial species (or other groupings). In a 75 

pioneering work, Stein et al. (15) extended a generalized Lotka-Volterra model to include 76 

external perturbations, and fitted their model to a study where mice received clindamycin 77 

and developed Clostridium difficile infection (CDI) (16). The same approach was also 78 

successfully applied to human subjects in a later paper, which also identified a probiotic 79 

candidate for treating CDI (17). Bucci et al. (18) have combined and extended their 80 

previous work into an integrated suite of algorithms called MDSINE to infer dynamical 81 

systems models from time-series microbiome data.  82 

While all of these models have provided useful insights into microbiome dynamics, to 83 

make meaningful inference from real data they require dense temporal sampling and 84 

restriction to a small number of species or categories. For example, the examples of 85 
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application of MDSINE had “26–56 time points” for accurate inference of dynamics, 86 

measurements of relative concentrations of bacteria, and frequent shifts of treatment — for 87 

these reasons the in vivo experiments were conducted in gnotobiotic mice (18). Similarly, 88 

Stein et al. restricted their analysis of CDI to the ten most abundant bacterial genera (15). 89 

Such restrictions limit the applicability of these methods for the opportunistic analysis of 90 

existing 16S rRNA gene datasets from humans, which currently comprise the majority of 91 

clinically relevant datasets. The generalized Lotka-Volterra model can undoubtedly be 92 

extremely useful for synthetic consortia of small numbers of species, as shown by 93 

Venturelli et al. who inferred the dynamics of a 12-species community (19). However, it 94 

has been shown that even for very small numbers of species, pairwise microbial 95 

interaction models do not always accurately predict future dynamics, suggesting that even 96 

pairwise modelling has its own limitations (20). 97 

Starting from broader ecological principles allows quantitative investigation of high-level 98 

statements and hypotheses about microbiome dynamics. For example, Coyte et al. built 99 

network models based on principles from community ecology to show the counter-intuitive 100 

result that competitive interactions in the gut microbiome are associated with stable states 101 

of high diversity, whereas cooperative interactions produce less stable states (21). More 102 

recently, Goyal et al. took inspiration from the ‘stable marriage problem’ in economics and 103 

showed that multiple stable states in microbial communities can be explained by nutrient 104 

preferences and competitive abilities (22). There is therefore great value in exploring 105 

alternative modelling approaches as well as continuing to refine and extend existing 106 

standard models.  107 

A stability landscape approach 108 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/222398doi: bioRxiv preprint 

https://doi.org/10.1101/222398
http://creativecommons.org/licenses/by/4.0/


Modelling microbiome recovery after antibiotics, Shaw et al.   6 

In one popular schematic picture taken from classical ecology, the state of the gut 109 

microbiome is represented by a ball sitting in a stability landscape (1,23–25). Perturbations 110 

can be thought of as forces acting on the ball to displace it from its equilibrium position 111 

(25) or as alterations of the stability landscape (26). While this image is usually provided 112 

only as a conceptual model to aid thinking about the complexity of the ecosystem, we use 113 

it here to derive a mathematical model.  114 

We model the effect of a brief course of antibiotics on the microbial community’s 115 

phylogenetic diversity as the impulse response of an overdamped harmonic oscillator 116 

(Figure 1; see Methods), and compare parameters for four widely-used antibiotics by fitting 117 

to empirical data previously published by Zaura et al. (3). This model is significantly less 118 

complicated than other previous models developed for similar purposes, but still captures 119 

some of the essential emergent features of such a system while avoiding the 120 

computational difficulties of fitting hundreds of parameters to a sparse dataset. After 121 

demonstrating the effectiveness of this modelling approach for the gut and oral 122 

microbiomes, we also show that the framework can easily be used to test hypotheses 123 

about microbiome states. We compare a model variant which allows a transition to a new 124 

equilibrium, and find that this model is better supported for clindamycin and ciprofloxacin, 125 

allowing us to conclude that these antibiotics can produce state transitions across different 126 

microbiomes. This modelling approach can be easily applied to sparse datasets from 127 

different human microbiomes and antibiotics, providing a simple but consistent 128 

foundational framework for quantifying the in vivo impacts of antibiotics. 129 

Results  130 

Ecological theory motivates a simplified representation of the microbiome 131 
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Taking inspiration from classical ecological theory, the microbiome can be considered as 132 

an ecosystem existing in a stability landscape: it typically rests at some equilibrium, but 133 

can be displaced (Figure 1A). Any quantitative model of the microbiome based on this 134 

concept requires a definition of equilibrium and displacement. While earlier studies sought 135 

to identify a equilibrium core set of ‘healthy’ microbes, disturbances of which would 136 

quantify displacement, it has become apparent that this is not a practical definition due to 137 

high inter-individual variability in taxonomic composition (25). More recent concepts of a 138 

healthy ‘functional core’ appear more promising, but characterization is challenging, 139 

particularly as many gut microbiome studies use 16S rRNA gene sequencing rather than 140 

whole-genome shotgun sequencing. For these reasons, we choose a metric that offers a 141 

proxy for the general functional potential of the gut microbiome: phylogenetic diversity (25). 142 

Diversity is commonly used as a summary statistic in microbiome analyses and higher 143 

diversity has previously been associated with health (27) and temporal stability (28). Of 144 

course, describing the microbiome using only a single number loses a great deal of 145 

information. However, if we are seeking to build a general model of microbiome recovery 146 

after perturbation, it seems appropriate to consider a simple metric first to see how such a 147 

model performs before developing more complicated definitions of equilibrium, which may 148 

generalise poorly across different niches and individuals. 149 

We assume the equilibrium position to have higher diversity than the points immediately 150 

surrounding it (i.e. creating a potential well) (Figure 1B). However, there may be alternative 151 

stable states (Figure 1B) which perturbations may move the microbiome into (Figure 1C). 152 

These states may be either higher or lower in diversity; for our purposes, all we assume is 153 

that they are separated from the initial equilibrium by a potential barrier of diversity i.e. a 154 
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decrease of diversity is required to access them, which is what keeps the microbiome at 155 

equilibrium under normal conditions.  156 

The model 157 

Mathematically, small displacements of a mass from an equilibrium point can be 158 

approximated as a simple harmonic oscillator (29) for any potential function (continuous 159 

and differentiable). This approximation comes naturally from the first terms in the Taylor 160 

expansion of a function (30), and can be extremely accurate for small perturbations. By 161 

assuming the local stability landscape of the microbiome can be reasonably approximated 162 

as a harmonic potential, we are assuming a ‘restoring’ force proportional to the 163 

displacement x from the equilibrium position (���) and also a ‘frictional’ force acting 164 

against the direction of motion (���� ). The system is a damped harmonic oscillator with the 165 

following equation of motion: 166 

(1)  
���
���

� � ��
�� � �� � 0     167 

Additional forces acting on the system — perturbations — will appear on the right-hand 168 

side of this equation. Consider a course of antibiotics of duration 	. If we are interested in 169 

timescales of 
 � 	 (e.g. the long-term recovery of the microbiome a year after a week-170 

long course of antibiotics) we can assume that this perturbation is of negligible duration. 171 

This assumption allows us to model it as an impulse of magnitude � acting at time 
 � 0: 172 

(2) 
���
���

� � ��
�� � �� � ���
�    173 

This second-order differential equation can be solved analytically and reparameterised 174 

(see Methods) to give an equation with three parameters for fitting to empirical data (Model 175 

1, Figure 1C): 176 
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(3) ���
� �  �������

�������
· ������� � �������  177 

Fitting the model to empirical data for four common antibiotics 178 

We fit the model to published data from a paper from Zaura et al. (3) where individuals 179 

received a ten-day course of either a placebo or one of four commonly-used antibiotics 180 

(Table 1). Faecal and saliva samples were taken at baseline (i.e. before treatment), then 181 

subsequently directly after treatment, then one month, two months, four months, and one 182 

year after treatment. Zaura et al. conducted pairwise comparisons between timepoints and 183 

comprehensively reported statistical associations, but did not attempt any explicit 184 

modelling of the time-response over the year.  185 

In summary, this dataset provides an ideal test case for our model. Not only does it allow 186 

us to simultaneously model the recovery of both the gut and oral microbiomes after 187 

different antibiotics, but it also demonstrates how our modelling framework permits further 188 

conclusions beyond the scope of the initial study.  189 

A stability landscape framework successfully describes initial microbiome 190 

dynamics  191 

We used a Bayesian approach to fit the model to each treatment group and microbiome 192 

separately. The model successfully captured the main features of the initial response to 193 

antibiotics (Figure 2). Diversity decreased (i.e. displacement from equilibrium increased) 194 

before a slow return to equilibrium. Despite large variability between samples from the 195 

same treatment group, reassuringly the placebo group clearly did not warrant an impulse 196 

response model, whereas data from individuals receiving antibiotics was qualitatively in 197 

agreement with the model. Even without the model, it is apparent that clindamycin and 198 

ciprofloxacin represent greater disturbances to the microbiome than minocycline and 199 
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amoxicillin, but a consistent model allows comparison of the values of various parameters 200 

(see below).  201 

In their original analysis, Zaura et al. noted significantly (� � 0.05) reduced Shannon 202 

diversity in individuals receiving ciprofloxacin comparing samples after a year to baseline 203 

using a GLM repeated measure test. This reduced diversity could in principle merely be 204 

due to slow reconstitution and return to the original equilibrium under the dynamics we 205 

have described. However, by normalising each individual’s data relative to their specific 206 

baseline and fitting the model (taking into account the whole continuous temporal 207 

response rather than pairwise comparisons of absolute diversity) it appears that slow 208 

reconstitution cannot be the whole story. Instead, the skewed distribution of residuals after 209 

a year, when the response has flattened off, indicates that the longer-term dynamics of the 210 

system do not obey the same impulse response as the short-term dynamics. A scenario 211 

involving a long-term transition to an alternative stable state is consistent with this 212 

observation (Figure 1). We therefore developed a variant of the model to take into account 213 

alternative equilibria, aiming to test the hypothesis that the microbiome had transitioned to 214 

an alternative stable state.  215 

A model allowing antibiotic-induced state transitions 216 

In our approach, a transition to an alternative stable state means that the value of diversity 217 

displacement from the original equilibrium will asymptotically tend to a non-zero value. 218 

There are many options for representing this mathematically; for reasons of model 219 

simplicity, we adopt one that requires only one additional parameter (Model 2, Figure 1C): 220 

(4) ���
� �  �������

�������
· ������� � ������� � � · �1 � �������   221 

Support for the existence of antibiotic-induced state transitions 222 
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Qualitatively, this slightly more complex model gave a similar fit (Figure 3) but some 223 

treatment groups had a clear non-zero final displacement from equilibrium, corresponding 224 

to an alternative stable state. We compared models with the Bayes factor ��, where 225 

�� � 1 indicates greater support for model 2 i.e. positive evidence for a state transition 226 

(Table 2). A state transition was supported ��� � 3� in the ciprofloxacin and clindamycin 227 

treatment groups for both the gut and oral microbiome. Interestingly, the posterior 228 

estimates for the asymptote parameter in the gut microbiome were substantially positively 229 

skewed (Figure 4), providing evidence of a transition to a state with lower phylogenetic 230 

diversity than the baseline. Contrastingly, in the oral microbiome the asymptote parameter 231 

was negatively skewed, suggesting a transition to a state with greater phylogenetic 232 

diversity. Strikingly, these are the states associated with poorer health in each of the gut 233 

and oral microbiomes.  234 

Comparison of parameters between antibiotics 235 

Comparing the posterior distribution of parameters for model 2 fits allows quantification of 236 

ecological impact of different antibiotics (Table 3, Figure 4). Unsurprisingly, greater 237 

perturbation is correlated with the transition to an alternative stable state. We can also 238 

consider the ecological implications of the parameters we observe. The damping ratio 239 

 � �/"2√�% summarises how perturbations decay over time, and is an inherent property 240 

of the system independent of the perturbation itself. Therefore, if our modelling framework 241 

and ecological assumptions were valid we would expect to find a consistent damping ratio 242 

across both the clindamycin and ciprofloxacin groups in the gut microbiome. This is indeed 243 

what we observed with median (95% credible interval) damping ratios of  	
��
�=1.07 (1.00-244 
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1.65) and  	����=1.07 (1.00-1.66), substantially different from the prior distribution, 245 

supporting the view of the gut microbiome as a damped harmonic oscillator.  246 

A complex, individualized antibiotic response still allows a general model  247 

While it is not our intention to repeat a comprehensive description of the precise nature of 248 

the response for the different antibiotics, we note some interesting qualitative observations 249 

from our reanalysis that highlight the complexity of the antibiotic response. We discuss 250 

here observations at the level of taxonomic family in the gut microbiomes of individuals 251 

taking ciprofloxacin or clindamycin (Supplementary File 1). While modelling these precise 252 

interactions is far beyond the scope of our model, our approach can still summarise the 253 

overall impact of this underlying complexity on the community as a whole.  254 

Despite their different mechanisms of action, both clindamycin and ciprofloxacin caused a 255 

dramatic decrease in the Gram-negative anaerobes Rikenellaceae, which was most 256 

marked a month after the end of the course. However, for ciprofloxacin this decrease had 257 

already started immediately after treatment, whereas for clindamycin the abundance after 258 

treatment was unchanged in most participants. The different temporal nature of this 259 

response perhaps reflects the bacteriocidal nature of ciprofloxacin (32) compared to the 260 

bacteriostatic effect of clindamycin, although concentrations in vivo can produce 261 

bacteriocidal effects (33). 262 

There were other clear differences in response between antibiotics. For example, 263 

clindamycin caused a decrease in the anaerobic Gram-positives Ruminococcaceae after a 264 

month, whereas ciprofloxacin had no effect. There was also an individualized response: 265 

ciprofloxacin led to dramatic increases in Erysipelotrichaceae for some participants, and 266 
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for these individuals the increases coincided with marked decreases in Bacteroidaceae, 267 

suggesting the relevance of inter-family microbial interactions (Supplementary File 1).  268 

Comparing relative abundances at the family level, there were few differences between 269 

community states of different treatment groups after a year. Equal phylogenetic diversity 270 

can be produced by different community composition, and this suggests against consistent 271 

trends in the long-term dysbiosis associated with each antibiotic. However, we did find that 272 

Peptostreptococcaceae, a member of the order Clostridiales, was significantly more 273 

abundant in the clindamycin group when compared to both the ciprofloxacin group and the 274 

placebo group separately (p < 0.05, Wilcoxon rank sum test). In a clinical setting, 275 

clindamycin is well-established to lead to an increased risk of a life-threatening infection 276 

caused by another member of Clostridiales: Clostridium difficile (34). Long-term reductions 277 

in diversity may similarly increase the risk of overgrowth of pathogenic species.  278 

Connection to generalized Lotka-Volterra models 279 

We sought to establish a link between our framework and the conventional ‘bottom-up’ 280 

approach of generalized Lokta-Volterra models. We investigated the behaviour of a 3 281 

species Lotka-Volterra system to establish if perturbation to an alternative state was 282 

possible in this simple case (see Supplementary File 7). We found that only 0.079% of 3-283 

species Lotka-Volterra systems exhibit the behaviour required by our two-state model, 284 

suggesting that this model is unrealistic for small numbers of species (as we assume that 285 

diversity is a continuous variable). However, for larger numbers of species, theoretical 286 

ecology gives a strong justification for our assumptions. It has recently been shown that as 287 

the number of species & increases, the number of fixed points which are stable increases 288 

independently of population size (35), and the proportion of simulations from random 289 
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parameters that have multiple fixed points also increases: with & � 400, this proportion is 290 

>97% (36). This suggests that the overwhelming majority of mathematically possible 291 

systems at relevant numbers of species exhibit multiple fixed points; the fraction of 292 

biologically possible systems exhibiting this behaviour is likely even higher. Furthermore, 293 

when resource competition is incorporated — a more realistic assumption in the case of 294 

the human microbiome — all these fixed points become stable or marginally stable (36). 295 

The gut microbiome is an ecosystem of hundreds of species in the presence of resource 296 

competition. Goyal et al. recently showed that multiple resilient stable states can exist in 297 

microbial communities if microbes utilize nutrients one at a time (22). We can therefore 298 

state confidently that: the gut microbiome exists with multiple stable equilibria; its 299 

community composition is history-dependent; and perturbations lead to transitions 300 

between the multiple possible stable states. All of these assumptions justify the simplistic 301 

coarse-grained model we describe here, which effectively takes these high-level emergent 302 

properties of multi-species Lotka-Volterra models to build a substantially simpler model 303 

based on a single, commonly-used metric: diversity.  304 

Discussion  305 

Starting from a common conceptual picture of the microbiome as resting within a stability 306 

landscape, we have developed a mathematical model of its response to perturbation by 307 

antibiotics. Our framework, based on phylogenetic diversity, successfully captures the 308 

dynamics of a previously published dataset for four common antibiotics (3), providing 309 

quantitative support for these simplifying ecological assumptions. Using model selection, 310 

our framework provides additional insight compared to other methods — we identify a 311 
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state transition in the oral microbiome with clindamycin, which was not detected by the 312 

initial authors using a GLM repeated measures test.  313 

While pairwise comparisons based on diversity can still identify differences in microbiome 314 

state, they provide no information on microbiome dynamics. Our dynamical systems 315 

approach therefore also gives additional mechanistic insight in this regard. Zaura et al. 316 

observed that the lowest diversity in the gut microbiome was observed after a month rather 317 

than immediately after treatment stopped (3). This cannot be due to a persistence of the 318 

antibiotic effect, as all antibiotics used only have short half-lives of the order of hours 319 

(37,38). Within our framework, this is because the full effects of the transient impulse take 320 

time to be realised due to the overdamped nature of the system. We found a consistent 321 

damping ratio for both ciprofloxacin and clindamycin, supporting this conclusion.  322 

We have also demonstrated how our modelling framework could be used to compare 323 

different hypotheses about the long-term effects of antibiotic perturbation by fitting different 324 

models and using Bayesian model selection. Our modelling work provides an additional 325 

line of evidence that while short-term restoration obeys a simple impulse response model, 326 

the underlying long-term community state can be fundamentally altered by a brief course 327 

of antibiotics, as suggested previously by others (7), raising concerns about the long-term 328 

impact of antibiotic use on the gut microbiome. While this state transition may not 329 

necessarily equate to any negative health impacts for the host (none of the participants 330 

involved in the original study reported any gastrointestinal disturbance), in the gut 331 

microbiome the transition to a new state with reduced diversity may increase the risk of 332 

colonisation and overgrowth of pathogenic species. Interestingly, in the salivary 333 

microbiome the transition appeared to be to a state with increased diversity, which is 334 

associated with a greater risk of disease in the oral cavity (39). This observation was not 335 
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noted by Zaura et al. — a significant difference was detected in diversity in one antibiotic 336 

but was relegated to a supplementary figure and not discussed (3) — perhaps because it 337 

appeared contradictory to their other conclusions. However, we believe it makes sense 338 

within a stability landscape framework. Even if only marginal, when considered at a 339 

population level these effects may mean that antibiotics have substantial negative health 340 

consequences which could support reductions in the length of antibiotic courses, 341 

independently of concerns about antibiotic resistance (40). Modelling the long-term impact 342 

on the microbiome of different doses and courses could help to influence the use of 343 

antibiotics in routine clinical care. Our sample size is small, so the precise posterior 344 

estimates for parameters that we obtain should not be over-interpreted, but comparing 345 

antibiotics using these parameter estimates represents another practical application. 346 

Our framework lends itself naturally to comparing different dynamical models. We see our 347 

two variant models as a starting point for a stability landscape approach, and would hope 348 

that better models can be constructed. Hierarchical mixed effects models may offer an 349 

improved fit, particularly if they take into account other covariates; however, we lacked the 350 

necessary metadata on the participants from the original study (Table 1) to explore the 351 

performance of such models. Furthermore, diversity as a single metric clearly fails to 352 

capture all the complexity of the microbial community and its interactions, and there are 353 

multiple issues with calculating it accurately. Nevertheless, the observation that treating 354 

phylogenetic diversity as the key variable in the stability landscape captures microbiome 355 

dynamics supports observations of functional redundancy in the gut microbiome (27). An 356 

interesting extension of this work would be to systematically fit the model to a variety of 357 

diversity metrics or other summary statistics and assess the model fit to see which metric 358 

(or combination of metrics) is most appropriately interpreted as the state variable 359 
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parameterising the stability landscape. A possible complementary approach could 360 

consider or incorporate the resistome, which should conversely rise in diversity after 361 

antibiotic treatment (41).  362 

We would not expect the behaviour of the microbiome after longer or repeated courses of 363 

antibiotics to be well-described by an impulse response model which assumes the course 364 

is of negligible duration. Nevertheless, it would be possible to use the mathematical 365 

framework given here to obtain an analytic form for the possible system response by 366 

convolving any given perturbation function with the impulse response. It remains to be 367 

seen whether this simple model would break down in such circumstances.  368 

As we have demonstrated, while the individualized nature of the gut microbiome’s 369 

response to antibiotics can be highly variable, a general model still captures important 370 

microbiome dynamics. We believe it would be a mistake to assume that our model is ‘too 371 

simple’ to provide insight on a complex ecosystem. At this stage of our understanding, 372 

creating a comprehensive inter-species model of the hundreds of members of the gut 373 

microbiome appears intractable; it may also not be necessary for building simple models to 374 

inform clinical treatment based on limited and sparse data. We believe there is a place for 375 

both fine-grained models using pairwise interactions — particularly for systems of reduced 376 

complexity — and coarse-grained models built from high-level ecological principles, as we 377 

have demonstrated here. We have argued that this ‘top-down’ framework with multiple 378 

stable states of different diversities is consistent with the emergent behaviour of a 379 

multispecies Lotka-Volterra model. Further mathematical work to connect these two 380 

extremes would be worthwhile.  381 

Acknowledgements 382 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/222398doi: bioRxiv preprint 

https://doi.org/10.1101/222398
http://creativecommons.org/licenses/by/4.0/


Modelling microbiome recovery after antibiotics, Shaw et al.   18 

LPS was supported by the Engineering and Physical Sciences Research Council 383 

[EP/F500351/1] and the Reuben Centre for Paediatric Virology and Metagenomics. CPB is 384 

supported by the Wellcome Trust [097319/Z/11/Z].We are grateful to the authors of the 385 

original study (3) for making their data openly available, enabling the reanalysis with our 386 

modelling framework presented here. 387 

Authors' contributions: LPS conceived the model, performed analyses, and wrote the 388 

paper. LPS, CPB, HB, and FB conceived the analysis of the Lotka-Volterra system, which 389 

was performed by HB. All authors contributed to the discussion and development of the 390 

model, gave comments, and read and approved the final manuscript.  391 

Competing interests 392 

The authors declare that they have no competing interests. 393 

Data availability 394 

The original sequencing dataset from Zaura et al. (3) used in this paper is available in the 395 

Short Read Archive (SRA Accession: SRP057504). Full code and reanalyzed datasets 396 

supporting the conclusions of this article are included as Supplementary Information 397 

(Supplementary Files 2—8). A full archive of analyses including cached model fits is 398 

available in figshare (https://figshare.com/s/d62d6e90f96dc63c2769.)  399 

Materials and methods 400 

Mathematical model of trajectories in the potential landscape 401 

Treating the microbiome as a unit mass resting in a stability landscape parameterised by 402 

phylogenetic diversity leads to a second-order differential equation. To solve this equation, 403 
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we assume that �� � 4� (the ‘overdamped’ case) based on the lack of any oscillatory 404 

behaviour previously observed in the microbiome, to the best of our knowledge. Then, 405 

subject to the initial conditions ��0�� � 0 and �� �0�� � � we obtain the following equation 406 

describing the system’s trajectory: 407 

(5) ��
� �  �
�·���

�
����

(��� �

�  
� ���

�
������ � ����

� 
 � ���

�
������)    408 

Fitting the model therefore requires fitting three parameters: � (the damping on the 409 

system), � (the strength of the restoring force), and � (how strong the perturbation is). For 410 

the purposes of fitting the model, we choose to reparameterise the model using the 411 

following definitions: 412 

(6) � �  ��� � ���    413 

(7) � � ������    414 

Resulting in the following model (Model 1, Figure 1C): 415 

(8) ���
� �  �������

�������
· ������� � �������  416 

Antibiotics may lead not just to displacement from equilibrium, but also state transitions to 417 

new equilibria (2). To investigate this possibility, we also consider a model where the value 418 

of equilibrium diversity asymptotically tends to a new value � (Model 2, Figure 1C). As we 419 

are aiming to minimise model complexity, we do this by adding a single parameter and a 420 

term that asymptotically grows as time increases: 421 

(8) ���
� �  �������

�������
· ������� � ������� � � · �1 � �������   422 

Experimental data 423 
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To validate our model and test whether antibiotic perturbation caused a state transition we 424 

fitted both models to an empirical dataset and compared the results. Zaura et al. (3) 425 

conducted a study on the long-term effect of antibiotics on the gut microbiome which 426 

provides an ideal test dataset. As part of this study, individuals were randomly assigned to 427 

one of five treatment groups: placebo, clindamycin, ciprofloxacin, minocycline, amoxicillin. 428 

The antibiotics  429 

and placebo were administered for at most 	 � 10 days (150 mg clindamycin four times a 430 

day for ten days; 500 mg ciprofloxacin twice a day for ten days; 250 mg amoxicillin three 431 

times daily for seven days; 100mg minocycline twice daily for five days) and longitudinal 432 

faecal and saliva samples collected until 
 � 1 year afterwards i.e. 
�
� ~0.027 , 1, so the 433 

approximation of the antibiotics as an impulse perturbation should be valid. Samples were 434 

collected at baseline, after treatment, one month, two months, four months, and one year. 435 

Samples underwent 16S rRNA gene amplicon sequencing, targeting the V5-V7 region 436 

(SRA Accession: SRP057504). We reanalysed this data, performing de novo clustering 437 

into operational taxonomic units (OTUs) at 97% similarity with VSEARCH v1.1.1 (42) with 438 

chimeras removed against the 16S gold database (http://drive5.com/uchime/gold.fa). 439 

Taxonomy was assigned with RDP (43). For more details see Supplementary File 2. The 440 

reanalyzed datasets are available as R phyloseq objects (Supplementary Files 3 and 4).  441 

We found no association between sequencing depth and timepoint.  442 

Phylogenetic diversity  443 

There are many possible diversity metrics that could be used to compute the displacement 444 

from equilibrium. Because of our assumption that phylogenetic diversity approximates 445 

functional potential, which is itself a proxy for ecosystem ‘health’ (see ‘Ecological 446 
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assumptions’), we chose to use Faith’s phylogenetic diversity (44) calculated with the pd() 447 

function in the ‘picante’ R package v1.6-2 (45). Calculating this branch-weighted 448 

phylogenetic diversity requires a phylogeny, which we produced with FastTree v2.1.10 449 

(46) after aligning 16S rRNA V5-V7 OTU sequences with Clustal Omega v1.2.1 (47). To 450 

obtain values for fitting the model, we used mean bootstrapped values (& � 100, sampling 451 

depth . � 1 000) of phylogenetic diversity /�  relative to the baseline phylogenetic diversity 452 

/� for each individual (Supplementary File 1), representing the displacement from 453 

equilibrium in our model: 454 

(8) /0� � /� � /�   455 

Bayesian model fitting  456 

We used a Bayesian framework to fit our basic model 1 (eq. 3) using Stan (48) and RStan 457 

(49) to the gut and oral microbiome samples for the five separate groups: placebo, 458 

ciprofloxacin, clindamycin, minocycline, and amoxicillin (i.e. n=2x5=10 fits). In brief, our 459 

approach used 4 chains with a burn-in period of 1 000 iterations and 9 000 subsequent 460 

iterations, verifying that all chains converged (12 = 1) and the effective sample size for each 461 

parameter was sufficiently large (neff > 1 000). We additionally fitted model 2 with a 462 

possible state transition (eq. 4) to all non-placebo groups (n=2x4=8 fits).  463 

We used non-informative priors for all parameters in the original model 1 without a state 464 

transition (eq. 3). For all groups, we used the same uniformly distributed prior for D 465 

(positive i.e. decrease in diversity) and uniform priors for 3�, 3�. For fitting model 2, we 466 

used an additional uniform prior centred at zero for the new equilibrium value � and the 467 

same priors for other parameters. In summary, the priors are as follows: 468 

(9.1) � ~ uniform�0, 10� 469 
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(9.2) 3� ~ uniform��1.99,1,99� 470 

(9.3) 3� ~ uniform��2,2� 471 

(9.4) � ~ uniform��2,2� 472 

We compared models 1 and 2 (Supplementary Files 5 and 6). for each antibiotic treatment 473 

group using the Bayes factor (31,50) after extracting the model fits using bridge sampling 474 

with the bridgesampling R package v0.2-2 (51). A prior sensitivity analysis (not shown) 475 

showed that choice of priors did not affect our conclusions about model selection, although 476 

the strength of the Bayes factor varied. 477 

Full code for fitting the models to empirical data and reproducing figures is available with 478 

this article (Supplementary Files 2—6).   479 

Lotka-Volterra simulations 480 

We numerically simulated 5 � 1 953 125 parameter sets of the Lotka-Volterra model with 481 

n=3 species and investigated their behaviour and stable states. For more details see the 482 

corresponding supplementary discussion (Supplementary File 7) and Mathematica 483 

notebook (Supplementary File 8).  484 
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Figure legends 674 

Figure 1. A stability landscape framework for antibiotic perturbation to the 675 

microbiome. We represent the gut microbiome as a unit mass on a stability landscape, 676 

where height corresponds to phylogenetic diversity. (A) The healthy human microbiome 677 

can be conceptualised as resting in the equilibrium of a stability landscape of all possible 678 

states of the microbiome. Perturbations can displace it from this equilibrium value into 679 

alternative states (adapted from Lloyd-Price et al. (25)). (B) Choosing to parameterise this 680 

stability landscape using diversity, we assume that there are just two states: the healthy 681 

baseline state and an alternative stable state. (C) Perturbation to the microbiome (e.g. by 682 

antibiotics) is then modelled as an impulse, which assumes the duration of the perturbation 683 

is short relative to the overall timescale of the experiment. We consider the form of the 684 

diversity time-response under two scenarios: a return to the baseline diversity; and a 685 

transition to a different value of a diversity (i.e. an alternative stable state).  686 

Figure 2. The model captures the dynamics of recovery for the gut and oral 687 

microbiomes after antibiotics. Bayesian fits for participants taking either a placebo (blue; 688 

n=21/22 for gut/oral), ciprofloxacin (green; n=9), clindamycin (red; n=9), minocycline 689 

(purple; n=10), and amoxicillin (orange; n=12). The mean phylogenetic diversity from 100 690 

bootstraps for each sample (black points) and median and 95% credible interval from the 691 

posterior distribution (bold and dashed coloured lines, respectively). The grey line 692 

indicates the equilibrium diversity value, defined on a per-individual basis relative to the 693 

mean baseline diversity. The biased skew of residuals after a year in certain treatment 694 

groups suggests the possibility of a transition to an alternative stable state with a different 695 

value of diversity.  696 
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Figure 3: A model with a possible state transition is better supported for 697 

clindamycin and ciprofloxacin. Bayesian fits for participants taking either ciprofloxacin 698 

(green; n=9), clindamycin (red; n=9), minocycline (purple; n=10), and amoxicillin (orange; 699 

n=12). The mean phylogenetic diversity from 100 bootstraps for each sample (black 700 

points) and median and 95% credible interval from the posterior distribution (bold and 701 

dashed coloured lines, respectively). The grey line indicates the equilibrium diversity value, 702 

defined on a per-individual basis relative to the mean baseline diversity. The non-zero-703 

centred asymptotes indicates support for a state transition in both the gut and oral 704 

microbiomes after ciprofloxacin and clindamycin. See Table 2 for Bayes Factors 705 

comparing model 2 to model 1.  706 

Figure 4: Posterior parameter estimates for model with a possible transition to an 707 

alternative stable state. The posterior distributions from Bayesian fits of model 2 (eq. 7) 708 

to empirical data from the gut (solid) and oral microbiomes (dashed) of individuals who 709 

received ciprofloxacin (green), clindamycin (red), minocycline (purple), and amoxicillin 710 

(orange).    711 

  712 
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Tables  713 

Antibiotic treatment group n (gut microbiome) n (oral microbiome) 

Placebo 22 21 

Ciprofloxacin 9 9 

Clindamycin 9 9 

Minocycline 10 10 

Amoxicillin 12 12 

Table 1. Number of individuals in each treatment group. Only individuals with a complete set of 6 714 

samples with >1,000 reads in each were retained for model fitting. For demographic characteristics of the 715 

complete treatment groups see Table 1 of Zaura et al. (3). 716 

Antibiotic treatment group Gut microbiome Oral microbiome 

Ciprofloxacin 3.06 16.87 

Clindamycin 10.94 7.47 

Minocycline 2.11 2.42 

Amoxicillin 1.51 1.31 

Table 2. Bayes factors for model comparisons for each antibiotic group. The Bayes factor (BF) allows 717 

model selection, here for model 2 (with a state transition) against model 1 (no state transition). Following 718 

Kass and Raffery, we interpret BF>3 as positive evidence in favour of model 2 (31). 719 

D A Phi1   Phi2    

Microbiome Antibiotic Median 95% CI Median 95% CI Median 95% CI Median 95% CI 
Gut 

Ciprofloxacin 7.9 (5.47--9.75) 0.8 (0.28--1.34) -0.2 (-0.69--0.16) 0.41 (0.05--0.92) 

Clindamycin 8.45 (6.23--9.84) 0.84 (0.29--1.42) 0 (-0.46--0.34) 0.56 (0.23--1.11) 

Amoxicillin 1.34 (0.13--6.56) -0.03 (-0.66--0.56) -1.53 (-1.96--0.31) 0.09 (-1.58--1.83) 

Minocycline 2.74 (1.54--7.82) -0.23 (-1.09--0.23) 0.33 (-1.44--1.29) 1.65 (1.01--1.97) 
Oral 

Ciprofloxacin 2.99 (1.86--5.23) -0.63 (-1.21---0.19) 0.19 (-0.85--0.96) 1.56 (0.84--1.96) 

Clindamycin 3.56 (2.33--5.77) -0.73 (-1.44---0.14) 0.66 (-0.33--1.37) 1.61 (1.02--1.96) 

Amoxicillin 4.24 (0.41--9.26) -0.13 (-1.01--0.71) -1.58 (-1.96---0.46) -0.33 (-1.45--1.69) 

Minocycline 3.38 (0.70--8.85) 0.53 (-0.50--1.55) -0.73 (-1.87--1.19) 1.27 (-0.63--1.94) 
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Table 3. Median and 95% credible intervals for all model parameters for each treatment group. 720 

Results from Bayesian fitting of the full model (model 2) to each of the eight possible treatment groups (4 721 

antibiotics x 2 microbiomes).  722 

Supplemental Information: Legends 723 

Supplementary File 1: Supplementary-Figure-1.pdf. Differences in individual 724 

response over time for the top twelve most abundant taxonomic families for 725 

placebo, clindamycin, and ciprofloxacin. Relative abundances (log-scale) of the top 726 

twelve most abundant bacterial families plotted at each sampled timepoint. Observations 727 

are linked by coloured lines for each individual. Despite some consistency in changes 728 

between antibiotics across individuals, there is inter-individual variability and evidence of 729 

possible interactions between bacterial families.  730 

Supplementary File 2: Shaw-et-al-analysis.Rmd. All main analyses. R markdown 731 

notebook for reproduction of the results in this paper, containing all analysis code. If run 732 

using Supplementary Files 3—6 this notebook produces: data files of bootstrapped 733 

phylogenetic diversity for all individuals; model fits; and resulting figures. A full archive 734 

including cached model fits and results is available on FigShare: 735 

https://figshare.com/s/d62d6e90f96dc63c2769 (doi available pending publication). 736 

Supplementary File 3: gut-data-phyloseq.rds. R phyloseq object containing 737 

reanalyzed gut microbiome data.  738 

Supplementary File 4: oral-data-phyloseq.rds. R phyloseq object containing 739 

reanalyzed oral microbiome data.  740 

Supplementary File 5: model1.stan. Stan code for defining and fitting Model 1.  741 

Supplementary File 6: model2.stan. Stan code for defining and fitting Model 2.  742 
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Supplementary File 7: Lotka-Volterra-supplementary.pdf. Details of Lotka-Volterra 743 

model simulations. Detailed text and discussion reporting numerical simulations 744 

investigating behaviour predicted from the stability landscape framework using a Lotka-745 

Volterra model in 3 dimensions.  746 

Supplementary File 8: Lotka-Volterra-notebook.nb. Mathematica notebook of Lotka-747 

Volterra simulations. Interactive notebook containing code necessary to reproduce the 748 

analysis and figures in Supplementary File 7. 749 
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Veillonellaceae Erysipelotrichaceae Alcaligenaceae [Paraprevotellaceae]

Rikenellaceae Christensenellaceae S24−7 [Barnesiellaceae]

Ruminococcaceae Bacteroidaceae Lachnospiraceae Prevotellaceae
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Veillonellaceae Erysipelotrichaceae Alcaligenaceae [Paraprevotellaceae]

Rikenellaceae Christensenellaceae S24−7 [Barnesiellaceae]

Ruminococcaceae Bacteroidaceae Lachnospiraceae Prevotellaceae
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Veillonellaceae Erysipelotrichaceae Alcaligenaceae [Paraprevotellaceae]

Rikenellaceae Christensenellaceae S24−7 [Barnesiellaceae]

Ruminococcaceae Bacteroidaceae Lachnospiraceae Prevotellaceae
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