Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Modelling microbiome recovery after antibiotics using a stability landscape framework

Liam P. Shaw, Hassan Bassam, Chris P. Barnes, A. Sarah Walker, Nigel Klein, Francois Balloux
doi: https://doi.org/10.1101/222398
Liam P. Shaw
1UCL Genetics Institute, UCL, London
2CoMPLEX, UCL, London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hassan Bassam
2CoMPLEX, UCL, London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris P. Barnes
1UCL Genetics Institute, UCL, London
4Cell and Developmental Biology, UCL, London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Sarah Walker
5MRC Clinical Trials Unit at UCL, UCL, London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nigel Klein
3UCL Institute of Child Health, UCL, London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francois Balloux
1UCL Genetics Institute, UCL, London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/222398
History 
  • March 4, 2019.

Article Versions

  • Version 1 (November 20, 2017 - 10:15).
  • Version 2 (September 20, 2018 - 11:39).
  • You are viewing Version 3, the most recent version of this article.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Author Information

  1. Liam P. Shaw1,2,
  2. Hassan Bassam2,
  3. Chris P. Barnes1,4,
  4. A. Sarah Walker5,
  5. Nigel Klein3 and
  6. Francois Balloux1
  1. 1UCL Genetics Institute, UCL, London
  2. 2CoMPLEX, UCL, London
  3. 3UCL Institute of Child Health, UCL, London
  4. 4Cell and Developmental Biology, UCL, London
  5. 5MRC Clinical Trials Unit at UCL, UCL, London
  1. Corresponding author:
    Liam P. Shaw, liam.philip.shaw{at}gmail.com
Back to top
PreviousNext
Posted March 04, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Modelling microbiome recovery after antibiotics using a stability landscape framework
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Modelling microbiome recovery after antibiotics using a stability landscape framework
Liam P. Shaw, Hassan Bassam, Chris P. Barnes, A. Sarah Walker, Nigel Klein, Francois Balloux
bioRxiv 222398; doi: https://doi.org/10.1101/222398
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Modelling microbiome recovery after antibiotics using a stability landscape framework
Liam P. Shaw, Hassan Bassam, Chris P. Barnes, A. Sarah Walker, Nigel Klein, Francois Balloux
bioRxiv 222398; doi: https://doi.org/10.1101/222398

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4684)
  • Biochemistry (10361)
  • Bioengineering (7677)
  • Bioinformatics (26337)
  • Biophysics (13530)
  • Cancer Biology (10687)
  • Cell Biology (15444)
  • Clinical Trials (138)
  • Developmental Biology (8498)
  • Ecology (12822)
  • Epidemiology (2067)
  • Evolutionary Biology (16865)
  • Genetics (11400)
  • Genomics (15480)
  • Immunology (10617)
  • Microbiology (25221)
  • Molecular Biology (10224)
  • Neuroscience (54478)
  • Paleontology (402)
  • Pathology (1668)
  • Pharmacology and Toxicology (2897)
  • Physiology (4344)
  • Plant Biology (9249)
  • Scientific Communication and Education (1586)
  • Synthetic Biology (2558)
  • Systems Biology (6781)
  • Zoology (1466)