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  19 
Characterizing the fitness landscape, a representation of fitness for a large set of genotypes, 20 
is key to understanding how genetic information is interpreted to create functional 21 
organisms. Here we determined the evolutionarily-relevant segment of the fitness 22 
landscape of His3, a gene coding for an enzyme in the histidine synthesis pathway, focusing 23 
on combinations of amino acid states found at orthologous sites of extant species. Just 15% 24 
of amino acids found in yeast His3 orthologues were always neutral while the impact on 25 
fitness of the remaining 85% depended on the genetic background. Furthermore, at 67% 26 
of sites, substitutions are under sign epistasis, having both strongly positive and negative 27 
effect in different genetic backgrounds. 46% of sites were under reciprocal sign epistasis. 28 
Sign epistasis affected few genotypes but involved interaction of multiple sites, shaping a 29 
rugged fitness landscape in which many of the shortest paths between highly fit genotypes 30 
are inaccessible.  31 
 32 

Predicting function and fitness of organisms from their genotypes is the ultimate goal of 33 
many fields in biology, from medical genetics to systems biology to the study of evolution1-5. 34 
Among the conceptual frameworks for understanding the genotype to phenotype connection is 35 
the fitness landscape, which assigns a fitness (phenotype) to every possible genotype (sequence) 36 
of a gene or genome under consideration4,6. The recognition of the importance of the fitness 37 
landscape stimulated the development of a variety of theoretical approaches to its description, 38 
including its general shape and epistatic interactions between alleles, a key property which 39 
determines the complexity of the fitness landscape (see [ref. 4] and references within). Before 40 
the advent of next-generation sequencing, experimental assays of the fitness landscape were few 41 
and could not address the issue at the sequence level. Recently, large-scale experimental assays 42 
described the shape of the fitness landscape a few mutations away from a local fitness peak (see 43 
[ref. 7-10] and references within). Also, some assays involving a smaller number of genotypes 44 
considered combinations of mutations with established functional11-16 or evolutionary17-22 45 
significance.  46 

Empirical evidence of the nature of large-scale fitness landscapes mostly comes from the 47 
study of genotypes incorporating random mutations4,7-10, the majority of which are deleterious7-48 
10,23. Thus, our present knowledge of fitness landscapes is primarily driven by the study of 49 
deleterious mutations and their interactions, although local adaptive trajectories have also been 50 
considered2,4,16,24-26. Deleterious mutations were found to engage in synergistic epistasis, 51 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/222778doi: bioRxiv preprint 

https://doi.org/10.1101/222778


 

 

whereby the joint effect of multiple mutations was stronger than the sum of their individual 52 
effects4,7-10,16. Furthermore, sign epistasis among random mutations was mostly rare5,7-10,16,27, 53 
although some of these conclusions differ from study to study (e.g. see [4,27]). 54 

Unfortunately, there are fundamental limitations to assaying the fitness landscape on a 55 
large or macroevolutionary level with random mutation libraries. The number of genotypes 56 
underlying the fitness landscape is the combinatorial set of all amino acids across the length of 57 
the protein4,6. For example, for the 220 amino acid protein coded by the His3 gene in 58 
Saccharomyces cerevisiae, the fitness landscape is a 220 dimensional genotype space with 20220 59 
different possible sequences. Such immense spaces are both computationally and experimentally 60 
intractable. Fortunately, it may not be necessary to survey all genotypes to study the 61 
evolutionary-relevant section of the fitness landscape. Because the vast majority of mutations in 62 
protein sequences are deleterious23, a randomly sampled protein sequence is non-functional28,29. 63 

Here we propose an evolutionary approach for assaying fitness landscapes on a 64 
macroevolutionary scale in a high-throughput manner that avoids the random sampling of mostly 65 
non-functional sequences. The functionally and evolutionarily relevant section of the fitness 66 
landscape can be represented by the combination of extant amino acid states, those found in 67 
extant species. This approach, applied previously on a limited scale17-22 mitigates the problem of 68 
exploring a prohibitively large fitness landscape while highlighting the relationships between 69 
evolutionarily-relevant genotypes (Fig. 1a). Crucially, substitutions that have been fixed in 70 
evolution are fundamentally different from random mutations, the former are either neutral or 71 
beneficial in at least some genetic contexts and represent the driving force of molecular 72 
evolution, while the latter are mostly deleterious and are primarily relevant on a 73 
microevolutionary scale. Therefore, current empirical data do not shed much light on the impact 74 
of interactions between substitutions that fixed in the course of evolution by natural selection. 75 
Combinations of extant amino acid states allow one to assay a much wider functionally relevant 76 
area of the sequence space than approaches based on random mutagenesis of a single sequence 77 
(Fig. 1b,c). 78 

Estimating fitness of evolutionary-relevant genotypes 79 
 80 

We studied His3, a gene coding for imidazoleglycerol-phosphate dehydratase (IGPD, 81 
His3p), an enzyme essential for histidine synthesis. In a multiple alignment of His3 orthologues 82 
from 21 yeast species we identified 686 extant amino acid states (Supplementary Information 83 
1), which were evenly distributed across the His3p structure (Fig. 1d). These 686 substitutions, 84 
which occurred over the course of ~400 million years of evolution30 (Fig. 1b,c) correspond to 85 
~1083 sequences, even a tiny fraction of which would be too many to survey. Thus, we sectioned 86 
His3 into 12 independent segments such that the full combinatorial set of substitutions that have 87 
occurred in His3 during yeast evolution comprised 10,000-100,000 genotypes per segment (see 88 
Methods and Supplementary Fig. 1a). The 12 segments were of similar length, constrained by 89 
the molecular methods employed for library construction (see Methods), and covered a diverse 90 
range of secondary structures and functional elements (Supplementary Fig. 1c). For each of the 91 
12 segments of His3 we performed an independent experiment surveying its fitness landscape. 92 
For each segment we used degenerate oligonucleotides to construct genotypes consisting of 93 
combinations of amino acids present in extant His3 sequences, and determined the fitness 94 
conferred by these genotypes by expressing them in a Δhis3 strain of S. cerevisiae and 95 
measuring the rate of growth (Supplementary Fig. 1b). This way we assayed the fitness 96 
landscape of the genotype space that was traversed over the course of the last ~400 million years 97 
of evolution30. 98 

 99 
Across 11 experiments we measured fitness for a total of 4,018,105 genotypes (875,151 100 

unique amino acid sequences) with high accuracy. Of these, 422,717 consist solely of 101 
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combinations of extant amino acid states from His3 orthologues, while the remaining genotypes 102 
incorporate other amino acid substitutions (Supplementary Table 1 and Methods). For one 103 
segment, 9, the accuracy of our experiment was low, and it was not used in cumulative analyses. 104 
For each segment we measured fitness for 60% - 99.8% of all possible genotypes from the 105 
combinatorial set of selected extant amino acid states found in 21 yeast species and a smaller 106 
fraction of combinations found across all domains of life (Supplementary Table 1), 107 
characterizing the evolutionary relevant fitness landscape (Fig. 1b). For segment 3 for instance, 108 
11 out of 17 amino acid sites had more than one extant amino acid state: L145=2, L147=2, 109 
Q148=3, K151=2, V152=2, D154=3, L164=3, E165=4, A168=2, E169=4, A170=4, with the full 110 
yeast combinatorial set consisting of 2*2*3*2*2*3*3*4*2*4*4 = 55,296 genotypes out of which 111 
we determined the fitness for 48,198, or 87% of the possible yeast extant states combinations in 112 
our library.  113 

 114 
A substantial proportion of combinations of extant amino acid states led to genotypes 115 

with low fitness (Fig. 2, Fig. 3a,b, Supplementary Fig. 2), an observation that takes into 116 
account the false discovery rate in our data (Supplementary Table 1). This observation could be 117 
explained by i) some extant amino acids having a universally deleterious effect, ii) some amino 118 
acid states exerting a negative effect on fitness because of intergenic interactions with other S. 119 
cerevisiae genes, or iii) by epistatic interactions between the extant amino acid states within 120 
His331. We exclude the possibility that some extant amino acid states had a universally 121 
deleterious effect because no extant amino acid states were present only in unfit genetic 122 
backgrounds, genotypes conferring a fitness of zero (Fig. 3c). We exclude the possibility that 123 
some extant amino acid states disrupt intergenic interactions because the complete His3 coding 124 
sequences from extant species fully complemented a His3 deletion in S. cerevisiae 125 
(Supplementary Fig. 3c). Thus, the observed genotypes with low fitness can only be explained 126 
by epistatic interactions among extant amino acid states within the His3 gene in the same or 127 
different segments. Remarkably, 85% (330/389) of substitutions between extant amino acid 128 
states had substantially different effects on fitness in different backgrounds (Fig. 3d). By 129 
contrast, only 15% of amino acid substitutions that occurred in His3 evolution are truly neutral, 130 
in the sense that they do not exert strong influence on fitness in any genetic background. Three 131 
quarters of the universally neutral substitutions were observed in the disordered region of the 132 
protein (44/59). Thus, the His3 fitness landscape across the 11 segments with high accuracy was 133 
strongly influenced by epistasis on a macroevolutionary scale, i.e. the impact of an extant amino 134 
acid state on fitness often depends on the background in which it occurs31-34. An epistatic fitness 135 
landscape is rugged in the sense that evolving genotypes must avoid fitness valleys that emerge 136 
through deleterious combinations of amino acid states that may also be found in fit 137 
genotypes18,19,34-36. Characterizing the ruggedness and the mechanisms that determine the 138 
underlying epistasis becomes the primary challenge in understanding the fitness landscape of 139 
His3. 140 

  141 
Unidimensional epistasis of the His3 fitness landscape 142 
 143 

The ruggedness of the fitness landscape can be characterized by different measures of 144 
complexity of the underlying epistatic interactions. In the simplest case, epistasis may be 145 
unidimensional, in the sense that the fitness landscape can be described as a function of an 146 
intermediate variable, the fitness potential37-39. The fitness landscape is a function from the space 147 
of genotypes to fitness. In analogy with a scalar field, we can characterize the ruggedness of this 148 
function with standard measures of complexity if genotypes are arranged in a linear space. The 149 
simplest case is that of a linear predictor called the fitness potential: p = c1x1 + c1x2 + … + cnxn, 150 
where ci is a coefficient and xi is a binary variable that signifies the presence (1) or absence (0) of 151 
a given amino acid at a given position. By definition, ep describes a non-epistatic fitness 152 
landscape because the effect of every substitution is multiplicative and it depends only on the 153 
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associated c. Any other function of p leads to epistasis. If the f(p) function is “simple”, meaning 154 
that is has a small number of local extremas, such as a bimodal function, the epistasis is called 155 
unidimensional39. The limitation of simplicity of f(p) is necessary because any function f0(x1, …, 156 
xn) can be represented by a function f’(p) and choosing appropriate coefficients c1, …, cn in p. 157 
Thus, a simple f(p) leads to unidimensional epistasis because the entire genotype space can be 158 
reduced to a single dimension39. 159 
 160 

To quantitatively determine how well fitness differences between genotypes can be 161 
explained by unidimensional epistasis we used a deep learning approach to estimate the 162 
coefficients c for each allele x in the fitness potential and determine the best unidimensional 163 
function of p that best approximated the fitness landscape. We used a dense neural network 164 
architecture composed of three layers. Each neuron in the architecture performed a linear 165 
transformation of its input and then applied a nonlinear (sigmoid) function. Hence, by using one 166 
neuron in the first layer we obtained a linear combination of the contributions of each amino acid 167 
state to fitness potential, which was then non-linearly mapped to fitness by the three layers of the 168 
neural network architecture (see Methods; Supplementary Fig.4). Ten segments were described 169 
by a threshold function in which organismal fitness remains constant with decreasing fitness 170 
potential and then is rapidly reduced to lethal after a certain threshold (Fig. 4a). The ability of 171 
the cliff-like threshold fitness function40 to predict fitness from genotype varied between the 172 
His3 segments from near perfect (r2=0.97) in segment 7, to relatively poor (r2=0.44) in segment 5 173 
(Supplementary Fig. 5). Thus, while the fitness landscape of His3 is approximately 174 
unidimensional for some segments, it has a higher degree of complexity for others. 175 

 176 
Ruggedness and multidimensional epistasis of the His3 fitness landscape 177 
  178 

Ruggedness is a general property of fitness landscapes that quantifies the accessible paths 179 
of high fitness that connect fit genotypes41-43. A path between highly fit genotypes is inaccessible 180 
when one of the intermediate genotypes has low fitness6,20-22,41,44 (e.g. for genotypes AB and ab, 181 
the intermediate are aB and Ab). Such instances also manifest in sign epistasis on the fitness 182 
landscape, that the same substitution may be beneficial or deleterious when occurring in a 183 
different genetic background44,45. To quantify the ruggedness of the His3 fitness landscape we 184 
identified instances of sign epistasis: substitutions between extant amino acid states that were 185 
strongly beneficial or strongly deleterious (change in fitness of > 0.4 in absolute value) 186 
depending on the background in which they occurred44. Some of these instances may be due to 187 
miscalled fitness of very few genotypes. Therefore, we considered a pair of extant amino acid 188 
states to be under sign epistasis only when sign epistasis was observed in a statistically 189 
significant number of different genetic backgrounds (see Methods).  190 

 191 
An example of sign epistasis is the substitution C141S in the second segment that had an 192 

opposite effect on fitness depending on amino acid at site 143 (I, V or T). The substitution I143T 193 
in turn exhibits sign epistasis depending on the amino acid at site 163 (F, I, V or L) (Fig. 5a). 194 
These epistatic interactions can be represented by a graph in which nodes represent a pair of 195 
extant amino acid states at a specific site and nodes are connected by edges if strong sign 196 
epistasis has been detected between them (C141S - I143T - I163F) (Fig. 4b). We found that 86 197 
out of 128 (67%) sites in our library exhibit sign epistasis and 46% (59/128) exhibit reciprocal 198 
sign epistasis. Most sites showed a sign epistatic interaction with multiple other sites (Fig. 5c,d) 199 
demonstrating that, although sign epistasis affects few genotypes, it leads to a fitness landscape 200 
that requires the interaction of multiple sites for proper characterization.  201 
 202 

The complexity of interaction of sites can be estimated by using the graph of sign 203 
epistasis where vertices represent a substitution and edges connect vertices with sign epistasis 204 
between them. If only few substitutions display sign epistasis then such a graph would signify 205 
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that the fitness landscape is relatively smooth, alternatively, a highly-interconnected graph of 206 
such interactions signifies a more rugged landscape4,5,41-43. To measure the relative fitness 207 
complexity, we used the maximum clique size of a graph, which approximates the maximum 208 
number of simultaneously interacting substitutions. In our data, this measure ranged from two to 209 
seven depending on the segment (Supplementary Fig. 6). The ruggedness of the fitness 210 
landscape of His3 is high for most segments, such as segment 5, where it is necessary to consider 211 
the simultaneous interaction of at least seven sites to accurately predict the fitness of genotypes 212 
consisting of extant amino acid states at these sites38,40. 213 

 214 
Sign epistasis can appear when fitness is described by a unidimensional function of the 215 

fitness potential, for example, when the fitness landscape is a unimodal function with an 216 
optimum in an intermediate range of the fitness potential41,45. However, sign epistasis may also 217 
be a sign of multidimensional epistasis, when a unidimensional function of the fitness potential 218 
cannot fully describe genotype fitness39. Many genotypes were predicted poorly by a 219 
unidimensional function of the fitness potential (Supplementary Fig. 5a). Two lines of evidence 220 
suggest that such genotypes reveal the presence of multidimensional epistasis. First, genotypes 221 
with a higher number of substitutions influenced by sign epistasis were less well-predicted by a 222 
unidimensional fitness function (Fig. 4c and Supplementary Fig. 7b). Second, we explain a 223 
larger fraction of genotypes by using a more complex neural network architecture 224 
accommodating multiple fitness potentials instead of one. We found that increasing the amount 225 
of neurons in the first layer of the neural network architecture, which is equivalent to increasing 226 
the number of independent fitness potentials, gradually improves the prediction power of the 227 
obtained models for most of the segments (Fig. 4d). Thus, adding dimensions to the function of 228 
fitness potential increases the prediction power of the model. For example, for a two-229 
dimensional case fitness was described by f1(p1, p2) with p1 = a1x1 + a1x2 … anxn and p2 = b1x1 + 230 
b1x2 … bnxn. For several His3 segments, a fitness function with multiple underlying fitness 231 
potentials described the fitness landscape more accurately than a simple unidimensional function 232 
of a single fitness potential (Supplementary Fig. 7a). For instance, for these segments, fitness 233 
function of two fitness potentials described the shape with a higher degree of accuracy than a 234 
function of a single fitness potential (Fig. 4d,e). By contrast, epistasis in segment 7 is entirely 235 
unidimensional (Fig. 4d,e and Supplementary Information 2); we do not see any improvement 236 
in the model’s predictive power when adding extra dimensions.  237 
 238 
Evolutionary trajectories on the His3 fitness landscape 239 
 240 

On a smooth fitness landscape, evolution can proceed along any of the evolutionary paths 241 
connecting two fit genotypes, as none of the intermediate genotypes confer low fitness (see Box 242 
2 in [46]). Alternatively, the fitness landscape is rugged when it contains non-connected fitness 243 
peaks, such that there are no viable paths between some pairs of genotypes that confer high 244 
fitness4,5. In other words, the presence of deleterious intermediate genotypes between highly fit 245 
ones leads to inaccessibility of some evolutionary trajectories between extant or ancestral 246 
sequences6,20-22,44. The simplest explanation for the substantial ruggedness of the landscape 247 
observed in many of the His3 segments lies in the unidimensional threshold fitness function 248 
(Fig. 6a). On a threshold function a combinations of substitutions, all of which are neutral in 249 
some genetic backgrounds, can take a genotype beyond the fitness threshold through their 250 
additive effect on fitness potential, making some genotypes inaccessible for evolution (Fig. 6a). 251 
Between any two fit genotypes, the fraction of intermediate genotypes that are unfit depends on 252 
the fitness potential of the two parental genotypes (Fig. 6b). Evolution between two fit 253 
genotypes with high fitness potential can proceed unhindered because all intermediate genotypes 254 
also have high fitness potential and, consequently, high fitness. Conversely, when both fit 255 
genotypes are located close to the threshold, many of the intermediate genotypes between them 256 
have low fitness and many evolutionary paths between them are inaccessible (Fig. 6c). Thus, the 257 
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cliff-like threshold fitness function is the major determinant of the observation that not all paths 258 
between two fit genotypes are accessible to evolution (Fig. 6b). We find that unfit intermediate 259 
genotypes are in genetic proximity with each other and are on a limited number of paths; the 260 
fraction of inaccessible paths is smaller than if the same number of unfit genotypes were 261 
distributed randomly in genotype space (Fig. 6d,e). 262 

 263 
The effect of synergistic epistasis dominates the His3 fitness landscape, affecting over 264 

85% of amino acid substitutions from our library that occurred in His3 evolution. This 265 
synergistic epistasis may reflect the free energy of the protein10,47,48, as evidenced by a 266 
correlation between the fitness potential and the impact of substitutions on the free energy of 267 
His3p (Supplementary Fig. 8). Similarly, instances of sign epistasis may also be explained by 268 
changes in protein stability; for example, in the 143T background C141S increased fitness and 269 
also had a positive effect on stability (Fig. 5b). Consistent with protein stability contributing to 270 
the observed sign epistasis we find that sites that exhibited reciprocal sign epistasis are close 271 
together in the His3p structure (Supplementary Fig. 8). However, an additive contribution to 272 
free energy can lead only to a unidimensional fitness function47, indicating that other non-273 
additive mechanisms, such as catalytic activity or inter-subunit interactions, or a non-additive 274 
model of free energy, must be responsible for the multidimensionality of the His3 fitness 275 
landscape. 276 
 277 
Inference of inter-segmental epistatic interactions in the His3 gene sequence  278 
  279 

Epistasis may be caused by interaction among positions within a segment (intra-280 
segmental epistasis) or by interaction of the segment with the rest of the S. cerevisiae His3 281 
sequence (inter-segmental epistasis). The contribution of inter- versus intra-segmental 282 
interactions can be decoupled. Given two fit genotypes (e.g. ABC & abc in one His3 segment), 283 
any unfit intermediate states (e.g. aBc in the same His3 segment) must be due to intra-segmental 284 
epistasis because the rest of the protein remains constant. For each segment we took as a 285 
measurement of intra-segmental epistasis all pairs of fit genotypes and calculated the proportion 286 
of unfit intermediate genotypes as a function of the Hamming distance between the two fit 287 
genotypes. We then compared this proportion with the total proportion of all unfit genotypes as a 288 
function of Hamming distance from S. cerevisiae, a measurement that includes both inter- and 289 
intra-segmental epistasis. We found three times more inter-segmental than intra-segmental 290 
epistasis (Supplementary Fig. 9), likely because a single segment provides a much smaller 291 
target space for interactions than the entire His3 protein. The proportion of sites under epistatic 292 
interactions increased exponentially with Hamming distance (Supplementary Fig. 9), analogous 293 
to Orr’s snowball, the accumulation of genetic incompatibilities in the course of speciation31,49. 294 
  295 
Conclusions 296 
  297 

The concept of the fitness landscape introduced by Sewall Wright (Figures 1 and 2 in [6]) 298 
is an indispensable tool for understanding multiple biological phenomena1-5. Experimental high-299 
throughput assays of random mutations have begun to unravel some local properties of fitness 300 
landscapes4. Here, we described a fitness landscape on a macroevolutionary scale by focusing on 301 
amino acid states that have been put through the sieve of natural selection. We found that only 302 
15% of substitutions that fixed in the evolution of His3 are universally neutral. For the remaining 303 
85%, substitutions from His3 evolution had a profound influence on each other’s effect on 304 
fitness, providing an experimental confirmation that epistasis is one of the defining features of 305 
molecular evolution33. Substitutions that occur in evolution have properties vastly different from 306 
those of random mutations, which are mostly deleterious23. Therefore, the way in which 307 
combinations of extant amino acid states affect fitness may also be different from that of 308 
combinations of random mutations. Unexpectedly, we found that the interaction of extant amino 309 
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acid states was dominated by synergistic epistasis in a manner similar to that previously found 310 
for random mutations7-10,16. However, the accumulation of random mutations leads to low fitness 311 
much faster than the accumulation of extant amino acid states (compare Figure 2 from [16] and 312 
Figure 3b from [10] to Fig. 2a).  313 
 314 

The experimental data showing that 85% of amino acid states found in extant species 315 
confer low fitness in a different genetic background lends strong support to the notion that 316 
epistasis is a key factor in protein evolution31,33. We showed that the fitness landscape of several 317 
segments of the His3 gene cannot be reduced to a single unidimensional forms of epistasis, with 318 
a function of multiple fitness potentials providing a more accurate description of the fitness 319 
landscape. By contrast, large-scale fitness landscapes incorporating multiple random mutations 320 
away from the wildtype sequence in a constant test environment have not displayed evidence of 321 
multidimensional epistasis8-10,16; however, it appears to be a more prevalent factor among 322 
substitutions that have been subject to positive selection12-16,18-22,34-36. We also found that up to 323 
67% of sites with an extant amino acid state were influenced by sign epistasis, resulting in a 324 
rugged fitness landscape and a limited number of fitness ridges connecting extant sequences for 325 
most His3 segments. Overall, the evolutionary-relevant section of the His3 fitness landscape is 326 
best described as a fitness ridge, with the crest of the ridge defined by a fitness potential. In some 327 
cases, the crest is multidimensional requiring several independent underlying fitness potentials. 328 
Evolution can proceed unhindered along the crest (Fig. 6a,c), however, pathway availability 329 
declines rapidly when evolution proceeds close to the edge of the fitness ridge.  330 
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https://hub.docker.com/r/gui11aume/epi/. The scripts to reproduce the figures are on Github at 361 
https://github.com/Lcarey/HIS3InterspeciesEpistasis. 362 
 363 
Study design 364 

The His3 gene was selected for three principal reasons, it is short, conditionally essential 365 
and was not known to be involved in protein-protein interactions. Studying 20220 variants of His3 366 
is impossible, thus, we have chosen an approach to survey the fitness landscape in a manner that 367 
would elucidate the area most relevant to His3 evolution while managing the technical 368 
limitations of our experimental design. We considered amino acid states found in extant species, 369 
focusing on yeast species, which translated into a full combinatorial set of ~1083 unique 370 
genotypes. Technically it is feasible to measure fitness of up to 100,000 unique genotypes in a 371 
single growth experiment. Therefore, we split the His3 gene into 12 independent segments such 372 
that the full combinatorial set of extant amino acid states from 21 yeast species in each segment 373 
was 10,000 – 100,000 genotypes. We then considered the combinatorial library for each segment 374 
in an independent growth experiment, which allowed us to study a tractable section of the 375 
sequence space while considering trajectories across a vast part of the space connecting extant 376 
species (Fig. 1a). We constructed these combinations in 12 plasmid libraries and transformed 377 
them into a haploid His3 knockout S. cerevisiae strain. Growth rate (fitness) of yeast carrying 378 
different mutations in His3 was measured using serial batch culture in the absence of histidine. 379 

We split the His3 gene sequence into segments in a manner agnostic to the structure of 380 
the His3 protein (Supplementary Fig. 1a). For technical reasons, a segment consisted of two 381 
variable regions with a constant region between them (Supplementary Fig. 1b). All growth 382 
experiments were performed independently for each segment, with the exception of one 383 
experiment on a limited group of genotypes from each segment which was done for the 384 
normalization of fitness values across different segments (Supplementary Fig. 3). 385 

As a control, we measured the rate of growth of S. cerevisiae whose entire His3 gene 386 
sequence came from another distant species. We found that the replacement of an entire gene 387 
sequence of His3 leads to wild-type rates of growth of S. cerevisiae even when the His3 388 
sequence comes from very distant yeasts, as far as S. pombe (Supplementary Fig. 3). Therefore, 389 
His3 appears to be an independent unit of the fitness landscape and is a good model for the study 390 
of fitness landscapes of an isolated gene. 391 
 392 
Measuring fitness 393 
Plasmid construction 394 

The His3 open reading frame of S. cerevisiae was PCR amplified with its regulatory 395 
region from 622 base pairs (bp) upstream of the open reading frame (ORF) to 237 bp 396 
downstream of the ORF, using primers 126 and 127 (see Supplementary Table 1) from the 397 
wild-type prototroph strain FY4. The PCR product was cloned into vector pRS416 using Gibson 398 
assembly (NEB, E2611S). The His3 orthologues from other species were amplified from 399 
genomic DNA using designed primers (Supplementary Table 1) and were cloned into the 400 
vector pRS416_his3, replacing the ORF of S. cerevisiae by Gibson assembly (NEB, E2611S). 401 
Since the His3 orthologue from A. nidulans contains an intron, the whole open reading frame 402 
was initially cloned into the vector, and the intron was later removed by PCR-amplifying the 403 
whole plasmid without this sequence, followed by recircularization. 404 
 405 
Genomic DNA extraction 406 

Genomic DNA from fungi (Saccharomyces cerevisiae, Saccharomyces bayanus, Candida 407 
glabrata, Saccharomyces castellii, Kluyveromyces lactis, Eremotheciumgossypii, Debaryomyces 408 
hansenii, Lodderomycese longosporus, Aspergillus nidulans, Schizosaccharomyces pombe, 409 
Candida guilliermondii, Saccharomyces kluyveri, Kluyveromyces waltii) was extracted using 410 
MasterPure™ Yeast DNA Purification Kit according to the manufacturer’s instructions 411 
(Epicentre, MPY80200). 412 
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 413 
Mutant library construction 414 

Twelve independent mutant libraries, each for different regions of His3 (Supplementary 415 
Table 1), were generated based on the results of multiple alignment of His3 orthologues. The 416 
alignment was built using the ClustalW alignment feature of the MEGA 6.0 software package50 417 
and user-corrected. 418 

Mutant libraries were constructed by fusion-PCR, leaving two variable regions separated 419 
by a constant region. For each library, two contiguous fragments of His3 were amplified 420 
independently, using 1 μg of S. cerevisiae (strain FY4) genomic DNA in separate Phusion 421 
polymerase reaction mixes (Thermo Fisher Scientific, F530S) in GC buffer. For each PCR, one 422 
of the primers was a degenerate oligonucleotide with a constant part at the 5’ end required for 423 
the fusion-PCR; the other primer was either 126 or 127. The degenerate primer approach led to 424 
the integration of non-extant amino acid sequences due to the redundancy of the genetic code. 425 
Consider the amino acid Phe in S. cerevisiae coded by the codon TTT. When incorporating an 426 
extant orthologous state Trp (TGG) two independent T -> G nucleotide mutations will be 427 
incorporated creating the codons TTG (Leu) and TGT (Cys). If these two amino acids were not 428 
found in other species then they would be non-extant. The cycling conditions for the PCR were 429 
98°C for 30 s; 98°C for 20 s, 60 °C for 30s and 72°C for 1 min (25 cycles); and 72°C for 5 min. 430 
The products were column-purified (QIAGEN, QIAquick PCR purification kit, 28104), eluted in 431 
50 μl and mixed in equimolar proportion. The fusion-PCR was carried out by diluting 10 μl of 432 
the mix to 25 μL of standard Phusion polymerase reaction mix in GC buffer. The cycling 433 
conditions of the fusion-PCR were 98°C for 30 s; 98°C for 30 s, 60°C for 2 min and 72°C for 1 434 
min (25 cycles); and 72°C for 5 min. The product of fusion was purified from agarose gel 435 
(Qiagen, MinElute Gel Extraction Kit, 28604) and eluted in 10 μl of water. 10 μl of the product 436 
was used as a template for additional 5 cycles of PCR reaction in Phusion polymerase reaction 437 
mix (Thermo Fisher Scientific, F530S) in GC buffer, using primers 126 and 127. The cycling 438 
conditions were as follows: 98°C for 30 s; 98°C for 20 s, 60°C for 30 s and 72°C for 1 min (5 439 
cycles); and 72°C for 5 min. The product was column-purified (QIAGEN, QIAquick PCR 440 
purification kit, 28104), and used as an insert for Gibson assembly. 441 

To create a library of His3 mutants, pRS416 plasmid was amplified using primers 128 442 
and 129. The insert was cloned into the vector using Gibson assembly (NEB, E2611S). Ligated 443 
products (200 - 300 ng/μL) were desalted by drop dialysis using 13 mm diameter, Type-VS 444 
Millipore membrane (Merck Millipore, VSWP01300). 20 μL ElectroMAX DH10B competent 445 
cells (Invitrogen, 18290015) were electroporated with 3 μL ligated products. 0.01% of the 446 
electroporated bacteria were plated on ampicillin-containing medium in order to estimate the 447 
complexity of the library; the remaining culture was grown overnight in 100 ml of liquid 448 
medium, and the plasmid was extracted the next day. For each library, the maximum number of 449 
protein sequences that can be generated was computed. Libraries were generated until to total 450 
complexity reached at least 3 times this value. 451 

 452 
Yeast transformation and yeast library generation 453 

For each segment, yeast strain LBCY47 (his3:KanMXleu2∆0 met15∆0 ura3∆0, derived 454 
from BY4741) was transformed with 50 μg of pRS416_His3 mutant library using lithium acetate 455 
transformation and plated onto glucose synthetic complete dropout plates lacking uracil. After 40 456 
hours’ growth at 30°C, approximately 0.5 million yeast colonies were scraped off the plates, 457 
mixed together and washed 2 times with 100 ml of PBS. 458 

 459 
Bulk competition 460 

4x109cells were inoculated into 500 ml of glucose synthetic complete dropout medium 461 
lacking uracil with 200 mg/L of G418, and grown at 30°C at 220 RPM for 6-8 h in order to 462 
eliminate clones with low fitness irrespective of histidine biosynthesis. Cells were later pelleted 463 
and washed with 50 ml of PBS. Approximately 1010 cells were inoculated into 1 L of synthetic 464 
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complete dropout medium lacking histidine, and grown at 30°C at 220 RPM for 168 h with 12 h 465 
between bottlenecks: ~1010 cells were transferred into fresh medium ~108 cells from the culture 466 
were kept as sample for the given time point. Bulk competition for each library of mutants was 467 
done in two replicates to account for biological variability. 468 
 469 
NGS library preparation 470 

The relative abundance of yeast mutants was measured in 3 samples: 1) the initial 471 
population before selection was applied (t0), 2) the population after 12 h of growth in the 472 
selective medium (t1), and 3) the final population after 168 h of growth in the selective medium 473 
(t14). In order to extract plasmid DNA, 5x109 cells from each sample were incubated in 300 μL 474 
of zymolyase buffer (1 M sorbitol, 0.1 M sodium acetate, 60mM EDTA (pH 7.0), 2 mg/ml 475 
zymolyase, 1% 2-Mercaptoethanol) at 37°C for 3 h. The plasmid DNA was purified from the 476 
obtained spheroplasts using QIAprep Spin Miniprep Kit (QIAGEN, 27104) according to the 477 
manufacturer's protocol. The obtained DNA was used as a template in a 25 μL of Q5 DNA 478 
polymerase reaction mix (NEB, M0491S), using staggered primers for demultiplexing in the 479 
following cycling conditions: 98°C for 30s; 98°C for 10s, 60°C for 30s and 72°C for 30s (18 480 
cycles); and 72°C for 2 min. PCR products were purified using Agencourt AM Pure XP beads 481 
(Beckman Coulter, A63880), and eluted in 40 μL of TE buffer (pH 8.0). DNA extraction and 482 
PCR-amplification were repeated twice for every sample to account for the technical variability. 483 
 484 
NGS libraries were prepared from 100 ng of the purified DNA amplicons using Ovation Rapid 485 
DR System (Nugen, 0319-32) according to manufacturer's instructions. Each library was 486 
visualized on a Bioanalyzer (Agilent Technologies) and quantified by qPCR with a Kapa Library 487 
Quantification Kit (Kapa Biosystems, KK4835). Twelve samples were pooled together 488 
(accounting for two biological replicates, two technical replicates and three time points) at the 489 
final concentration of 4 nM, and sequenced in the same lane. Samples were sequenced as 125-bp 490 
paired-end reads on a HiSeq2500 sequencer (Illumina) with v4 sequencing chemistry. 491 
 492 
Yeast growth assay  493 

Mutant strains were grown overnight in complete dropout medium lacking uracil. The 494 
cultures were diluted to 0.05 OD 600 nm, and grown for 5 h in the same medium. 6 μL of each 495 
culture were transferred into 96-well plates in 125 μL of complete dropout medium lacking 496 
histidine. Growth of the strains was monitored by measuring OD 600 nm every 10 min using 497 
Tecan Infinite M1000 PRO microplate reader equipped with an integrated Stacker module.  498 

 499 
The growth rate of individual curves was measured as the inverse of the time to grow 500 

from OD = 0.135 = exp(-2) to OD = 0.368 = exp(-1). If the curve did not reach 0.368, the growth 501 
was set to 0. Curves that crossed 0.135 or 0.368 were excluded. The growth rate of a clone was 502 
measured as the median of 6 independent growth experiments. We excluded from the analysis 503 
clones with discordance between growth in solid and liquid medium, clones that could not be 504 
sequenced or that showed evidence of contamination by sequencing, and clones such that the 505 
Kullback-Leibler divergence of their read counts compared to all synonymous clones was greater 506 
than 0.22. The later criterion ensured that the selected clones were not outliers compared to other 507 
variants encoding the same protein. 508 
 509 
Growth rates of isolated strains 510 

We isolated 197 strains from all segment libraries of extant amino acid combinations (9-511 
26 strain per segment) and used Sanger sequencing to determine the sequence. For each strain 512 
we performed 6 repeats of growth assay and calculated the average growth rate. Fitness values 513 
from competition and growth rates are highly correlated (r=0.82 p=10-48).  Correlation was 514 
significant and greater than 0.6 for all segments except S9, where all selected genotypes 515 
appeared to be neutral (Supplementary Fig. 3). 516 
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 517 
Initial data filtering 518 
 The individual sequences of the variants were recovered from pair-end reads with the 519 
following steps: the constant region between the two variable regions was identified by inexact 520 
matching allowing up to 20% errors using the Seeq library version 1.1.2 521 
(https://github.com/ezorita/seeq). The reads are not oriented because the Illumina sequencing 522 
adapters were added by ligation, so the constant regions were searched on both reads. Forward 523 
and reverse reads were swapped when a match was found on the reverse read. This ensured that 524 
all of the sequences are in the same orientation. For multiplexing purposes, the sample identity 525 
was encoded in the left and right primers used to PCR-amplify the variants. To demultiplex the 526 
reads, we used inexact matching with the candidate primers, allowing up to 20% errors. This 527 
approach was faster and less error-prone than using FLASH51. To merge the reads, the sequence 528 
of the reverse reads was reverse complemented and the constant region was searched by inexact 529 
matching allowing up to 20% errors. The position of the constant part in each read indicated how 530 
they must be stitched together. In the region of overlap, the consensus sequence was determined 531 
by picking the nucleotide with highest quality as indicated in the quality line of the fastq files. If 532 
'N' persisted in the final sequence, the reads were discarded. The PCR primers were trimmed so 533 
that all the sequences of the same competition would start and end at the same location. 534 

Reads that did not have the constant region, that could not be oriented or that could not 535 
be demultiplexed were discarded. The remaining errors in the reads were corrected by sequence 536 
clustering. We used starcode version 1.0 [ref. 52] with default parameters and allowing up to two 537 
errors. The corrected reads were translated using the genetic code. Variants encoding the same 538 
proteins were not merged; they were kept separate for downstream analyses. A running Docker 539 
virtual machine with commented scripts to replay the whole the process is available for 540 
download at https://hub.docker.com/r/gui11aume/epi/. 541 

 542 
DNA sequence variant frequency calculation and data filtering 543 

The total number of reads for 12 segments, 3 time points and 4 replicas are shown in 544 
Supplementary Table 1. Genotypes frequencies are defined as the number of reads for a given 545 
genotype divided by the total number of reads in that replicate. Mean frequency was calculated 546 
over 4 replicas to be used in further analysis. However, to eliminate influence of outliers the 547 
median was taken instead of mean if absolute difference between mean and median was greater 548 
than the median value. Only genotypes present in both technical replicas of both biological 549 
replicas with at least ten reads (summed across all time points) in each of them were kept.  550 

 551 
Noise estimation 552 

The major factors causing noise in genotype frequency measurements are sampling 553 
errors, PCR amplification errors and genetic drift during the competition. For all of these factors, 554 
the amount of error depends on the genotype frequency. Therefore, we estimated measurement 555 
errors as the function of genotype frequency. 556 

For a given segment, time point and a pair of biological or technical replicas for each 557 
genotype we calculated the mean frequency and the squared difference of frequencies from these 558 
two replicas. We sorted genotypes by mean frequency and grouped them such that each bin 559 
contains 5000 genotypes. We calculated the average frequency and the average squared 560 
difference in each bin. Additionally, squared error for frequency 0 was set equal to ∙561 

. + . , where  and are total read numbers in replicas i and j. Finally, by linear 562 

interpolation we obtained dependencies of squared differences as a function of frequency, ( ), 563 
where  and are different replicas. 564 

Using squared differences from pairwise comparison of replicas we can estimate variance 565 
of mean frequency over four replicas. Let numerate replicas 1, 2, 3, 4 where 1, 2 are technical 566 
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replicas of the first biological repeat and 3, 4 are the technical replicas of the second biological 567 
repeat. Errors coming from the competition (e.g.: genetic drift) are shared for replicas 1, 2 and 568 
for replicas 3, 4. Let’s call them ∆ and ∆  and their variances and  respectively. 569 
Technical errors of sampling from the population and from PCR are unique for each replica. 570 
Let’s call them ∆ , = 1. .4  and their variances , = 1. .4  respectively. All variances are 571 
function of frequency and writing we assume ( ). 572 

In the introduced notations the mean frequency over 4 replicas is: 573 

=
1
4
∙ ( + + + ) = 

1
4
∙ ∗ + ∆ + ∆ + ∗ + ∆ + ∆ + ∗ + ∆ + ∆ + ∗ + ∆ + ∆ = 

∗ + ∙ ∆ + ∆ + ∙ ∆ + ∆ + ∆ + ∆ , 574 
where ∗  is the true frequency. Applying basic properties of variance the variance of mean 575 
frequency: 576 
 577 

=
1
4
∙ + +

1
16

∙ + + +  

 578 
To estimate , , , , ,  we used squared differences from pairwise comparison 579 

of replicas calculated above , , , , , : 580 
[ ] = [(∆ − ∆ ) ] = +  

[ ] = [(∆ + ∆ − ∆ − ∆ ) ] = + + +  
[ ] = [(∆ + ∆ − ∆ − ∆ ) ] = + + +  
[ ] = [(∆ + ∆ − ∆ − ∆ ) ] = + + +  
[ ] = [(∆ + ∆ − ∆ − ∆ ) ] = + + +  

[ ] = [(∆ − ∆ ) ] = +  
Therefore, the variance of mean frequency  can be found as: 581 

=
1
16

∙ ( + + + ) − ( + )  
Recalling that variance and squared differences are a function of frequency: 582 

( ) =
1
16

∙ ( ( ) + ( ) + ( ) + ( )) − ( ( ) + ( ))  
For each segment and time point we calculated the numerical function ( ). Then for each 583 
genotype having mean frequency  we estimated its variance as ( ) 584 
 585 
Merging amino acid genotypes 586 

We merged nucleotide genotypes that corresponded to the same amino acid sequence and 587 
summed their frequencies and variances. We filtered out all genotypes x which had any of 588 
following patterns:  589 

= 0, = 0, > 0or = 0, > 0, = 0 or > 0, = 0, > 0. Fraction of such 590 
genotypes were <0.5% for all segments except S9, for which it was 4.5% 591 

For further analysis, this amino acid dataset was used except when specified. 592 
 593 
Fitness estimation 594 

Number of cells in a pool with particular genotype x after time interval t increases 595 
exponentially 596 

= ∙ [ ∙ ], 597 
where  is absolute fitness.  Frequency of genotype x as well depends exponentially on absolute 598 
fitness with an additional multiplicative factor: 599 
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= = ∙ [ ∙ ] = ∙ [ ∙ ]
⁄ , 600 

where  and  are total cell numbers in a pool at time points 0 and t. Factor ⁄  reflects the 601 
total growth of population, it changes with time but is the same for all genotypes. Therefore, we 602 
can rewrite genotype frequency at time t as: 603 

= ∙ [( −
¯
) ∙ ], 604 

where 
¯
= ∙  605 

In the measured dataset for each genotype x we have 3 measurements of frequency , 606 
,  and their errors , , . To estimate genotype fitness we minimized 607 

relative squared errors of exponential fit as function of fitness  and initial frequency : 608 

( , ) = argmin , +
∙ [(

¯
)∙ ]

+
∙ [(

¯
)∙ ]

        (1) 609 

This formula contains four parameters common for all genotypes from one segment: 610 
¯
,

¯
, , . Further we will perform additional shifting and scaling of fitness values (see next 611 

section), therefore, without loss of generality we could set
¯
= 0 and = 1.Ideally, /  should 612 

equal 14, however, we noticed that this ratio does not hold for many segments and fitted 613 
= /  from data instead of using value 14. 614 

To find specific	 02
¯

 and  for each segment we selected genotypes with high frequencies 615 
at  ( > 25 ∙ 10 ) which corresponds to ~500-1000 reads per technical replicate. Each 616 
segment contains 103-104 genotypes that meet this criterion. We minimized eq. (1) for selected 617 

genotypes trying all possible combinations of (
¯
, ) from a grid where 

¯
[0,1.2] with step 618 

0.01 and  [1,14] with step 0.1 and choose (
¯
, ) which gives minimal (*).  619 

Finally, given (
¯
, ) for each segment we found  for each genotype. Errors for fitness 620 

values, ,  were estimated as standard error of best-fit parameter.  621 
 622 
For genotypes with frequencies pattern > 0, = 0, = 0 fit of eq. (1) cannot be 623 

obtained. Therefore we defined upper boundary for their fitness value as =624 

	( , , , )
 , where , = 1. .4 are total read numbers at time point t1 in i replica. 625 

 626 
Fitness rescaling 627 

We scaled fitness such that lethal genotypes have fitness 0 and neutral genotypes have 628 
fitness 1. We assumed that genotypes with a stop codon or frame shift are lethal. Thus, for each 629 
segment we linearly rescaled the fitness distribution so that 95% of genotypes with nonsense 630 
mutations have a fitness of 0 and so that the local maximum of the fitness distribution of 631 
genotypes with extant amino acids is 1. The scaling around the local maximum led to the shift of 632 
fitness values of less than +/- 0.025 in each of the 12 segments compared to the measured 633 
wildtype strains and did not affect our results (for scale, we called a substitution non-neutral if its 634 
effect on fitness was > 0.4). All fitness values which became smaller than 0 were set to 0. 635 

  636 
Quality control and comparison of synonymous sequences 637 

We used nucleotide synonymous sequences as an internal control. The error rate for a 638 
measurement of fitness of an amino acid sequence depends on the number of synonymous 639 
sequences, n, that were used to estimate it. Therefore, we estimated the false discovery rates 640 
separately for categories with n=1,..10 variants. For each amino acid genotype with more than n 641 
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synonymous variants we merged random combination of n of its nucleotide genotypes and 642 
estimated fitness. We then calculated the difference between this fitness and the fitness of the 643 
corresponding amino acid sequence. We classified case as “false unfit” if difference was <-0.4 644 
and as “false fit” if difference was >0.4. The fraction of such cases gives us false discovery rates 645 
for genotypes having n synonymous variants. To get total false discovery rates for each segment 646 
we averaged “false unfit” and “false fit” rates for different n with weights equal to the fractions 647 
of genotypes in amino acid dataset which have n synonymous variant (Supplementary Table 1). 648 
The high correlation between biological replicas (Supplementary Table 6) confirms high 649 
accuracy of our high-throughput experiments, with the exception of segment 9. 650 
  651 
Predicting fitness using deep learning 652 

To predict the unidimensional fitness function based on additive contribution of extant 653 
amino acid states we used deep learning, a powerful machine learning technique, capable of 654 
constructing virtually any function, even with a simple neural network architecture. To convert 655 
amino acid sequences into a binary feature matrix we used one-hot encoding strategy, in which 656 
each feature (column in the matrix) indicates the presence or absence of a particular amino acid 657 
state.  658 

To optimise the accuracy/overfitting ratio, we tested over a hundred of different neural 659 
network architectures and parameters. As a starting point, we selected a number of complicated 660 
architectures, which describe our data, but are prone to overfitting due to a large number of 661 
parameters. We then gradually reduced the number of layers and neurons to reduce the 662 
overfitting, while controlling for accuracy.  663 

Our final architecture consists of three layers and 22 neurons in total (Supplementary Fig. 664 
4). Each of the neurons performs a linear transformation of the input and subsequently applies a 665 
non-linear activation function (a sigmoid) to the result. The output of the first layer, therefore, is 666 
a sigmoid of a linear transformation of the feature vector (c1

Tx). The second layer decompresses 667 
the hidden nonlinear representation into 20 sigmoids, the combination of which is further 668 
linearly transformed with the only neuron of the third layer and wrapped into another sigmoid 669 
function: 670 

 671 
  672 

 673 
 674 

 675 

where  , x – is the feature vector, c1 – the vector of coefficients, corresponding to 676 
the first layer, cn,k - coefficient corresponding to the n-th layer and the k-th neuron, bn - bias 677 
corresponding to the n-th layer. Crucially, this relatively simple architecture is capable of fitting 678 
virtually any function53, thus, in contrast to conventional logistic regression, in our approach we 679 
select the correct model from a vast variety of functions. 680 

The key idea of our approach is that the number of neurons in the first layer of the neural 681 
network determines the number of linear combinations of mutations (or fitness potentials) used 682 
in order to predict mutant fitness. In other words, each neuron in the first layer assigns a single 683 
unique weight to every amino acid state in the dataset (Supplementary Fig. 4). Multiplication of 684 
such weight vectors and binary genotype vectors result in fitness potential. Thus, the number of 685 
neurons in the first layer of the architecture basically determines the dimensionality of epistasis 686 
we assume. The obtained fitness potentials are then transformed by a nonlinear phase shift 687 
function constructed by the 22 neurons of the neural network.  688 

The architecture simplicity avoids overfitting, which was further prevented by using early 689 
stopping and keeping 10% of data as a test set. The loss function that is being optimised in our 690 
experiments is not convex, which leads to a high probability of getting stuck in different local 691 
minima. To ensure reproducibility, each of our models was constructed ten independent times 692 
using random train-test splits. 693 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/222778doi: bioRxiv preprint 

https://doi.org/10.1101/222778


 

 

Each model was trained for under 100 epochs using mean squared error as the loss 694 
function. An unpublished adaptive learning rate method proposed by Geoff Hinton, RMSProp, 695 
was used as the optimiser. This algorithm is a version of a mini-batch stochastic gradient 696 
descent, utilising the gradient magnitude of the recent gradients in order to normalise the current 697 
ones. All the weights were initialised using Xavier normal initialiser54. 698 
  699 
Paths between pairs of fit genotypes 700 

For analysis in Fig. 6d, we first choose two fit “parental” genotypes, one randomly 701 
chosen genotype (eg: ABE) and the other parental genotype that is either S. cerevisiae wildtype 702 
genotype (inter-segmental) or another random fit genotype in the data (intra-segmental) (eg: 703 
abe). The two genotypes in this example are Hamming Distance 3 apart (HD=3). We next 704 
compute all (HD2-2) intermediate genotypes (eg: AbC, aBc, et cetera) and retain the subset that 705 
were experimentally measured. We represent the two parental genotypes and all measured 706 
intermediate genotypes as an undirected graph in which each genotype is a vertex. All genotypes 707 
one substitution apart are connected by an unweighted edge.  The shortest possible path for a 708 
given pair of genotypes is of length HD. We find all shortest paths between the two parental 709 
genotypes using a breadth-first search. We next remove all vertices (genotypes) that are unfit, 710 
and recompute the number of shortest between the two parental genotypes. For example, in Fig. 711 
6a, there are six paths of length three if you take into account all genotypes, but only three paths 712 
of length three if you take into account only fit genotypes. 713 
 714 
Clustering of unfit genotypes in sequence space 715 

For the analysis in Fig. 6e, we first represent the two parental genotypes and all measured 716 
intermediate genotypes as an undirected graph in which each genotype is a vertex. All genotypes 717 
one substitution apart are connected by an unweighted edge. We can then compute the degree 718 
(number of genotypes of distance one) for each vertex (genotype). We do so randomly drawing 719 
from all measured genotypes and using only unfit genotypes or using the same number but 720 
randomly chosen genotypes. For the randomly chosen genotypes, the value is the average over 721 
1000 runs. 722 
 723 
Quantifying sign epistasis 724 

For each substitution (eg: C -> S at position 141), we considered only those that exhibit a 725 
large fitness effect (abs. difference > 0.4) comprising a set of substitutions with large effects. For 726 
each substitution we divided the genetic backgrounds into two categories: those in which the 727 
substitution caused a > 0.4 increase in fitness, and those backgrounds in which the substitution 728 
caused > 0.4 decrease in fitness. A single substitution can cause a large increase in fitness in 729 
some backgrounds and a large decrease in others due to two possible reasons: sign epistasis or 730 
experimental error. To differentiate the two cases, we identified secondary substitutions that 731 
significantly alter the ratio of large increases to large decreases in fitness (Fisher’s exact test, 732 
Bonferroni corrected p-value < 0.05). We only consider a site to be under sign epistasis if there 733 
is a second site that alters the frequency of sign epistasis in a statistically significant manner, i.e. 734 
more frequently than expected by chance alone.  735 

  736 
Structural analysis 737 
 738 
Structure prediction 739 

An initial model was obtained with the I-TASSER server55. The list of top 10 PDB 740 
structural templates picked up by the I-TASSER included high-quality crystal structures of 741 
imidazoleglycerol-phosphate dehydratases from Arabidopsis thaliana and Cryptococcus 742 
neoformans. Coordinates of the top-scoring model (C-score=0.21, estimated TM-score = 743 
0.74±0.11, estimated RMSD = 5.1±3.3Å) and the predicted normalized B-factor56 were used for 744 
further analysis. The value of the model quality metric (TM-score >0.5) indicates a model of 745 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/222778doi: bioRxiv preprint 

https://doi.org/10.1101/222778


 

 

correct topology. The proteins structurally close to the final model (RMSD 0.6 - 1.7Å are PDB 746 
IDs 4MU0, 4GQU, 1RHY, 5DNL and 2AE8 from Arabidopsis thaliana, Mycobacterium 747 
tuberculosis, Cryptococcus neoformans, Pyrococcus furiosus and Staphylococcus aureus. 748 

We measured the distribution of distances (in angstroms) between pairs of residues that 749 
exhibit strong sign epistasis (Supplementary Table 1, ReallyPositivePair == TRUE), and 750 
compared it with the distribution of pairwise distances among residues for which we have 751 
sufficient data to be certain that a given pair does not exhibit sign epistasis (Supplementary 752 
Table 1, ReallyNegativePair == TRUE). 753 

  754 
∆∆G prediction 755 

Cartesian_ddg application57 from Rosetta version 2017.08.59291 was used for ∆∆G 756 
predictions. Top-scoring I-TASSER model was pre-minimized using the Relax58 application in 757 
dual-space59 with the flags: -relax:dualspace true; -ex1; -ex2; -use_input_sc; -flip_HNQ; -758 
no_optH false; -relax:min_typelbfgs_armijo_nonmonotone; -nonideal. The best scoring model 759 
from 1000 structures was selected. The effect of up to 4 mutations (54,500 genotypes in total) 760 
was assessed in Cartesian space with the Talaris_2014 score function, and the -fa_max_dis 9.0 761 
flag. ∆∆G was estimated as a difference of mean score for 3 independent runs for every mutant 762 
and the wild-type score.  763 
  764 
  765 
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 766 
Figures 767 
  768 
Figure 1. Combinatorial approach to the study of fitness landscapes. A fitness landscape is 769 
the representation of fitness for all possible genotypes composed of a specific set of loci. a, 770 
Following Figure 1 from Sewall Wright ref. [6] consider the genotype space consisting of 5 loci, 771 
each with two allele states (lower and uppercase letters). The entire genotype space is 5-772 
dimensional consisting of 25 genotypes. Given two genotypes found in extant species (abCde and 773 
ABCdE in this example), surveying combinations of extant alleles substantially reduces the 774 
dimensionality of the genotype space, concomitantly reducing the number of genotypes to assay. 775 
The surveyed area (blue cube) considers all combinations of allele substitutions that have 776 
occurred in the course of evolution between the two sequences (red line), avoiding the sampling 777 
of combinations with less relevance to the evolutionary trajectory (black lines). b, Given the 778 
entire multidimensional genotype space (black circle) our approach considers an 779 
multidimensional subspace consisting of the combinatorial set of amino acid states from extant 780 
species. The blue line represents the yeast phylogeny and the surrounding blue space represents a 781 
multidimensional set of combinations of extant amino acids of the sequence under consideration, 782 
one His3 gene segment in our study. By contrast, random mutagenesis studies consider only a 783 
local segment of the genotype space surrounding a specific genotype (green circle). с, A multiple 784 
alignment of orthologous sequences of His3 for segment 2 for which we incorporated almost all 785 
extant amino acid states from 21 yeast species (blue bars) and 10-100% extant states from a set 786 
of 396 orthologues (grey bars). d, The predicted structure of His3p with amino acid residues that 787 
were substituted in our library. 788 
  789 
Figure 2. Visual representations of the fitness landscape. a, The fitness landscape for all 790 
assayed genotypes in segment 7. Nodes represent unique amino acid sequences with edges 791 
connecting those separated by a single amino acid substitution. Colour saturation represents the 792 
minimum fitness of the two connected nodes. b, For segment 7, fitness of ancestral and extant 793 
nodes and genotypes one substitution away from the nodes in the background of S. cerevisiae 794 
gene on the yeast phylogeny (black lines), are shown in colour ranging from grey (lowest fitness) 795 
to blue (highest fitness). 796 
  797 
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 798 
  799 
Figure 3. Fitness distributions. a, The distribution of fitness for genotypes composed of 800 
combination of extant amino acid states (green) and non-extant amino acid states (purple) at the 801 
same positions. b, The fraction of unfit genotypes per segment among genotypes consisting 802 
entirely from extant amino acid states (green) and those incorporating non-extant amino acid 803 
states (purple). c, The number of genotypes with high fitness that incorporates specific amino 804 
acid states. For each amino acid state, the number of genetic backgrounds that contain that amino 805 
acid state and are fit (fitness > 0) are shown. d, The percent of backgrounds in which a specific 806 
substitution is neutral (white), beneficial (blue) or deleterious (grey). The region marked in green 807 
shows substitutions that never have large effects (> 0.4) on fitness. Beneficial and deleterious 808 
effects are shown only if the frequency for a given substitution was higher than the false 809 
discovery rate (Supplementary Table 1). Data from segment 9 were excluded for this figure. 810 
  811 
  812 
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 813 
 814 
Figure 4. Epistasis and the His3 fitness landscape for segments 2, 5 and 7. a, Fitness as a 815 
function of a single fitness potential (black curve, the fitness of individual genotypes is orange). 816 
b, A network depiction of sign epistasis between amino acid substitutions. Colour coded sites 817 
with reciprocal sign epistasis (black lines) and unidirectional interactions (grey arrows) are 818 
shown. c, Genotypes containing substitutions with a higher number of sign epistatic interactions 819 
are less likely to be fit by the threshold function of the fitness potential. d, Increasing the number 820 
of neurons in the first layers of the neural network, which is equivalent to increasing the number 821 
of underlying fitness potentials, leads to more accurate models for segments with detected sign 822 
epistasis. Each dot corresponds to an independent optimization of model parameters. e, Fitness 823 
as a function of two fitness potentials (black dots, measured fitness is depicted in orange). 824 
 825 
Figure 5. Sign epistasis. a, Substitution C->S at site 141 in segment 2 more frequently has a 826 
positive effect on fitness in the background of T at site 143, a negative effect in the background 827 
of 143I and is equally likely to be strongly deleterious or strongly beneficial in the background 828 
of 143V. b, Predicted change in free energy following a C141S substitution in all genetic 829 
backgrounds with an I or T at 143 and that are closer than four mutations away from S. 830 
cerevisiae. c, Distribution of the number of substitutions at each site under sign (yellow) and 831 
reciprocal sign (orange) epistasis. Sites with 0 interactions do not exhibit sign epistasis. d, The 832 
fraction of genotypes in which the substitution under sign epistasis has the less frequent effect on 833 
fitness.  834 
  835 
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 836 
 837 
Figure 6. Analysis of evolutionary pathway accessibility. a, A threshold fitness potential 838 
function can lead to some paths being inaccessible between two genotypes of high fitness (abe, 839 
ABE) if the joint contribution of several alleles to the fitness potential (abE, aBE) leads to the 840 
fitness potential below the threshold. b, The fraction of unfit intermediate genotypes between 841 
two fit genotypes as a function of their average fitness potential. c, The grey area represents all 842 
genotypes in segment 7. When two fit genotypes (red dots) have high fitness potential, many 843 
paths between them will be accessible because many intermediate genotypes will also have high 844 
fitness potential and fitness (blue dots). d, The fraction of accessible shortest paths between two 845 
fit genotypes with unfit genotypes from data (orange) or the same number of randomly selected 846 
genotypes (grey), shown as a function of Hamming distance between two fit genotypes. Error 847 
bars are standard deviation. e, On a graph with genotypes connected by edges if they are one 848 
substitution apart we calculate the degree of connectivity (number of edges for each node) for all 849 
genotypes (blue), only unfit (fitness = 0) genotypes (orange) and a graph with the same number 850 
of nodes as the graph with unfit genotypes but with nodes chosen at random (grey).  851 
  852 
  853 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/222778doi: bioRxiv preprint 

https://doi.org/10.1101/222778


 

 

 854 
Supplementary Figures 855 
  856 
Supplementary Figure 1. Experimental design. a, The sequence of the His3 protein from S. 857 
cerevisiae was separated into 12 independent segments of similar lengths, such that the full 858 
combinatorial set of extant amino acid substitutions was less than 100,000 possible genotypes. 859 
These segments represented different combinations of structural elements of the His3 protein 860 
structure. b, For each of the 12 segments from His3, we selected extant amino acid states using a 861 
multiple alignment of His3 orthologues from 396 species, preferentially incorporating states 862 
from 21 yeast species, the variability is shown in segment 3 as an example. Mutant degenerate 863 
codon libraries were constructed by fusion PCR of two synthesized variable halves of each 864 
segment. These high-complexity plasmid libraries were transformed into haploid His3 knockout 865 
S. cerevisiae strain. The growth rate of yeast carrying different extant amino acid state 866 
combinations in His3 gene was measured using serial batch culture in the absence of histidine 867 
with 12 hours between ~100-fold dilutions. To estimate the fitness of yeast mutants their relative 868 
abundance was measured at three points: in the initial population before selection (t0), in the 869 
population after 12 hours of growth in the selective medium (t1), and in the final population after 870 
168 hours of growth in the selective medium (t14). To assess the fitness of individual mutants 871 
the segments from three populations were amplified and sequenced. The relative abundance of 872 
each sequence was used as a proxy for abundance of the associated yeast mutant, which in turn 873 
determines its fitness. c, Secondary structure of His3 mapped to the segments in our 874 
experiments. 875 
  876 
Supplementary Figure 2. Segment-specific fitness distributions for extant and non-extant 877 
amino acid states. a, The fitness distribution for each segment for genotypes consisting only of 878 
extant amino acid states (green) or that contain one or more non-extant amino acid states 879 
(purple) only at positions with a substitution in the extant library. b, The fitness distribution for 880 
each segment for genotypes consisting only of extant amino acid states (green) and genotypes 881 
with mutations at other positions in that segment (red). 882 
 883 
Supplementary Figure 3. Growth rate measurement of isolated strains. a, Comparison of 884 
fitness values from the pooled competition assay with growth rates of isolated strains as 885 
measured in a microplate reader. Error bars for growth rates show s.e.m. of 6 replicates. b, 886 
Pearson correlation coefficients between fitness values from competition and growth rates of 887 
isolated strains for each segment. ** signifies p-value < 0.005 (correlation test). c, His3p 888 
orthologues from different species complement a Δhis3 deletion in S. cerevisiae. Growth rates 889 
of transformants containing whole HIS3 orthologous genes from other yeast species. Error bars 890 
for growth rates show s.e.m. of ≥ 7 replicates.  891 
 892 
Supplementary Figure 4. Schematic representation of the deep learning approach. Each 893 
genotype was encoded as a binary vector (x). During training, each of the substitutions was 894 
assigned a coefficient (ci), comprising a vector of coefficients (c). The multiplication of these 895 
two vectors is the fitness potential of the genotype. After going through three layers, each with a 896 
sigmoid activation function, the predicted fitness is obtained.  897 
 898 
Supplementary Figure 5. The fitness potential of the His3 fitness landscape. a, Fitness 899 
potential predicted by the neural network as a function of the measured fitness for all 12 900 
segments. b, The correlation between the fitness predicted by the fitness potential and the 901 
measured fitness. c, Training and test R2 for each segment for 20-fold cross-validation.  902 
  903 
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 905 
Supplementary Figure 6. Sign epistasis dimensionality graphs for all twelve segments. Each 906 
node represents a substitution, with multiple substitutions at the same site having the same 907 
colour. Substitutions under reciprocal sign epistasis are indicated by black lines while grey 908 
arrows indicate unidirectional sign epistasis. 909 
  910 
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 911 
Supplementary Figure 7. Multidimensional description of epistasis in His3 segments. a, 912 
Increasing the number of neurons in the first layer of the neural network, which is equivalent to 913 
increasing the number of underlying fitness potentials, leads to more accurate models for 914 
segments with detected sign epistasis. Each dot corresponds to an independent optimization of 915 
model parameters. b, Number of sign epistatic interactions of certain substitutions against 916 
average model prediction power for mutants including these substitutions. 917 
 918 
Supplementary Figure 8. Protein stability and the fitness potential. a, A comparison of 919 
correlation coefficients between predicted and measured values across segments. b,c, 920 
correlations between the estimated impact of substitutions on free energy (∆∆G), fitness 921 
potential and fitness. ∆∆G correlates better with fitness potential than with fitness. d, Pairs of 922 
sites that exhibit sign (connected by a light edge in Supplementary Figure 6) and those that 923 
exhibit reciprocal sign epistasis (connected by a dark edge in Supplementary Figure 6) are closer 924 
together in the His3p structure that randomly chosen non-connected pairs of positions that 925 
exhibit sign epistasis. 926 
 927 
Supplementary Figure 9. Decoupling inter- and intra-segmental epistasis. a, The fraction of 928 
unfit genotypes between S. cerevisiae and any other genotype consisting of extant amino acid 929 
states with high (blue) or any (red) fitness, and genotypes in the latter but not the former 930 
category (black) as a function of the Hamming distance between the two boundary genotypes. 931 
Points indicate median, the bars and lines indicate 50% of the genotypes and genotypes 2.7 932 
sigmas from the mean, respectively. b, The neural network model assigns higher weights to 933 
amino acid states that that first occur in His3 orthologues farther from S cerevisiae, indicating 934 
the presence of intrasegmental interactions. 935 
 936 
Supplementary Information 1. Multiple alignment of His3 orthologues. 937 
 938 
Supplementary Information 2. Multidimensional description of epistasis in His3 939 
segments. Fitness as a function of two fitness potentials (black dots, measured fitness is depicted 940 
in orange). 941 
 942 
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