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Summary

We created a new high-coverage, robust, and reproducible functional annota-
tion of maize protein coding genes based on Gene Ontology (GO) term assign-
ments. Whereas the existing Phytozome and Gramene maize GO annotation sets
only cover 41% and 56% of maize protein coding genes, respectively, this study
provides annotations for 100% of the genes. We also compared the quality of our
newly-derived annotations with the existing Gramene and Phytozome functional an-
notation sets by comparing all three to a manually annotated gold standard set of
1,619 genes where annotations were primarily inferred from direct assay or mutant
phenotype. Evaluations based on the gold standard indicate that our new anno-
tation set is measurably more accurate than those from Phytozome and Gramene.
To derive this new high-coverage, high-confidence annotation set we used sequence-
similarity and protein-domain-presence methods as well as mixed-method pipelines
that developed for the Critical Assessment of Function Annotation (CAFA) chal-
lenge. Our project to improve maize annotations is called maize-GAMER (GO An-
notation Method, Evaluation, and Review) and the newly-derived annotations are ac-
cessible via MaizeGDB (http://download.maizegdb.org/maize-GAMER) and CyVerse
(B73 RefGen_v3 5b+ at doi.org/10.7946/P2S62P and B73 RefGen_v4 Zm00001d.2 at
doi.org/10.7946/P2M925).
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1 Introduction
Maize is an agriculturally important crop species and model organism for genetics and ge-
nomics research (reviewed in Lawrence et al. 2004). Not only is maize historically important
for genetics research, along with other model species, significant efforts have been made
to transition existing datasets into a more sequence-centric paradigm (reviewed in Sen et
al. 2009), thus enabling genomics approaches to be brought to bear on both basic research
problems and applied breeding (Lawrence et al. 2008). In 2009 the maize genome’s reference
sequence was made available to the research community (Schnable, Ware et al. 2009). Since
then, much work has gone into improving the utility of the genome sequence to scientists
with a focus on sequence annotation.

In practice, making a genome sequence useful involves three basic steps: assembling
the genome sequence, assigning gene structures, and assigning functions to genes. The
quality of data generated at each step influences downstream inferences, with high-quality
sequence, assembly, and gene structure assignments generally resulting in better functional
annotations overall. Functional predictions serve as the basis for formulating hypotheses
that are subsequently tested in the lab. As such, experimentalists have a great interest in
high-quality functional annotation sets that cover all or most of the genes in their species of
interest.

The Gene Ontology (GO) is a controlled vocabulary of hierarchically related terms that
describe gene product function (Ashburner et al. 2000). It consists three categories: Biolog-
ical Process (BP), Cellular Component (CC), and Molecular Function (MF). In the context
of GO, functional annotation of a gene consists of the assignment of one or more GO terms
from one or more of the GO categories to a given gene or gene model (here we will refer to
genes and gene models simply as ’genes’ for simplicity).

For individual GO term associations to genes, Evidence Codes (ECs) are assigned to
assert how the association of term to gene was made (Harris et al. 2004). GO evidence
codes are aggregated into five general categories: Experimental, Computational Analysis,
Curator Statement, Author Statement, and Automatically Assigned. See Table 1 and http:
//www.geneontology.org/page/guide-go-evidence-codes for a detailed explanation of
the GO evidence codes.

The use of experimental ECs asserts that the assignment results from a physical charac-
terization of the protein’s function as described in a publication. Computational approaches
are based on in silico analyses. One of the simplest and most commonly conducted com-
putational approaches involves matching similar genes between an existing, well-annotated
genome and an unannotated genome. Once the matches are assigned, annotations are in-
ferred to genes in the unannotated genome. Such assignments receive the ISS (Inferred from
Sequence or Structural Similarity) EC. The ISS EC is also assigned if an uncharacterized
sequence contains a characterized domain. In such instances, the presence of the domain
itself can be used to predict function for the uncharacterized sequence. For Curator and
Author Statements, included EC types are based on judgment by curators and scientists in
their expert opinion. As such, they are considered to be reviewed annotation types, though
these do include two ECs based on little data: NAS (Non-traceable Author Statement) and
ND (No biological Data available). The Automatically Assigned EC type contains only one
EC: Inferred from Electronic Annotation (IEA). IEA is unique in that no reviewed analysis
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of the assignment is required. Put another way, no curatorial judgment is applied, making
it the least supported EC of the group.

Sequence-based approaches to automated functional annotation generally fall into
three basic categories: sequence-similarity, domain-based methods, and mixed-methods.
Sequence-similarity based gene matching most often relies on BLAST (e.g., BLAST2GO)
followed by limiting the number of accepted matches based on e-value or a reciprocal-best-
hit (RBH) strategy (Conesa and Götz 2008; Altschul et al. 1990; Moreno-Hagelsieb and
Latimer 2008). Domain-based methods score sequences for the presence of well-described
protein domain such as those included in Pfam, PANTHER, and ProSite (Finn et al. 2017).
InterProScan is a commonly used domain-based GO annotation pipeline (Jones et al. 2014).
Mixed-methods combine sequence-similarity, domain-based approaches, and other evidence
such as inferred orthology through phylogenetics to assign GO terms systematically (Koski-
nen et al. 2015; Clark and Radivojac 2011; Falda et al. 2012). For more of the latest methods,
see Jiang et al. 2016.

For maize, two genome-scale GO annotation sets exist for the B73 reference assem-
bly and gene set (i.e., B73 RefGen_v3 and 5b+, respectively). These functional an-
notations are generated by and accessible from the Gramene (www.gramene.org; Tello-
Ruiz et al. 2016) and Phytozome (phytozome.jgi.doe.gov; Goodstein et al. 2012) projects
and websites, respectively. Gramene annotations are based on the Ensembl annota-
tion pipeline (http://ensemblgenomes.org/info/data/cross_references), which is a mixed-
method approach. The primary sources of the Ensembl annotations are from UniProtKB,
community-based annotations from MaizeGDB (Andorf et al. 2016), InterPro2GO, and pro-
jections from orthologs inferred from phylogenetic analyses. Phytozome has a two-step
process for GO annotation. First, Pfam domains are assigned to proteins. Second, GO
annotations are determined based on the Pfam2GO mapping (Hunter et al. 2009.)

Given the wealth of functional descriptions derived from mutational analyses, many
researchers rely on the available maize GO-based functional annotations from large-scale,
high-profile community resources like Gramene and Phytozome for formulating experimen-
tal hypotheses, and also as input datasets to transitively annotate predicted functions to
newly sequenced grass species and crop genomes (e.g., Hirsch et al. 2016). However, if we
compare the EC types for GO assignments between the model species Arabidopsis thaliana
and the Gramene and Phytozome functional annotations of the maize reference line B73, it
is clear that the evidence supporting GO term assignments for these maize datasets is com-
paratively lacking (see Figure 1). Both the Gramene and Phytozome maize annotations have
few annotations beyond those Inferred from Electronic Annotation (IEA). This situation is
not intuitive to researchers given that maize has a wealth of functional descriptions in the
literature.

Exacerbating this problem, transfers of predicted function often are based on sequence
similarity alone with no restriction of input data to associations based on well-documented
EC types. Furthermore, although mixed-method pipelines like the Ensemble COMPARA
pipeline used by Gramene and the Phytozome Pfam2GO (Herrero et al. 2016; Goodstein
et al. 2012) mappings may seem reproducible in principle given that they are based on
the use of specific systems and software, details including input files and parameters often
are unavailable or incomplete, making it impossible for research groups outside the group
that generated those annotation resources to reproduce the annotation sets. In addition,
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because many computational pipelines inherit functional annotations that were also purely
computationally derived, a single errant annotation can be propagated to many genomes
(Andorf, Dobbs, and Honavar 2007), making it mistakenly appear that many genomes agree
on the errant function. For these reasons, existing computational functional annotations of
maize (and many other plant genomes) should be approached with skepticism.

Given these issues with the maize functional annotation, we endeavored to create an
improved annotation set. This task requires both application of robust and reproducible
methods and a gold standard set of maize GO annotations to compare generated result
sets to each other as well as to the Gramene and Phytozome maize functional annotations.
One small dataset of well-curated GO-based functional annotations does exist for maize. It
was initially created by curators at MaizeGDB for the purpose of enriching the MaizeCyc
metabolic pathway database (Monaco et al. 2013) and expanded through manual literature
curation. This dataset constitutes 1,621 genes and 2,002 GO terms.

We annotated the maize B73 RefGen_v3 annotation set 5b+ using only experimentally-
based annotations by filtering out GO assignments with IEA, NAS, and ND ECs from the
input data and assigned GO terms using multiple input datasets then compared the per-
formance of sequence-similarity, domain-presence, and mixed-methods based on how well
the methods predicted function for genes included in the MaizeGDB gold standard dataset.
For mixed-methods, we used pipelines developed for the Critical Assessment of Functional
Annotation (CAFA) challenge, a competition designed to evaluate the latest computational
functional annotation methods and to promote improvement of methods for functional anno-
tation (Radivojac et al. 2013; Jiang et al. 2016). Groups competing in the CAFA challenge
create tools that are are applied to a set of specified target sequences. GO assignments are
subsequently evaluated based on accumulation of functional data in the literature for the
target sequence set. Some CAFA tools use pre-processing steps combined with a number
of different computational and statistical approaches to reduce the number of false positive
and false negative annotations (Clark and Radivojac 2011; Koskinen et al. 2015; Falda et
al. 2012). Some mixed-method pipelines performed better on average than other methods
in the first iteration of the CAFA competition (Radivojac et al. 2013), indicating that the
use of mixed-method pipelines for large scale GO annotations could potentially improve the
overall quality of the annotation sets.

The project to evaluate and improve maize GO annotations is called GAMER: GO
Annotation Method, Evaluation, and Review. We compared GAMER annotations to an-
notations based on sequence-similarity, domain, and three CAFA mixed-methods. Next we
combined GAMER outputs to generate an aggregate maize-GAMER GO annotation set
and compared it to the existing Phytozome and Gramene GO annotations based on the hF1

score. The GAMER annotations had three major advantages compared to the Gramene and
Phytozome annotations: (1) an increased number of maize genes annotated with GO terms;
(2) more than twice the number of annotations (GO terms assigned) for maize protein coding
genes; (3) similar or better quality scores relative to existing annotations sets based on hF1

score. The B73 RefGen_v3 5b+ maize-GAMER functional annotation dataset described
here is accessible via MaizeGDB (http://download.maizegdb.org/maize-GAMER) and Cy-
Verse (doi.org/10.7946/P2S62P). Scripts used to generate the annotation are available via
GitHub at https://github.com/Dill-PICL/maize-GAMER. (Note for reviewers: the annota-
tions will also be made available via each MaizeGDB gene model page upon publication.)
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2 Materials and methods

2.1 Functional Annotation of Maize Genes

Three sequence-based approaches were used to annotate function to genes in the maize
reference genome: sequence-similarity, domain-based, and mixed-method pipelines (see Fig-
ure 2; also described in sections 2.1.1, 2.1.2 and 2.1.3, respectively). The scripts (bash, R
and Python) used to generate the annotations for maize B73 RefGen_v3 are available at
https://github.com/Dill-PICL/maize-GAMER. These scripts run free and open-source tools
on different inputs required for these tools to generate annotation datasets. Please refer
to the reproducibility supplemental file for details on versions of software, version of input
datasets used and commands and parameters used to run these tools.

The B73 genome and protein sequences for gene models included in the Filtered Gene Set
(FGS) were downloaded from Gramene Release 42 (Tello-Ruiz et al. 2016). The downloaded
protein FASTA file contained sequences for all FGS transcripts (e.g., the gene model X has
transcript models X_T01, X_T02, and X_T03). For each gene model only the longest
translated protein sequence derived from the transcripts was analyzed. The gold standard
annotations used for evaluations were obtained from MaizeGDB, and they encompass GO
annotations for 1,619 gene models from RefGen_v3. The number of annotations for cellular
component (CC), molecular function (MF), and biological process (BP) were 1,584, 88, 323
respectively.

2.1.1 Sequence-similarity based annotation

The sequence-similarity based annotation method has three main steps: 1) sequence-
similarity calculation, 2) valid hit detection, and 3) inheritance of high-confidence GO an-
notations. BLASTP was used (Altschul et al. 1990) with default parameters to calculate
sequence-similarity between maize protein sequences and two other datasets: the "Ara-
bidopsis" dataset from TAIR, The Arabidopsis Information Resource (Berardini et al. 2015)
and the “Plant” dataset from UniProt (Consortium 2015). Valid hits were detected using
the RBH method from BLASTP results. GO terms with non-reviewed ECs (i.e., IEA, NAS,
and ND - described in the introduction) were removed from input datasets. All others were
inherited between the RBH pairs of maize and the other plant.

Arabidopsis has the largest number of reviewed (human curated) EC GO annotations
among plant model organisms (see Supp Table S1). A FASTA file of Arabidopsis protein
sequences along with the cognate GO Annotation File (GAF) were downloaded from TAIR
v.10 (Berardini et al. 2015). The TAIR protein file contained predicted protein sequences
from all transcripts. This file was filtered to retain only the protein sequence derived from
longest transcript for each gene. Retained protein sequences from TAIR were used to cre-
ate the TAIR BLAST database, and maize protein sequences were used to create a maize
BLAST database. Maize protein sequences were used to query the TAIR BLAST database.
Likewise, TAIR sequences were used to query the maize BLAST database. Results from both
searches were used to detect RBH pairs between Arabidopsis and maize. All non-reviewed
EC GO annotations were removed, and remaining GO associations to Arabidopsis genes
were inherited to maize genes for each RBH pair. This maize/Arabidopsis RBH ortholog
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dataset is called “maize-TAIR GO annotations”.
All reviewed EC GO annotations and protein sequences for all plants from the UniProt-

GOA database were downloaded using the QuickGO tool hosted at EBI (Binns et al. 2009).
Protein sequences and reviewed EC GO annotations were downloaded separately. The
UniProt plant GO annotation dataset containing 304,426 annotations from 75,537 unique
protein sequences. The protein sequences downloaded spanned 292 taxa. Only ten species
had more than 1,000 annotations (see Supplementary Table S1). Annotations from the top
10 species (in terms of number of reviewed GO annotations) were retained for our analyses.

The process to annotate maize genes using UniProt plant data was similar to that for
Arabidopsis. Maize protein sequences were matched against protein sequences from each
species separately using BLASTP. Putative orthologs were determined using RBH for each
maize-plant pair. Terms annotated to the other plant protein were inherited to the maize
protein sequence for each putative ortholog pair. GO annotations inherited from each plant
species were concatenated together. The derived dataset is called the “maize-UniProt GO
annotations”.

2.1.2 Domain Presence

InterProScan5 (IPRS) version 5.16-55.0 was used to create domain based GO annotation of
maize protein coding genes (Jones et al. 2014). IPRS was used to annotate GO terms to
maize genes to produce the “maize-IPRS GO annotations”.

2.1.3 Mixed-Method Pipelines

At the beginning of this project, the first iteration of the CAFA challenge (CAFA1; de-
scribed in the Introduction) had been completed. The results from the challenge indicated
that CAFA1 mixed-method pipelines performed as well or better than standard methods
(Radivojac et al. 2013). To determine their predictive power for functional annotation in
plants, the top-performing mixed-method pipelines from CAFA1 were reviewed to identify
a group that could be implemented based upon availability of code and sufficient documen-
tation. Three tools were selected: Argot2, FANN-GO, and PANNZER (Falda et al. 2012;
Clark and Radivojac 2011; Koskinen et al. 2015).

2.1.3.1 Argot2
Argot2 has a batch processing tool that can annotate up to 5,000 pre-processed input

sequences. There are two different pre-processing steps for Argot2: 1) querying the UniProt
database for sequence-similarity matches to the input sequences, and 2) querying the the
Pfam database for putative domains present in the input sequences. The maize sequences
were split into multiple FASTA files containing a maximum of 5,000 sequences. The eight
FASTA files resulting from the previous step were used to query the UniProt database using
BLASTP for matches and the output was saved. HMMER was used to search a local Pfam
database for potential hits for all the input protein sequences (Finn, Clements, and Eddy
2011). Pre-processing each input FASTA resulted in a pair of input files for Argot2: BLAST
and HMMER files. Each pair of pre-processed files was compressed and submitted to Argot2
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batch processing tool. Results from each pair of pre-processed data were downloaded and
concatenated to create the "maize-Argot2 GO annotations."

2.1.3.2 FANN-GO
The file containing maize protein sequences was imported into MATLAB using a built-in

function (MATLAB:2017). The MAIN function from FANN-GO was used to pre-process
and annotate maize protein sequences. FANN-GO uses BLASTP to query FANN-GO train-
ing sequence dataset (derived from UniProt) for potential matches for the input sequences
and converts the results to input feature vectors. The FANN-GO predictor built from the
training dataset is then used to process the input feature vectors and calculate the probability
that a particular protein is associated to a particular GO term. These probabilities are rep-
resented in a matrix where rows represent sequences and columns represent GO terms. The
matrix was converted to a GAF (GO Annotation File Format) file to be used for subsequent
evaluations. This dataset is referred to as the “maize-FANN-GO annotations”.

2.1.3.3 PANNZER
Maize protein sequences were pre-processed using BLASTP to query a local UniProt pro-

tein BLAST database, and the output was saved in XML format as required by PANNZER.
PANNZER was run on the xml file output from the previous step, and the output was con-
verted into a GAF file. This dataset from PANNZER is referred to as the "maize-PANNZER
GO annotations."

2.2 Metrics Used in maize-GAMER

A number of metrics defined and described by the AIGO (Analysis and the Inter-comparison
of GO functional annotations) library were used to select high-confidence annotations, clean,
and evaluate the maize-GAMER derived annotation sets (Defoin-Platel et al. 2011). AIGO
has defined two type of metrics: analysis metrics and comparison metrics (see Table 2).

2.2.1 Analysis Metrics

Analysis metrics defined by AIGO measure features of a given annotation set. Four AIGO
analysis metrics were used for maize-GAMER: Duplication, Redundancy, Coverage, and
Specificity (see Table 2). With respect to calculating AIGO metrics, an annotation is de-
fined as a single gene-GO term pair. Duplication is the proportion of annotations that are
not unique to a given annotation set. Duplication is calculated for each annotation set as
described in Table 2. Redundancy occurs when a set of GO terms annotated to a gene con-
tain shared ancestral terms that are associated by inference using hierarchical propagation of
GO terms. Redundancy is the proportion of shared ancestral terms annotated for each gene
averaged across all genes. Coverage is the proportion of genes that have at least one GO
term assigned. Specificity is measured by counting the number of ancestral terms that exist
for a given annotation, then averaging those counts across all annotations in the set. An
ideally cleaned annotation set for a single gene would have no duplication, no redundancy,
and high coverage and specificity.
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2.2.2 Comparison Metrics

Comparison metrics defined by AIGO measure how well a given set of annotations match
with another set of annotations. The AIGO comparison metrics hierarchical Precision (hPr)
and hierarchical Recall (hRc) were used to evaluate annotation sets against gold standard
annotations from MaizeGDB (see Table 2 & Supplementary Materials). Different metrics
have been defined for the evaluation of GO annotations against a gold standard (Jiang et
al. 2016; Radivojac et al. 2013; Clark and Radivojac 2013; Defoin-Platel et al. 2011). AIGO
provided a set of well described evaluation metrics which were adapted by maize-GAMER
and was utilized for large number of annotations produced by mixed-method pipelines. Both
hPr and hRc evaluations start with propagating the GO terms in the annotations to the
root. hPr is the proportion of the GO terms (directly annotated and inferred by propagation)
in an annotation set which is shared with the GO terms (directly annotated and inferred
by propagation) in the gold standard. hRc is the proportion of the GO terms in the gold
standard which are found in the annotation set. hPr and hRc were calculated for the genes
in the gold standard dataset, and were calculated independently for each GO category. If
a gene was annotated in the gold standard, but was not annotated in the annotations set
then both hPr and hRc were set to 0. See supplementary materials for precise steps used
to calculate hPr and hRc. Harmonic mean (hF1) of hPr and hRc was calculated for each
annotation set for each GO category to use a single number to compare different annotation
methods.

2.3 Cleaning and Combining Component Datasets

2.3.1 Score Threshold Selection for Mixed-Methods

Mixed-method pipelines used in the maize-GAMER project provide a confidence score for
each GO annotation. The confidence score ranges from 0.0-1.0, where a higher score indicates
more confidence for a given annotation. A score threshold which maximizes hF1 (hFmax)
will select the optimal set of annotations which reduces the total number of false-positives
and false-negatives (see section 2.2 for description of the metrics). The range of annotation
scores from mixed-method pipelines did not span the whole 0.0-1.0 range, so the scores were
normalized to fall between 0.0-1.0 independently for each annotation set. A set of thresholds
(every 0.05 from 0.0 to 1.0; i.e. 0.00, 0.05, 0.1, 0.1, ...., 0.95, 1.00) were selected. hF1 score
for each GO category and each threshold was calculated by selecting the annotations with a
normalized score that was ≥ to the threshold and evaluating against the gold standard an-
notations. hFmax for each GO category was determined by getting the highest hF1 obtained
from the previous step. The score thresholds which resulted in hFmax were used to select a
subset of annotations from each mixed-method pipeline (see Supplementary Table S2). The
maize-Argot2, maize-FANN-GO, maize-PANNZER GO annotations described in subsequent
sections refer to the subset of annotations selected via this selection step.

2.3.2 Removing Redundancy and Duplication

Duplication is the presence of two or more instances of the same gene-GO term pair in a
single annotation set. Redundancy is the presence of a broader GO term in the annotations
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of a gene which also contains a specific annotations from which the broader GO term can
be inferred by propagation. Component annotation sets from all methods described above
were cleaned by removing redundancy and duplication for each annotation set across all
three GO categories. Duplication was cleaned by replacing multiple instances of a gene-GO
term pair with a single instance for a given annotation set. Duplicate annotations from all
six raw annotation sets were removed and files with non-duplicate annotations were created
for each annotation set. Redundancy was cleaned by removing annotations containing GO
terms that could be inferred from other terms based on the GO hierarchy, and only retaining
the annotations with GO terms that cannot be inferred.

2.3.3 The maize-GAMER Aggregate Dataset

Clean (non-redundant and non-duplicated) annotation sets from all component methods
were merged to generate the maize-GAMER aggregate annotation set. Redundancy and
duplication introduced by concatenating multiple datasets were removed.

A new genome assembly (B73 RefGen_v4) and annotation set (Zm00001.2) for maize
inbred line B73 was recently released (Jiao et al. 2017). Because this dataset has not been
available for long, only few published analyses are available and the research community is
only now in the process of transitioning to general use of RefGen_v4 for large-scale analyses.
As such, analyses and results described here derive from the well-annotated v3 assembly
and annotation set. To extend outcomes of the work described here for future v4 efforts,
maize-GAMER aggregate annotations have also been created for the maize B73 RefGen_v4,
which can be accessed at MaizeGDB (http://download.maizegdb.org/maize-GAMER) and
via CyVerse (doi.org/10.7946/P2M925).

2.4 Evaluation of GAMER-derived Annotation Sets

Component and aggregate annotation sets were compared at two levels; a general comparison,
and a GO category-specific comparison.

Comparison metrics mentioned in Section 2.2 were calculated for the general comparison
(see Table 2). All metrics were calculated independently for each annotation set, and com-
pared among component annotation sets as well as the aggregate annotation set. Coverage
and the number of annotations were calculated directly for each annotation set. Specificity
was calculated for each annotation and the mean across all annotations is reported.

The annotations from component annotation sets and the aggregate annotation set were
divided into specific GO categories and category-specific annotations were evaluated sep-
arately. Three different metrics were used for GO category-specific evaluations: coverage,
number of annotations, and hF1 (see section 2.2 for more details). Coverage and the number
of annotations were calculated individually for each GO category for each dataset. hF1 score
was calculated for each annotation set for each GO category.

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222836doi: bioRxiv preprint 

http://download.maizegdb.org/maize-GAMER
http://doi.org/10.7946/P2M925
https://doi.org/10.1101/222836
http://creativecommons.org/licenses/by/4.0/


2.5 Comparisons among the maize-GAMER Aggregate, Gramene,
and Phytozome Annotation Sets

The existing Gramene, Phytozome, and maize-GAMER annotations were compared to each
other. Redundancy and duplication were removed from the Gramene and Phytozome anno-
tation sets before evaluations were performed. Evaluation and comparisons were identical
to the analyses performed in the previous section 2.4. General evaluations for the maize-
GAMER, Gramene, and Phytozome annotation sets were based on coverage, number of
annotations, and specificity. These metrics were calculated as described in the previous
section 2.4. The Gramene, Phytozome, and maize-GAMER annotation sets were also com-
pared in a GO category-specific manner to account for biases in performance among different
categories (i.e., CC, BP, and MF). Comparisons were made based on coverage, number of
annotations, and mean hF1 score.

2.6 Case Study of the Gene nana plant1 (na1 )

The gene na1 (GRMZM2G449033) had the most terms (7 GO terms) associated with it
in the gold standard dataset, and all the terms were from BP GO category. Annotations
for na1 from the three maize annotation sets were obtained. The ancestral nodes were
inferred from the leaf nodes for each annotation set, and a subgraph for the BP ontology was
generated (see Fig 5). The nodes in the subgraph were compared to gold standard and nodes
shared between a given annotation set and the gold standard dataset were identified. Nodes
exclusively found only in a given annotation set or the gold standard were also identified.
Illustrations of the subgraphs without node labels were drawn to compare among the three
different GO annotation sets.
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3 Results

3.1 Evaluation of maize-GAMER Derived Component Annotation
Sets

The maize-GAMER derived component annotation sets (i.e., the TAIR, UniProt, IPRS,
Argot2, FANN-GO, and PANNZER) and the maize-GAMER aggregate annotation set were
evaluated across GO categories as well as within each GO category using metrics described
in Table 2.

3.1.1 General Evaluation of maize-GAMER Component Annotation Sets

Initial evaluations and comparisons of datasets created by the maize-GAMER pipeline were
assessed based on coverage, number of annotations, and specificity among all clean com-
ponent annotation sets as well as the aggregate annotation set (see Tables 2 & 3). The
TAIR and UniProt annotation sets had the lowest coverage and number of annotations
among all maize-GAMER component annotation sets (Table 3). The Argot2, FANN-GO,
and PANNZER annotation sets had the highest number of annotations compared to other
annotation sets, as well as higher coverage compared to other annotation sets. Notably,
FANN-GO had the highest coverage at 100% of genes, and Argot2 had annotations for
more than 90% of the genes. The IPRS annotation set had a lower number of annotations
compared to the CAFA mixed-method pipelines, but covered more genes than sequence-
similarity methods. Although sequence-similarity methods and IPRS covered a lower number
of genes, they had higher specificity compared to mixed-method pipelines in general. Of the
three mixed-method pipelines, only PANNZER had comparable specificity to the sequence-
similarity methods, but had lower coverage than both Argot2 and FANN-GO. Both Argot2
and FANN-GO had lower average specificity, but had higher coverage than other methods.

The maize-GAMER aggregate annotation (made up of all component annotation sets)
covered all maize genes with at least one annotation (as expected given that the FANN-GO
component annotation set also covers 100% of genes). In addition, the aggregate annotation
set contains more than double the number of annotations that occur in any component
annotation set. This indicates that different component methods assign different GO terms to
genes. Therefore, combining annotations from different methods results in increased diversity
of GO term assignments. Moreover, the aggregate annotation set has higher specificity than
the mixed-method pipelines which have higher coverage, but has lower specificity than all
other component annotation sets.

Genes that are annotated with at least one GO term from each component annotation set
were compared among the three different method types (i.e., sequence-similarity, domain-
based, and mixed-methods; see Fig 3a). This comparison revealed that less than a quarter
of genes had been annotated by all three methods, but more than half were annotated by
two different methods. The remainder were only annotated by mixed-method pipelines.
Sequence-similarity and domain-based methods resulted in annotations to genes that were
also annotated by mixed-method pipelines. The number of genes annotated by domain-
based methods and mixed-method pipelines, and are not annotated by sequence-similarity
based methods are higher than genes annotated by all three methods. In contrast, sequence-
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similarity methods shared more genes with both other annotation sets than only with mixed-
method pipelines. Moreover, only mixed-method pipelines annotate at least one GO term
to all genes in the maize FGS.

Although the mixed-method pipelines annotated all genes, they did not capture all GO
terms annotated to genes by the other methods. GO term assignments were compared to
evaluate the diversity of the GO terms present in the three types of GO annotation methods
(see Fig 3b). GO terms annotated directly and ancestral terms inferred from the direct
terms annotated to genes were compared among the three GO annotation methods used
in maize-GAMER. The number of GO terms annotated by sequence-similarity, domain-
based, and mixed-method pipelines were 3,794, 8,145, and 14,225, respectively. The number
of GO terms annotated by the mixed-method pipelines are significantly higher than both
other methods, however there are a small number of GO terms that are only annotated
by sequence-similarity (721) and domain-presence (16) methods. Only a small proportion
(23.05%) of the total (15,028) GO terms are annotated by all three methods.

3.1.2 GO Category-specific Evaluations of maize-GAMER Component Anno-
tation Sets

CAFA1 indicated that annotations for some GO categories are easier to predict than oth-
ers (Radivojac et al. 2013). This indicated that the GO category specific evaluations could
provide a more accurate comparison between component methods. This would also allow
unbiased comparison of tools which do not predict certain categories (e.g., FANN-GO doesn’t
predict the CC category). Therefore, maize-GAMER derived annotation sets were divided
into specific GO categories (i.e., CC, BP, and MF) and each category was evaluated sepa-
rately based on coverage, number of annotations, and hF1.

Mixed-method pipelines had higher coverage across all three GO categories. Argot2
covered more than 80% genes across all three categories (see Fig 3c). FANN-GO does not
annotate GO terms for CC category, but had 100% coverage in BP category, and covered
about 50% genes in MF category. PANNZER had the lowest coverage compared to the other
mixed-method pipelines, and covered only 30-50% of genes across different categories, and
had highest coverage in BP. Sequence-similarity methods consistently had lowest coverage
compared to other methods in BP and MF, but IPRS had the lowest coverage in CC. IPRS
covered higher number of genes than sequence-similarity methods in BP and MF, but had
lower coverage than mixed-method pipelines. When comparing IPRS coverage across three
GO categories, the coverage was highest in MF. Aggregate annotation set covered slightly
more genes than the component annotation sets with highest coverage in each category, and
covered more than 88% of the FGS genes in all categories. In the BP category, the aggregate
annotation set annotated all genes from maize FGS with at least one annotation.

Mixed-method pipelines produce a higher number of annotations than other methods
in all three GO categories. Moreover, the number of annotations from mixed-method
pipelines loosely correlate with coverage in different GO categories. The only exception was
PANNZER, which annotated more GO terms per gene in BP category (data not shown), than
any other component annotation set. The number of annotations from sequence-similarity
methods and IPRS were consistently lower than mixed-method pipelines. The variation in
the number of annotations was proportional to the number of genes annotated in sequence-
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similarity and IPRS methods. The lowest number of annotations was seen in the CC cat-
egory from IPRS, and sequence-similarity methods in other GO categories. As the union
of all component method annotations, the aggregate annotation set had a higher number of
annotations in all three GO categories. The highest number of annotations for the aggregate
annotation set was from the BP GO category, followed by CC and MF.

We used hF1 scores as a representation of the quality of annotations and annotation sets.
As described in materials and methods, the hF1 was calculated individually for all genes
in the gold standard dataset and then averaged across all genes within an annotation set.
There are clear differences in hF1 across different GO categories. The highest performance
was seen in the MF category, and the lowest performance is seen in the BP category. This fits
the observation from CAFA1 (Radivojac et al. 2013). Mixed-method pipelines outperformed
other methods in all three GO categories. PANNZER produced the highest hF1 within the
MF category, but Argot2 had the highest hF1 scores in CC and BP. IPRS outperformed
sequence-similarity methods in both MF and BP categories, but was the lowest performing
method in the CC category. Comparison between two sequence-similarity methods indicated
that maize-UniProt method performs better than the maize-TAIR method in MF and BP
categories. On the other hand, maize-TAIR method performs better than maize-UniProt
method in the CC category. Aggregating the component annotations from maize-GAMER
increased the performance in the CC category. In contrast, aggregating the component
annotation sets did not increase the performance compared to the top performing tool in
other categories.

3.2 Evaluation of Existing Maize GO Annotation Sets and Com-
parison to the maize-GAMER Aggregate Annotation Set

Two existing maize GO annotation sets, Gramene and Phytozome, were downloaded, eval-
uated, cleaned (i.e., redundancies and duplicates were removed), and compared with maize-
GAMER aggregate annotations (referred to as the “maize-GAMER annotation set”). The
same metrics used for the evaluation of maize-GAMER derived annotation sets were used for
the comparison among the existing maize GO annotation sets and maize-GAMER aggregate
annotation set.

3.2.1 General Evaluation of Public Maize GO Annotation Sets

The maize-GAMER aggregate annotations covered all genes in the maize FGS with at least
one GO term, but Gramene and Phytozome covered only about half the genes (see Table
4). Phytozome covered the fewest genes (less than half of the genes), and Gramene covered
slightly more than half of the genes (see Table 4). The maize-GAMER annotation set
had more annotations than both Gramene and Phytozome. Gramene had two-fold more
annotations than Phytozome, and the maize-GAMER had several fold more annotations
than Gramene. While the maize-GAMER has higher coverage and a higher number of
annotations, it has lower average specificity than Gramene and Phytozome. Gramene has
the highest average specificity of all three annotation sets.

Genes with annotations from each set were compared to see the distribution of annotated
genes among different annotations (see Fig 4a). Genes from Gramene and Phytozome anno-
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tations were a subset of the maize-GAMER annotations. Less than half of the genes were
annotated in all three sets, and slightly more than half of the genes were annotated in at
least two sets. Comparison of Gramene and Phytozome annotations show that most of the
genes that were annotated were shared. Both Gramene and Phytozome had genes that were
annotated in only one of the two (i.e., Gramene or Phytozome but not both; See Fig 4a).

GO terms annotated directly to genes by different methods and ancestral GO terms
propagated from these annotations were compared among the three annotation sets. The
number of GO terms annotated in each set varied greatly. The least diverse set in terms
of number of GO terms annotated was Phytozome, which was annotated with only 3,234
GO terms (approximately 7% of total GO terms). Gramene has annotated 7,215 GO terms
(approximately 16%), and was more diverse than Phytozome, but had lower diversity than
maize-GAMER. maize-GAMER had the highest diversity and contained 15,028 GO terms
(approximately 33%). A small number of GO terms were used by all three annotation sets,
and the majority of terms from Phytozome were shared across all three annotation sets.
Only a single GO term was exclusive to the Phytozome annotations, and small number of
terms were found to be exclusive to Gramene annotations. Approximately 50% of the GO
terms from maize-GAMER were unique. The maize-GAMER aggregate annotations shared
a higher number of GO terms with Gramene than Phytozome.

3.2.2 GO Category-specific Evaluations of maize-GAMER and Existing Maize
GO Annotation Sets

Annotations from the three maize GO annotation sets were analyzed in a GO category-
specific manner to identify differences in performance among the different categories (see
Figure 4c). As was true for the component annotation sets, three different metrics were used
for evaluation and comparison: coverage, number of annotations, and hF1 score.

Comparison of coverage across GO categories indicated that all annotation sets had lower
coverage in CC category, compared to other categories. Both Gramene and Phytozome
had lower coverage in BP than MF, but maize-GAMER had higher coverage in BP than
MF. Lowest coverage for all annotation sets and categories was seen in the CC category
for the Phytozome annotation set, and the highest coverage was seen in the maize-GAMER
aggregate annotation set in the BP category. Comparison among the three maize annotation
sets indicates that the maize-GAMER annotation set had the highest coverage in all three
categories by a large margin. Coverage from maize-GAMER was almost twofold that of
Gramene, which had the next highest coverage in all GO categories. Gramene had higher
coverage than Phytozome in all three categories.

When the number of annotations were compared across different GO categories the lowest
number of annotations for Gramene and Phytozome annotation sets were seen in the CC
category. In contrast, maize-GAMER had the lowest number of annotations in the MF
category. Moreover, both Gramene and Phytozome both had a higher number of annotations
in the MF category whereas maize-GAMER had the highest number of annotations in the
BP category. Comparison among the annotations sets illustrated that the maize-GAMER
annotation set has the highest number of annotations in all three categories. Phytozome had
the fewest annotations in all three GO categories. Number of annotations loosely correlated
with coverage in different GO categories for both Gramene and Phytozome. Furthermore,
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maize-GAMER had the highest number of annotations in the BP category. The number of
annotations from the maize-GAMER annotations for the BP was several fold higher than
other annotation sets (≈9x that of Gramene and ≈28x that of Phytozome).

The hF1 score reflects the overall quality of annotations produced by different pipelines
used by the three maize annotation projects. Comparing performance of different pipelines
across the three GO categories revealed a similar trend that was seen in the previous section.
All pipelines had higher hF1 scores in the MF category and had lower hF1 scores in the
BP category. The only pipeline that did not fit this trend was Phytozome, which had
lowest performance in the CC category. maize-GAMER had a higher hF1 score than other
pipelines in the CC category. maize-GAMER also had higher performance than Phytozome
in other categories, but performed slightly lower than Gramene in those categories. Gramene
performed better than other pipelines in the MF and BP categories. Phytozome consistently
had lower performance than other pipelines across all three GO categories. Phytozome’s
performance was especially low in the CC category, which was the lowest hF1 score seen for
any annotation set in any GO category.

3.3 Example Annotations from nana plant1 (na1 )

The gene nana plant1 (na1 ; GRMZM2G449033) has more annotations than any other gene
in the gold standard dataset. A classical maize mutant with a dwarf phenotype (Hartwig et
al. 2011) na1 the recessive mutant results from a loss-of-function mutation in the gene that
affects the brassenosteroid (BR) biosynthetic pathway where BR is a plant hormone that
is required for normal plant growth (Hartwig et al. 2011.) na1 gene had 7 BP GO terms
annotated to it in the gold standard dataset. Annotations for na1 from different maize
annotation sets were compared to the gold standard, and a subgraph for each annotation
set and gold standard dataset was plotted (see Fig 5). Phytozome did not annotate any GO
terms to na1 (see Fig 5a), but both Gramene (see Fig 5b) and maize-GAMER (see Fig 5c)
have annotated BP GO terms for na1. Gramene annotates 3 GO terms na1 while GAMER
has annotated 13 GO terms to na1. Two GO terms from the gold standard are known to be
related to na1 dwarf phenotype from previous studies, "brassinosteroid biosynthetic process"
(GO:0016132) and "unidimensional cell growth" (GO:0009826). While both of these were
annotated correctly by maize-GAMER (see Fig 5c), only one of them was correctly annotated
by Gramene (see Fig 5b). Comparison of overlapping nodes indicates that the maize-GAMER
aggregate annotation set also contains a number of less specific non-leaf terms which overlap
with nodes inferred from gold standard dataset. Overall, the maize-GAMER has larger
proportion of overlapping nodes with the gold standard than the Gramene for the BP GO
category.

The different approaches taken by the pipelines from Gramene and maize-GAMER result
in different annotations for the example case study of the maize na1 gene. Gramene has a
lower number of GO terms annotated to na1 than maize-GAMER. The average specificity of
GO terms annotated in the BP category for na1 (see Figure 5) is not significantly different
between GAMER (mean=12.154) and Gramene (mean=12.667) pipelines (2-sided 2-group
Wilcoxon rank-sum test; p = 0.89). This example from na1 indicates that the specificity of
the annotations are not significantly different for specific instances, but are different when
compared overall.
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4 Discussion
In keeping with our goal, through the maize-GAMER project we were able to improve the
GO annotation dataset for maize and to document inputs, methods, and results at a level
that enables both reproducibility and reuse of the pipeline for future genome versions.

To determine how best to create an improved maize annotation dataset, we tried out
multiple different methods and compared the resulting datasets based on a gold standard set
of gene functions. This also enabled us to better understand differences in term assignments
among the methods we used. Using the same gold standard, we also were able to compare
resulting datasets to those produced by and available from Gramene and Phytozome.

We used the hFmax metric to select high-confidence annotations from mixed-method
pipelines and to evaluate annotation sets resulting from all methods under evaluation. We
found that mixed-method pipelines developed for the CAFA1 challenge outperformed RBH
and domain-presence methods for GO annotation (Radivojac et al. 2013). They covered
more genes with annotations, produced higher number of annotations, and had higher hF1

score than both sequence similarity and domain-based methods. The higher performance
from mixed-method pipelines are the outcome of advanced statistical (Falda et al. 2012 and
Koskinen et al. 2015) and machine learning approaches (Clark and Radivojac 2011) used to
reduce the false positive and false negative annotations. Mixed-method pipelines do have
a limitation: they have higher coverage but annotations are less specific in general when
compared with datasets produced using other approaches. This could be due to the dearth
of training dataset for the more specific GO terms, which is required for training machine
learning methods.

When we aggregated the predictions from RBH, domain-based methods, and three tools
from CAFA1, we produced the maize-GAMER aggregate dataset, which covers more gene
space than the datasets produced by Gramene and Phytozome, and with similar or better
accuracy. To enable better reproducibility, we have generated a supplementary document
with exact parameters and commands used to generate the maize dataset. We are currently
in the process of formalizing the code used to generate the maize GO annotation set into a
reusable pipeline called GO-MAP. Once completed, the GO-MAP pipeline can be used for
GO annotation of newly sequenced plant genomes as well as existing plant genomes. The
pipeline will be made freely available, and will utilize the same methods and datasets used
for maize.

The set of manually reviewed gene function annotations for maize that we call the gold
standard is both incomplete and sparse. This situation does not reflect the amount of pub-
lished literature describing gene function for maize. Instead, this situation is due to limited
curation of gene function into GO terms. While tools exist at MaizeGDB that enable re-
searchers to assign GO terms to genes directly, these tools remain poorly utilized. In an
effort to improve community engagement and to upgrade the evidence codes for GO as-
signments, our next step for maize-GAMER will be to develop and deploy a tool to enable
experts in the maize community to review existing GO annotations. By enabling GO anno-
tation review through expert crowdsourcing, term assignments produced by computational
pipelines including GAMER can be upgraded from IEA (inferred from electronic annota-
tion) to RCA (reviewed computational analysis). In this way, we will enable the transfer
of collective knowledge members of the maize community have generated over the years to

17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/222836doi: bioRxiv preprint 

https://doi.org/10.1101/222836
http://creativecommons.org/licenses/by/4.0/


produce higher-quality functional annotation datasets for maize with clear extension of this
practice for other species.
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9 Figures

Figure 1: Numbers of annotations by EC category.
Arabidopsis (TAIR10) shown in magenta, maize in green and orange for Gramene and
Phytozome, respectively. Annotation counts on the y-axis are shown in thousands. Each
bar in the histogram is labeled with the actual count to show where counts are so small
that no bar is visible.
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Figure 2: Overview of steps to produce the maize-GAMER datasets.
Three types of methods are used: sequence-similarity (yellow), domain presence, (blue) and
CAFA mixed-method pipelines (green). Within sequence-similarity, two input datasets
were subjected to reciprocal-best-hit against maize: TAIR10 (Arabidopsis) and UniProt
(the ten most well-annotated plant species). For domain presence, InterPro signatures were
applied to maize using InterProScan (IPRS). From the CAFA mixed-method pipelines,
Argot2, FANN-GO, and PANNZER were applied to maize. For each individual output,
duplications and redundancies were removed, then the datasets were combined. A second
round of duplication and redundancy removal was carried out to produce the
maize-GAMER Aggregate dataset.
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Figure 3: GO assignment metrics for each method type.
Sequence-similarity in yellow, domain presence in blue, and mixed-method pipeline in
green. (a) Number of genes with at least one GO term annotated. (b) Number of GO
terms with at least one gene annotated. (c) Percent coverage, number of annotations, and
average hF1 score for each annotation set across the three GO graphs (i.e., Cellular
Component, Molecular Function, and Biological Process). Color codes as used in (a) and
(b), with the aggregate dataset shown in orange.
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Figure 4: GO assignment metrics for Gramene, Phytozome, and maize-GAMER.
Gramene in green, Phytozome in rust, and maize-GAMER in tan. (a) Number of genes
with at least one GO term annotated. (b) Number of GO terms with at least one gene
annotated. (c) Percent coverage, number of annotations, and hF1 score for each annotation
dataset across the three GO graphs (i.e., Cellular Component, Molecular Function, and
Biological Process).
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(a) Phytozome Annotations

(b) Gramene Annotations

(c) maize-GAMER Annotations

Figure 5: Biological Process GO graph for maize na1.
Leaf terms are toward the bottom, root terms are toward the top. Terms covered only by
the gold standard are shown in orange (labeled G), those in the dataset but absent from
the gold standard are shown in blue (labeled D), and those that appear in both are shown
in green (labeled DG). Leaf terms in each subgraph have an * next to them. Phytozome
graph is shown at the top (5a) Gramene graph is shown in the middle (5b), and
maize-GAMER aggregate graph is shown at the bottom (5c).
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10 Tables

Table 1: Evidence Codes used in gene ontology annotations

Type EvidenceCode Description
Experimental EXP Inferred from Experiment

IDA Inferred from Direct Assay
IPI Inferred from Physical Interaction
IMP Inferred from Mutant Phenotype
IGI Inferred from Genetic Interaction
IEP Inferred from Expression Pattern

Computational Analysis ISS Inferred from Sequence or structural Similarity
ISO Inferred from Sequence Orthology
ISA Inferred from Sequence Alignment
ISM Inferred from Sequence Model
IGC Inferred from Genomic Context
IBA Inferred from Biological aspect of Ancestor
IBD Inferred from Biological aspect of Descendant
IKR Inferred from Key Residues
IRD Inferred from Rapid Divergence
RCA Inferred from Reviewed Computational Analysis

Author statement TAS Traceable Author Statement
NAS* Non-traceable Author Statement

Curatorial Statement IC Inferred by Curator
ND* No biological Data available

Automatically-Assigned IEA* Inferred from Electronic Annotation

* indicates evidence codes without either curation or biological data supporting them.
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Table 2: Metrics used to analyse and evaluate the annotation datasets

Analysis Metrics?

Metric Description Formula

Duplication (%) Proportion of duplicate annotations in a dataset # of total Annotations - # of Unique Annotations
# of total Annotations

Redundancy (%) Proportion of redundant terms in a dataset
∑M

y=1
# of Ancestral terms annotated to Gene(y)

# of total Annotations to Gene(y) × 100

M

Coverage (%) Proportion of Genes annotated in a dataset
# of Genes with ≥ one GO annotation

# of Genes

Specificity Specificity of the Annotation for a given gene
∑N

x=1 # of Ancestral terms inferred for Annotation(x)
# of total Annotations

Comparison Metrics†

Metric Description Formula

hPr Hierarchical Precision calculated by evaluating against
the gold standard

GO terms predicted in AS ∩GO terms annotated in GS
GO terms predicted in AS

hRc Hierarchical Recall calculated by evaluating against
the gold standard

GO terms predicted in AS ∩GO terms annotated in GS
GO terms annotated in GS

hF1 Harmonic mean of hPr and hRc 2×
(
hPr × hRc

hPr + hRc

)
?Comparison Metrics used here have been described in detail in Defoin-Platel et al. 2011. †See Supplementary Section 11.1 for precise steps to calculate hPr and hRc.
Notations used as follows, N : Total # of Annotations, M : Total # of Genes, AS: Annotation Set, GS: Gold Standard.
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Table 3: Results from the general evaluation of maize-GAMER derived annotation sets

Method Type Sequence-Similarity Domain CAFA Mixed-Methods Union
Annotation Set TAIR-RBH Plant-RBH IPRS Argot2 FANN-GO PANNZER Aggregate
Raw Annotations 61,528 106,053 200,324 450,013 618,312 1,091,123

Duplication (%) 9.11 65.89 72.18 0.33 1.07 0.97
Redundancy (%) 14.18 9.17 10.91 48.25 59.84 73.09

Clean Annotations 35,791 32,085 46,599 224,827 187,850 219,984 515,059
Coverage (%) 23.70 20.10 48.48 92.64 100.00 47.86 100.00
Specificity 11.54 12.20 10.45 8.54 5.30 11.58 9.56
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Table 4: Overall results from maize-GAMER and other existing maize datasets

Analysis Metric Existing maize-GAMER
Gramene Phytozome Aggregate

Raw Annotations 111,203 66,709
Duplication (%) 0.00 37.90
Redundancy (%) 23.25 7.24

Clean Annotations 81,315 36,987 515,059
Coverage (%) 55.55 40.87 100.00
Specificity 10.90 10.41 9.56
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11 Supplementary Materials

11.1 Detailed Metrics

Hierarchical Precision
For gene g with annotation ASi in annotation set and annotationGSj in the gold standard

the hPr is calculated as follows

hPr(g,ASi,GSj) =
GOASi

∩GOGSj

GOASi

(1)

Where:
GOASi

: GO terms inferred for annotation ASi by propagating the GO hierarchy till
the root term

GOGSj
: GO terms inferred for annotation GSj by propagating the GO hierarchy root
term

For a gene g with annotation ASi in annotation set in the GO ontology o the hPr is
calculated as followed.

hPr(g,ASi) =
∑

j∈GSg,o

hPr(g,ASi,GSj)

|GSg,o|
(2)

Where:
GSg,o : GO terms annotated to gene g in the ontology o in gold standard GS

For gene g, hPr for ontology o is calculated as follows

hPr(g) =
∑

i∈ASg,o

hPr(g,ASi)

|ASg,o|
(3)

Where:
ASg,o : GO terms annotated to gene g in the ontology o in the annotation set AS.

Note: Only genes with GO terms annotated in ontology o in both AS and GS can be
used for this calculation.

hPr for a given annotation set AS for the ontology o is calculated as followed

hPr(AS,o) =
∑

g∈(ASo∩GSo)

hPr(g)
|ASo ∩GSo|

(4)

Where:
ASo : Genes annotated in the annotation set AS in the ontology o
GSo : Genes annotated in the gold standard GS in the ontology o
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Hierarchical Recall
For gene g with annotation ASi in annotation set and annotationGSj in the gold standard

the hRc is calculated as follows

hRc(g,ASi,GSj) =
GOASi

∩GOGSj

GOGSi

(5)

Where:
GOASi

: GO terms inferred for annotation ASi by propagating the GO hierarchy till
the root term

GOGSj
: GO terms inferred for annotation GSj by propagating the GO hierarchy root
term

For a gene g with annotation GSi in gold standard in the GO ontology o the hRc is
calculated as followed.

hRc(g,GSj) =
∑

i∈ASg,o

hRc(g,ASi,GSj)

|ASg,o|
(6)

Where:
ASg,o : GO terms annotated to gene g in the ontology o in annotation set AS

For gene g, hRc for ontology o is calculated as follows

hRc(g) =
∑

j∈GSg,o

hRc(g,GSj)

|GSg,o|
(7)

Where:
GSg,o : GO terms annotated to gene g in the ontology o in the gold standard GS.

Note: Only genes with GO terms annotated in ontology o in both AS and GS can be
used for this calculation.

hRc for a given annotation set AS for the ontology o is calculated as followed

hRc(AS,o) =
∑

g∈(ASo∩GSo)

hPr(g)
|ASo ∩GSo|

(8)

Where:
ASo : Genes annotated in the annotation set AS in the ontology o
GSo : Genes annotated in the gold standard GS in the ontology o
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11.2 Supplementary Tables

Table S1: Top 10 plants by number of high-confidence GO annotations in UniProt-GOA

Rank Species Proteins Annotations
1 Arabidopsis thaliana 3,702 72,089
2 Glycine max 3,847 43,202
3 Oryza sativa (Japonica Group) 39,947 32,750
4 Populus trichocarpa 3,694 31,851
5 Solanum lycopersicum 4,081 24,250
6 Sorghum bicolor 4,558 23,470
7 Vitis vinifera 29,760 23,350
8 Brachypodium distachyon 15,368 22,454
9 Physcomitrella patens 3,218 18,348
10 Chlamydomonas reinhardtii 3,055 9,826
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Table S2: hFmax and score thresholds for mixed-method pipelines by GO categories

Cellular Component
Pipeline hFmax Pipeline Threshold
Argot2 0.572 0.05
FANN-GO NA NA
PANNZER 0.46 0.2

Molecular Function
Pipeline hFmax Pipeline Threshold
Argot2 0.584 0.15
FANN-GO 0.582 0.65
PANNZER 0.607 0.55

Biological Process
Pipeline hFmax Pipeline Threshold
Argot2 0.3 0.15
FANN-GO 0.272 0.3
PANNZER 0.241 0.4

The table shows the mixed-method pipeline scores which results in the max hF1 calculated for each pipeline for each GO
category. Threshold value shown here was used to select high confidence GO annotations from each pipeline and only
annotations with a score ≥ the threshold were selected. It is important to note that absolute values from the pipelines were
normalized between 0-1 before hF1 scores were calculated and hFmax was determined.. NA indicates that the pipeline did not
annotate terms in the GO category.
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