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ABSTRACT

Large-scale cancer sequencing studies have uncovered dozens of mutations critical to cancer initiation and
progression. However, a significant proportion of genes linked to tumor propagation remain hidden, often
due to noise in sequencing data confounding low frequency alterations. Further, genes in networks under
purifying selection (NPS), or those that are mutated in cancers less frequently than would be expected by
chance, may play crucial roles in sustaining cancers but have largely been overlooked. We describe here a
statistical framework that identifies genes that have a first order protein interaction network significantly de-
pleted for mutations, to elucidate key genetic contributors to cancers. Not reliant on and thus, unbiased by,
the gene of interest’s mutation rate, our approach has identified 686 putative genes linked to cancer develop-
ment. Comparative analysis indicates statistically significant enrichment of NPS genes in previously validated
cancer vulnerability gene sets, while further identifying novel cancer-specific candidate gene targets. As more
tumor genomes are sequenced, integrating systems level mutation data through this network approach should
become increasingly useful in pinpointing gene targets for cancer diagnosis and treatment.

1 Introduction

Over the past decade, the revolution in large-scale cancer

sequencing studies has uncovered many driver mutations.

These tumor-initiating mutations directly contribute to in-

ducing cancers by activating oncogenes or deactivating tu-

mor suppressors (Garraway and Lander, 2013). Further

elucidating key mechanistic, diagnostic, and therapeutic

insights into cancer biology, however, could benefit from

the identification of genes in networks that are significantly

depleted for mutations (those that have undergone purifying

selection). Such genes, termed cancer vulnerabilities, are

of critical importance to the proliferation, maintenance, and

survival of tumors and thus provide an alternative approach

to understanding and treating cancer.

Cancer vulnerabilities have traditionally been iden-

tified through small-scale experimental studies, often at
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the single gene level. In these studies, genes were system-

atically perturbed, and the resulting effect on cancer cell

line growth was recorded (Garraway and Lander, 2013;

Bass et al., 2009; Lopez and Hanahan, 2002; Etemad-

moghadam et al., 2010; Ramsay and Gonda, 2008; Mansouri

et al., 1998; Okhrimenko et al., 2005; Kim and Sabatini,

2004). More recently, genome-wide RNAi knockdown and

CRIPSR-Cas9 knockout experiments have expanded the

study of cancer vulnerabilities in a wide range of cell lines

(Cheung et al., 2011; Tsherniak et al., 2017; Wang et al.,

2015). This approach has been translated to the clinical

stage, by generating a cell line from a clinical tumor sam-

ple, investigating this cell line using a combined RNAi and

CRISPR-Cas9 approach, and subsequently recommending

treatment based on patient-specific vulnerabilities (Hong

et al., 2016). However, experimentally generating a compre-

hensive catalog of vulnerabilities across different cancer cell

lines requires considerable resources (e.g. an estimated 600-

5,000 samples per tumor type for near-saturation, depending

on background mutation frequency) (Lawrence et al., 2014).

Tumor cells accumulate large amounts of passen-

ger mutations as a consequence of unchecked proliferation,

genotoxic stress, and defects in the DNA repair machin-

ery. These mutations do not participate in initiating the

tumor, and passenger mutation rates can be modeled as

randomly distributed across the tumor genome when con-

sidering factors such as sequence composition, position,

replication timing, transcription-coupled DNA damage re-

pair, and mutation hotspots (Lawrence et al., 2014; Weghorn

and Sunyaev, 2017). It should therefore be possible to iden-

tify genes that are essential to the proliferation of cancer

cells directly from cancer mutation data, by looking for

genes that significantly lack passenger mutations.

Several computational methods have accounted for

the potential role of passenger mutations in the search for

cancer dependencies. Cancer Vulnerabilities Unveiled by

Genomic Loss (CYCLOPS) has used available expression

data to find genes with partial copy number loss, yielding

cells that are vulnerable to their knockouts (Nijhawan et al.,

2012). Further, a study on synthetic lethality has analyzed

The Cancer Genome Atlas dataset to find mutually exclu-

sive loss-of-function (LoF) gene sets (Ryan et al., 2014). A

more recent Bayesian inference approach has successfully

found cancer driver genes, but has so far detected only sub-

tle signal from genes under purifying selection in the tumors

(Weghorn and Sunyaev, 2017).

Despite these studies’ advancements, the statisti-

cal detection of infrequently mutated or preserved genes is

strongly confounded by the high background copy number

and mutation rates in cancer genomes, potentially unfiltered

germline variants in cancer sequencing data, and hetero-

geneity in mutation rates along the genome, specifically in

the context of a single cancer cell. This means that even

the most sophisticated methods to detect signals of purify-

ing selection at the gene level are currently underpowered

(Tsherniak et al., 2017; Weghorn and Sunyaev, 2017)

In this work, we provide a more robust approach

to computationally detect cancer vulnerability genes from

cancer genomes, by aggregating weak signals of negative

selection across a gene’s first order protein-protein inter-

action network. We present a statistic, Network Purifying

Selection (NPS), which identifies genes that have a network

significantly depleted for mutations, indicating that the gene

itself is likely to be a vulnerability gene. We applied NPS

to 4,742 tumor genomes from 21 tumor types to identify

686 genes with a significant NPS score. Our approach

corroborates previously documented studies on cancer de-

pendencies but also identifies a novel set of genes that are

likely cancer-specific vulnerabilities. The NPS code is avail-

able at www.lagelab.org, and the approach we develop here

should become increasingly useful as more cancer genomes

are sequenced in the future.

2 Results

Design and properties of the Network Purifying

Selection statistic

NPS combines data from 4,742 tumor genomes spanning 21

tumor types and InWeb, a human protein-protein interaction
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(a) (b)

Figure 1 | NPS distinguishes true cancer vulnerability genes. (a) Overlap of the three cancer
benchmarking gene sets. (b) Receiver operating characteristics (ROC) curves for genes in
CYCLOPS (blue), DEMETER (green), and cancer cell-essential genes (red). The areas under the
ROC curves (AUCs) are 0.68, 0.677, and 0.645, respectively. Genes from the CYCLOPS,
DEMETER, and CRISPR-induced LoF cell essentiality cancer sets are defined as true positives, and
all other genes in InWeb as true negatives. NPS scores are calculated for all genes using pan-cancer
data and used as a classifier.

network (Lage et al., 2007; Li et al., 2016), that has been

used in dozens of genetic studies, including in the 1000

Genomes Project (Khurana et al., 2013), to calculate the

signal of purifying selection in a gene’s functional protein-

protein interaction network. Since we specifically wanted

a statistic to determine the predictive signal of purifying

selection in a gene’s network, we excluded any mutation

information on the gene itself in the NPS score calculation.

This specific design choice enables NPS to complement any

other gene-based method to identify cancer vulnerabilities.

To benchmark the NPS statistic and to test if it

accurately classifies cancer vulnerabilities, we defined a

set of well established genes from three existing datasets:

copy number alterations yielding cancer liabilities owing to

partial loss (CYCLOPS), aggregate RNAi gene knockdown

data analyzed by DEMETER, and CRISPR-induced LoF

essentiality genes from Wang et al. (Figure 1a). Briefly,

the CYCLOPS method has identified 56 cancer-specific vul-

nerability genes by analyzing the effect on tumor growth

of knocking out the wild type allele of a gene where the

other copy has been lost due to copy number changes in the

cancer cells (Nijhawan et al., 2012). DEMETER models

gene knockdown effects within the data and computation-

ally subtracts off-target effects to find cancer dependencies

(Tsherniak et al., 2017). The CRISPR-induced LoF genes

are a set of cell-essential genes required for proliferation

and survival in a human cancer cell line (Wang et al., 2015).

CYCLOPS, DEMETER, and cancer cell-essential (Wang

CRISPR) genes are strongly enriched for the NPS candi-

dates, with odds ratios of 5.4 (P=2.9e-5), 4.7 (P<2.2e-16),

and 5.2 (P=2.2e-16), respectively (Supplementary Table 1).

To estimate how well the NPS score predicts vulnerability

genes and to see if genes that do not pass the significance

cutoff might still be valuable candidates, we also calcu-

lated receiver operating characteristic (ROC) curves for all

three sets. AUCs were 0.68 (P=0.153), 0.677, and 0.645
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Figure 2 | NPS identifies both disease state-agnostic (orange) and cancer-specific (purple)
vulnerabilities. ExAC genes included are those with pLI scores ≥ 0.9.

(P=0.0139), respectively (Figure 1b).

The majority of genes scored by NPS fit the null

hypothesis and lie on the diagonal on a quantile-quantile

plot, confirming that the NPS accurately calculates the sig-

nificance level of purifying selection in the neighborhood

of an index gene (Supplementary Figure 1). To correct for

knowledge contamination (where well known genes are bet-

ter studied, leading to increased interaction data), we apply

a permutation scheme that considers the network topology

of the neighborhood to account for underlying confounders

when permuting the neighboring genes. This increases the

signal to noise ratio and demonstrates that NPS adequately

normalizes for the number of interactions that a gene has at

the protein level (Supplementary Figure 2).

These findings indicate that genes significant in the

NPS are enriched for previously associated cancer genes.

The NPS score thus accurately distinguishes CYCLOPS,

DEMETER, and cancer cell-essential genes from other

genes covered by interactions in the InWeb database.

Predicting Network Purifying Selection candi-

dates from tumor genomes

To test if the NPS statistic can predict new vulnerability

genes from existing cancer genome data, we calculated NPS

scores for all genes that had at least one high-confidence pro-

tein interaction in InWeb. We declared genes as significant

at a false discovery rate of Q ≤ 0.1 using the pan-cancer

cohort of 4,742 tumors. The pooled set (named NPS5000,

Supplementary Table 2) contains all unique genes that were

significant in the pan-cancer analysis or in at least one of

the 21 tumor types. NPS5000 is comprised of 686 genes,

many of which are linked to known cancer biology.

Using the Molecular Signatures Database of an-

notated gene sets (Liberzon et al., 2011), one hundred and

ninety one canonical pathways were identified as being en-

riched (FDR, q≤0.1) for the NPS500 set. The functional

roles of these genes are primarily in the following cate-

gories: transcription & translation, cell cycle, cell signaling,

metabolism, immune response, and membrane & transport

(Supplementary Figures 3 and 4, Supplementary Table 3).

As expected, many of these processes are found in subsets

of living cells, but also in the hallmarks of cancer.

Network Purifying Selection detects cancer-

specific vulnerabilities

NPS should in theory identify both genes that specifically

are cancer vulnerabilities, but also genes that are generally

under purifying selection in human populations, because

they are essential to both normal and cancer cells. To dissect

this phenomenon, we tested the overlap of our NPS5000 set

with genes from population genetic studies that are known

to have a high probability of being intolerant to LoF mu-

tations (Samocha et al., 2014) (Figure 2). Specifically, we

overlapped the NPS5000 set with genes from the Exome Ag-
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Figure 3 | Tumor growth divergences resulting from gene knockouts. Aberrant tumor growth
resulting from the loss of function of the aggregate NPS-imputed + ExAC vulnerability genes (red),
and non-ExAC NPS vulnerability genes (purple), as it diverges from the null distribution (aggregate
ExAC genes) of tumor growth (black).

gregation Consortium (ExAC) population exome database

that have a probability of intolerance to LoF (defined as

pLI) ≥ 0.9 (Lek et al., 2016). ExAC contains the exomes of

60,706 people, loosely representing the general population,

and lets us estimate gene tolerance to LoF mutations at a

population level.

After filtering ExAC (16,453 genes) for genes

present in InWeb3 (12,000 genes), 203 of the 686 NPS-

imputed genes were linked to ExAC vulnerabilities in re-

sponse to LoF alterations. The remaining 483 genes were

found to have no significant LoF consequences in the gen-

eral population (Supplementary Table 2).

Tumor essentiality of NPS candidates

We assessed the impact of knockouts of three gene sets on

the growth of 216 cancer cell lines. These sets comprise all

ExAC genes (Background), the overlapping NPS and ExAC

vulnerability genes, and the non-ExAC NPS vulnerability

genes (e.g. those genes specific to cancer dependencies)

(Figure 3). We used the cell proliferation data compiled

through Project Achilles, which catalogues the genetic vul-

nerabilities of genomically characterized cancer cell lines

through individual gene knockouts using the CRISPR-Cas9

system (Cowley et al., 2014); internal Broad data set).

The aggregate set of genes in cancer networks

under purifying selection impacts tumor proliferation at

a level that is statistically significantly different from that

of background gene candidates. This difference is non-

directional (knockout of a gene enhances or decreases pro-

liferation); therefore, we calculated the standard deviation

from the normal tumor growth rate as an absolute measure-

ment. The Background set results in a Gaussian distribu-

tion, ExAC+NPS gene knockouts lead to a slight deviation

from normal growth, and the NPS-imputed, non-ExAC gene

knockouts (cancer-specific vulnerabilities) yield the most

starkly aberrant tumor growth (Figure 3). Overall, knocking

out genes from the set of 686 leads to aberrant tumor cell

growth and statistically varied tumor proliferation.
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3 Discussion

The NPS-imputed gene statistic described here facilitates

the identification of novel, previously hidden cancer vul-

nerabilities and broadens the pool of potential drug targets.

Due to the network-based approach to calculate the NPS

statistic, those genes identified as cancer dependencies have

NPS scores that are not influenced by the gene itself, but

rather, by the mutation landscape of its direct protein inter-

action network. This approach eliminates the possibility

of any bias from the alteration rate of an index gene and

enables NPS to complement previously established cancer

vulnerability detection methods.

Benchmarking analyses comparing the NPS-

imputed genes with CYCLOPs, DEMETER, and CRISPR-

induced cancer cell-essential genes reveal significant en-

richment in all three of these selection lists and significant

ROC AUCs, indicating that a substantial subset of the genes

identified through this network approach are known cancer

dependencies.

The overlap between NPS-imputed genes and

those in the ExAC database indicates that the NPS method

has identified genes crucial to proper cell functioning, for

which a high preservation is essential. This overlap anal-

ysis suggests that LOF alterations in the 483 genes only

significant in NPS and not in ExAC may be linked to tumor-

specific dependencies.

Statistically significant tumor growth aberrations

due to NPS gene knockouts, as determined by Achilles gene

knockout studies (Meyers et al., 2017), indicate the direct

relevance of these genes in sustaining tumor proliferation.

Knockouts of NPS genes change tumor growth rate, and

NPS only, non-ExAC gene knockouts (those that are pu-

tative cancer-specific vulnerabilities) affect tumor growth

even more, suggesting the identified genes’ key role in tu-

mor development.

The pan-cancer NPS-imputed gene analysis pre-

sented here unveils that genes in networks under purifying

selection in cancers could be harnessed for cancer treatment.

The existence of FDA-approved drugs targeting these newly

identified cancer vulnerabilities (Supplementary Table 4)

supports the claim for repurposing therapies, enabling a

shortened timeline to treat otherwise intractable cancers.

4 Methods

Calculating the network purifying selection score
For a given index gene, the Network Purifying Selection

statistic is formalized into a probabilistic score that reflects

the index-gene-specific composite purifying selection (i.e.

the aggregate of single-gene MutSig suite Q values from

Lawrence et al.) across its first order biological network

and is calculated via a three-step process. First, we identify

all genes it interacts with directly at the level of proteins,

only including high-confidence quality-controlled data from

the functional human network InWeb (where the vast ma-

jority of connections stem from direct physical interaction

experiments at the level of proteins). Second, the composite

purifying selection score across members of the resulting

network is quantified by aggregating single-gene MutSig

suite Q values from Lawrence et al. into one value φ us-

ing an approach inspired by Fisher’s method for combining

p-values:

φ ∼−2
k

∑
i=0

ln(qi)

Where qi is the MutSig suite Q value for gene i, and k is

the amount of genes in the first order network of the index

gene (i.e. the index gene’s degree). Third, by permuting

the InWeb network using a node permutation scheme, we

compare the aggregated burden of mutations θ to a random

expectation. In this step, the degree of the index gene, as

well as the degrees of all genes in the index gene’s network

is taken into careful consideration. The final NPS score of

an index gene is therefore an empirical P value that reflects

the probability of observing a particular composite mutation

burden across its first order physical interaction partners (at

the level of proteins) normalized for the degree of the index

gene as well as the degrees of all of its first order interac-

tion partners. Because we are interested in estimating the

purifying selection independent of the index gene, this gene
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is not included in the analysis and it does not affect the NPS

calculation.

Classifying cancer vulnerability genes
For each gene represented in InWeb (12,507 or 67% of

the estimated genes in the genome), we used the gene-

specific NPS probability to classify it as a cancer vulner-

ability gene or not. True positive genes were a set of CY-

CLOPS, DEMETER, and CRISPR-induced cell-essential

cancer genes. Specifically, we selected 56 genes categorized

as CYCLOPs genes as described in (Nijhawan et al., 2012),

and DEMETER genes were defined as the 769 genes that

were differentially required in subsets of the analyzed cell

lines at a threshold of six SDs from the mean (Tsherniak

et al., 2017). True negatives were defined as all genes in

InWeb that were not in these three sets, which is likely con-

servative, as we currently lack the power to confidentially

estimate the number of potential vulnerabilities. We used

the NPS probability as the classifier and calculated the AUC

for each gene set.

Testing the robustness of the NPS approach
A more in depth evaluation has been performed in Horn et

al. Here, to assure that the permutation holds up, we limited

testing to compare permutation methods (random permuta-

tion vs. connectivity aware). We ran the full analysis using

both approaches and compared the quantile-quantile plots.

This analysis confirmed that ignoring the interaction struc-

ture of the immediate neighborhood significantly depletes

the signal (Supplementary Figure 1).

Generating the NPS5000 set
NPS probabilities were determined for every gene in InWeb

that was covered by interaction data using 106 permuta-

tions. The FDR Q values were calculated as described by

Benjamini and Hochberg, based on the nominal P values

controlled for 12,507 hypotheses. We performed NPS anal-

yses with the pan-cancer Q values, as well as Q values from

each of the 21 tumor types for which they were available.

As it is a technical limitation of the NPS approach that it is

currently not possible to make 5.5×106 network permuta-

tions, we could not create a dataset where we correct for all

12,500×22 hypotheses tested in the NPS5000 set.

Detecting cancer-specific vulnerabilities
To expand the known catalog of vulnerabilities, we tested

whether our approach could predict both putative and novel,

cancer-specific vulnerability genes directly from tumor and

exome sequencing data (ExAC). We filtered for ExAC genes

with pLI scores ≥ 0.9 and checked for their overlap with

NPS genes, as well as for NPS genes that did not fall in

the highly potent ExAC gene LOF list, for cancer-specific

targets.

Dissecting tumor gene essentiality
We tested the effects of NPS gene knock-outs on cancer

cell lines using the Project Achilles cancer cell line gene

knockout database. For the following groups of genes, we

assessed the change in growth rate from base-line across

216 cancer cell lines when those genes were knocked out:

the 203 NPS + ExAC genes, the 483 NPS only (non-ExAC)

genes, and all ExAC genes. For each of these three gene

knockout groups, we calculated the resulting standard de-

viations of growth from the null distribution of cancer cell

proliferation rates.

5 Acknowledgments

We would like to thank Professor Aviv Regev for her inputs

on the work.

References

Bass, A. J., Watanabe, H., Mermel, C. H., Yu, S., Perner,

S., Verhaak, R. G., Kim, S. Y., Wardwell, L., Tamayo, P.,

Gat-Viks, I., Ramos, A. H., Woo, M. S., Weir, B. A., Getz,

G., Beroukhim, R., O’Kelly, M., Dutt, A., Rozenblatt-

Rosen, O., Dziunycz, P., Komisarof, J., Chirieac, L. R.,

LaFargue, C. J., Scheble, V., Wilbertz, T., Ma, C., Rao,

S., Nakagawa, H., Stairs, D. B., Lin, L., Giordano, T. J.,

Wagner, P., Minna, J. D., Gazdar, A. F., Zhu, C. Q., Brose,

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222687doi: bioRxiv preprint 

https://doi.org/10.1101/222687


M. S., Cecconello, I., Jr, U. R., Marie, S. K., Dahl, O.,

Shivdasani, R. A., Tsao, M.-s., Rubin, M. A., Wong,

K. K., Regev, A., Hahn, W. C., Beer, D. G., Rustgi, A. K.,

and Meyerson, M. (2009). SOX2 is an amplified lineage-

survival oncogene in lung and esophageal squamous cell

carcinomas. Nature Genetics, 41(11):1238–1242.

Cheung, H. W., Cowley, G. S., Weir, B. A., Boehm, J. S.,

Rusin, S., Scott, J. A., East, A., Ali, L. D., Lizotte, P. H.,

Wong, T. C., Jiang, G., Hsiao, J., Mermel, C. H., Getz,

G., Barretina, J., Gopal, S., Tamayo, P., Gould, J., Tsher-

niak, A., Stransky, N., Luo, B., Ren, Y., Drapkin, R.,

Bhatia, S. N., Mesirov, J. P., Garraway, L. A., Meyerson,

M., Lander, E. S., Root, D. E., and Hahn, W. C. (2011).

Systematic investigation of genetic vulnerabilities across

cancer cell lines reveals lineage-specific dependencies in

ovarian cancer. Proceedings of the National Academy of

Sciences of the United States of America, 108(30):12372–

7.

Cowley, G. S., Weir, B. a., Vazquez, F., Tamayo, P., Scott,

J. a., Rusin, S., East-Seletsky, A., Ali, L. D., Gerath, W. F.,

Pantel, S. E., Lizotte, P. H., Jiang, G., Hsiao, J., Tsherniak,

A., Dwinell, E., Aoyama, S., Okamoto, M., Harrington,

W., Gelfand, E., Green, T. M., Tomko, M. J., Gopal, S.,

Wong, T. C., Li, H., Howell, S., Stransky, N., Liefeld, T.,

Jang, D., Bistline, J., Hill Meyers, B., Armstrong, S. a.,

Anderson, K. C., Stegmaier, K., Reich, M., Pellman, D.,

Boehm, J. S., Mesirov, J. P., Golub, T. R., Root, D. E.,

and Hahn, W. C. (2014). Parallel genome-scale loss of

function screens in 216 cancer cell lines for the identifica-

tion of context-specific genetic dependencies. Scientific

data, 1:140035.

Etemadmoghadam, D., George, J., Cowin, P. A., Cullinane,

C., Kansara, M., Australian Ovarian Cancer Study Group,

Gorringe, K. L., Smyth, G. K., and Bowtell, D. D. L.

(2010). Amplicon-dependent CCNE1 expression is criti-

cal for clonogenic survival after cisplatin treatment and

is correlated with 20q11 gain in ovarian cancer. PloS one,

5(11):e15498.

Garraway, L. a. and Lander, E. S. (2013). Lessons from the

cancer genome. Cell, 153(1):17–37.

Hong, A. L., Tseng, Y.-Y., Cowley, G. S., Jonas, O., Cheah,

J. H., Kynnap, B. D., Doshi, M. B., Oh, C., Meyer,

S. C., Church, A. J., Gill, S., Bielski, C. M., Keskula,

P., Imamovic, A., Howell, S., Kryukov, G. V., Clemons,

P. A., Tsherniak, A., Vazquez, F., Crompton, B. D.,

Shamji, A. F., Rodriguez-Galindo, C., Janeway, K. A.,

Roberts, C. W. M., Stegmaier, K., van Hummelen, P.,

Cima, M. J., Langer, R. S., Garraway, L. A., Schreiber,

S. L., Root, D. E., Hahn, W. C., and Boehm, J. S. (2016).

Integrated genetic and pharmacologic interrogation of

rare cancers. Nature communications, 7(May):11987.

Khurana, E., Fu, Y., Colonna, V., Mu, X. J., Kang, H. M.,

Lappalainen, T., Sboner, A., Lochovsky, L., Chen, J.,

Harmanci, A., Das, J., Abyzov, A., Balasubramanian, S.,

Beal, K., Chakravarty, D., Challis, D., Chen, Y., Clarke,

D., Clarke, L., Cunningham, F., Evani, U. S., Flicek,

P., Fragoza, R., Garrison, E., Gibbs, R., Gümüs, Z. H.,
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