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1 Summary 
 

We created a new high-coverage, robust, and reproducible functional annotation of maize 
protein coding genes based on Gene Ontology (GO) term assignments. Whereas the existing 
Phytozome and Gramene maize GO annotation sets only cover 41% and 56% of maize protein 
coding genes, respectively, this study provides annotations for 100% of the genes. We also 
compared the quality of our newly-derived annotations with the existing Gramene and 
Phytozome functional annotation sets by comparing all three to a manually annotated gold 
standard set of 1,619 genes where annotations were primarily inferred from direct assay or 
mutant phenotype. Evaluations based on the gold standard indicate that our new annotation set 
is measurably more accurate than those from Phytozome and Gramene. To derive this new 
high-coverage, high-confidence annotation set we used sequence-similarity and protein-
domain-presence methods as well as mixed-method pipelines that developed for the Critical 
Assessment of Function Annotation (CAFA) challenge. Our project to improve maize 
annotations is called maize-GAMER (GO Annotation Method, Evaluation, and Review) and 
the newly-derived annotations are accessible via MaizeGDB 
(http://download.maizegdb.org/maize-GAMER) and CyVerse (B73 RefGen_v3 5b+ at 
doi.org/10.7946/P2S62P and B73 RefGen_v4 Zm00001d.2 at doi.org/10.7946/P2M925). 
Keywords: functional annotation, maize, genomics, gene ontology, GO 
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2 Introduction 

Maize is an agriculturally important crop species and model organism for genetics and 
genomics research (Lawrence et al., 2004). Not only is maize historically important for 
genetics research, along with other model species, significant efforts have been made to 
transition existing datasets into a more sequence-centric paradigm (Sen et al., 2009), thus 
enabling genomics approaches to be brought to bear on both basic research problems and 
applied breeding (Lawrence et al., 2008). In 2009 the maize genome’s reference sequence 
was made available to the research community (Schnable et al., 2009). Since then, much 
work has gone into improving the utility of the genome sequence to scientists with a focus 
on sequence annotation. 

In practice, making a genome sequence useful involves three basic steps: assembling the 
genome sequence, assigning gene structures, and assigning functions to genes. The quality of 
data generated at each step influences downstream inferences, with high-quality sequence, 
assembly, and gene structure assignments generally resulting in better functional annotations 
overall. Functional predictions serve as the basis for formulating hypotheses that are 
subsequently tested in the lab. As such, experimentalists have a great interest in high-quality 
functional annotation sets that cover all or most of the genes in their species of interest. 

The Gene Ontology (GO) is a controlled vocabulary of hierarchically related terms that 
describe gene product function. It consists three categories: Biological Process (BP), Cellular 
Component (CC), and Molecular Function (MF). In the context of GO, functional annotation 
of a gene consists of the assignment of one or more GO terms from one or more of the GO 
categories to a given gene or gene model (here we will refer to genes and gene models 
simply as ’genes’ for simplicity). 

For individual GO term associations to genes, Evidence Codes (ECs) are assigned to 
assert how the association of term to gene was made (Harris et al., 2004). GO evidence 
codes are aggregated into five general categories: Experimental, Computational Analysis, 
Curator Statement, Author Statement, and Automatically Assigned. See Table 1 and 
http://www.geneontology.org/page/guide-go-evidence-codes for a detailed explanation of the 
GO evidence codes. 

The use of experimental ECs asserts that the assignment results from a physical 
characterization of the protein’s function as described in a publication. Computational 
approaches are based on in silico analyses. One of the simplest and most commonly 
conducted computational approaches involves matching similar genes between an existing, 
well-annotated genome and an unannotated genome. Once the matches are assigned, 
annotations are inferred to genes in the unannotated genome. Such assignments receive the 
ISS (Inferred from Sequence or Structural Similarity) EC. The ISS EC is also assigned if an 
uncharacterized sequence contains a characterized domain. In such instances, the presence of 
the domain itself can be used to predict function for the uncharacterized sequence. For 
Curator and Author Statements, included EC types are based on judgment by curators and 
scientists in their expert opinion. As such, they are considered to be reviewed annotation 
types, though these do include two ECs based on little data: NAS (Non-traceable Author 
Statement) and ND (No biological Data available). The Automatically Assigned EC type 
contains only one EC: Inferred from Electronic Annotation (IEA). IEA is unique in that no 
reviewed analysis of the assignment is required. Put another way, no curatorial judgment is 
applied, making it the least supported EC of the group. 

Sequence-based approaches to automated functional annotation generally fall into three 
basic categories: sequence-similarity, domain-based methods, and mixed-methods. 
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Sequence-similarity based gene matching most often relies on BLAST (e.g., BLAST2GO) 
followed by limiting the number of accepted matches based on e-value or a reciprocal-best-
hit (RBH) strategy (Altschul et al., 1990; Conesa and Götz, 2008; Moreno-Hagelsieb and 
Latimer, 2008). Domain-based methods score sequences for the presence of well-described 
protein domain such as those included in Pfam, PANTHER, and ProSite (Finn et al., 2017). 
InterProScan is a commonly used domain-based GO annotation pipeline (Jones et al., 2014). 
Mixed-methods combine sequence-similarity, domain-based approaches, and other evidence 
such as inferred orthology through phylogenetics to assign GO terms systematically (Clark 
and Radivojac, 2011; Falda et al., 2012; Koskinen et al., 2015). For more of the latest 
methods, see (Jiang et al., 2016). 

For maize, two genome-scale GO annotation sets exist for the B73 reference assembly 
and gene set (i.e., B73 RefGen_v3 and 5b+, respectively). These functional annotations are 
generated by and accessible from the Gramene (www.gramene.org; (Tello-Ruiz et al., 2016)) 
and Phytozome (phytozome.jgi.doe.gov; (Goodstein et al., 2012)) projects and websites, 
respectively.  Gramene annotations are based on the Ensembl annotation pipeline 
(http://ensemblgenomes.org/info/data/cross_references), which is a mixed-method approach. 
The primary sources of the Ensembl annotations are from UniProtKB, community-based 
annotations from MaizeGDB (Andorf et al., 2016), InterPro2GO, and projections from 
orthologs inferred from phylogenetic analyses. Phytozome has a two-step process for GO 
annotation. First, Pfam domains are assigned to proteins. Second, GO annotations are 
determined based on the Pfam2GO mapping (Hunter et al., 2009). 

Given the wealth of functional descriptions derived from mutational analyses, many 
researchers rely on the available maize GO-based functional annotations from large-scale, 
high-profile community resources like Gramene and Phytozome for formulating 
experimental hypotheses, and also as input datasets to transitively annotate predicted 
functions to newly sequenced grass species and crop genomes (e.g., (Hirsch et al., 2016)). 
However, if we compare the EC types for GO assignments between the model species 
Arabidopsis thaliana and the Gramene and Phytozome functional annotations of the maize 
reference line B73, it is clear that the evidence supporting GO term assignments for these 
maize datasets is comparatively lacking (see Figure 1). Both the Gramene and Phytozome 
maize annotations have few annotations beyond those Inferred from Electronic Annotation 
(IEA). This situation is not intuitive to researchers given that maize has a wealth of 
functional descriptions in the literature. 

Exacerbating this problem, transfers of predicted function often are based on sequence 
similarity alone with no restriction of input data to associations based on well-documented 
EC types. Furthermore, although mixed-method pipelines like the Ensemble COMPARA 
pipeline used by Gramene and the Phytozome Pfam2GO (Goodstein et al., 2012; Herrero et 
al., 2016) mappings may seem reproducible in principle given that they are based on the use 
of specific systems and software, details including input files and parameters often are 
unavailable or incomplete, making it impossible for research groups outside the group that 
generated those annotation resources to reproduce the annotation sets.  In addition, because 
many computational pipelines inherit functional annotations that were also purely 
computationally derived, a single errant annotation can be propagated to many genomes 
(Andorf et al., 2007), making it mistakenly appear that many genomes agree on the errant 
function. For these reasons, existing computational functional annotations of maize (and 
many other plant genomes) should be approached with skepticism. 

Given these issues with the maize functional annotation, we endeavored to create an 
improved annotation set. This task requires both application of robust and reproducible 
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methods and a gold standard set of maize GO annotations to compare generated result sets to 
each other as well as to the Gramene and Phytozome maize functional annotations. One 
small dataset of well-curated GO-based functional annotations does exist for maize. It was 
initially created by curators at MaizeGDB for the purpose of enriching the MaizeCyc 
metabolic pathway database (Monaco et al., 2013) and expanded through manual literature 
curation. This dataset constitutes 1,621 genes and 2,002 GO terms. 

We annotated the maize B73 RefGen_v3 annotation set 5b+ using only experimentally- 
based annotations by filtering out GO assignments with IEA, NAS, and ND ECs from the 
input data and assigned GO terms using multiple input datasets then compared the 
performance of sequence-similarity, domain-presence, and mixed-methods based on how 
well the methods predicted function for genes included in the MaizeGDB gold standard 
dataset. For mixed-methods, we used pipelines developed for the Critical Assessment of 
Functional Annotation (CAFA) challenge, a competition designed to evaluate the latest 
computational functional annotation methods and to promote improvement of methods for 
functional annotation (Jiang et al., 2016; Radivojac et al., 2013). Groups competing in the 
CAFA challenge create tools that are are applied to a set of specified target sequences. GO 
assignments are subsequently evaluated based on accumulation of functional data in the 
literature for the target sequence set. Some CAFA tools use pre-processing steps combined 
with a number of different computational and statistical approaches to reduce the number of 
false positive and false negative annotations (Clark and Radivojac, 2011; Falda et al., 2012; 
Koskinen et al., 2015). Some mixed-method pipelines performed better on average than 
other methods in the first iteration of the CAFA competition (Radivojac et al., 2013), 
indicating that the use of mixed-method pipelines for large scale GO annotations could 
potentially improve the overall quality of the annotation sets. 

The project to evaluate and improve maize GO annotations is called GAMER: GO 
Annotation Method, Evaluation, and Review. We compared GAMER annotations to 
annotations based on sequence-similarity, domain, and three CAFA mixed-methods. Next 
we combined GAMER outputs to generate an aggregate maize-GAMER GO annotation set 
and compared it to the existing Phytozome and Gramene GO annotations based on the hF1 

score. The GAMER annotations had three major advantages compared to the Gramene and 
Phytozome annotations: (1) an increased number of maize genes annotated with GO terms; 
(2) more than twice the number of annotations (GO terms assigned) for maize protein coding 
genes; (3) similar or better quality scores relative to existing annotations sets based on hF1 

score. The B73 RefGen_v3 5b+ maize-GAMER functional annotation dataset described here 
is accessible via MaizeGDB (http://download.maizegdb.org/maize-GAMER) and CyVerse 
(doi.org/10.7946/P2S62P. Scripts used to generate the annotation are available via GitHub at 
https://github.com/Dill-PICL/maize-GAMER.  

(Note for reviewers: the annotations will also be made available via each MaizeGDB gene 
model page upon publication.) 
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3 Materials and Methods 
3.1 Functional Annotation of Maize Genes 

Three sequence-based approaches were used to annotate function to genes in the maize 
reference genome: sequence-similarity, domain-based, and mixed-method pipelines (see 
Figure 2; also described in sections 2.1.1, 2.1.2 and 2.1.3, respectively). The scripts (bash, R 
and Python) used to generate the annotations for maize B73 RefGen_v3 are available at 
https://github.com/Dill-PICL/maize-GAMER. These scripts run free and open-source tools 
on different inputs required for these tools to generate annotation datasets. Please refer to the 
reproducibility supplemental file for details on versions of software, version of input datasets 
used and commands and parameters used to run these tools. 

The B73 genome and protein sequences for gene models included in the Filtered Gene 
Set (FGS) were downloaded from Gramene Release 42 (Tello-Ruiz et al., 2016). The 
downloaded protein FASTA file contained sequences for all FGS transcripts (e.g., the gene 
model X has transcript models X_T01, X_T02, and X_T03). For each gene model only the 
longest translated protein sequence derived from the transcripts was analyzed. The gold 
standard annotations used for evaluations were obtained from MaizeGDB, and they 
encompass GO annotations for 1,619 gene models from RefGen_v3. The number of 
annotations for cellular component (CC), molecular function (MF), and biological process 
(BP) were 1,584, 88, 323 respectively. 

 
3.2 Sequence-similarity based annotation 

The sequence-similarity based annotation method has three main steps: 1) calculation of 
sequence-similarity, 2) valid hit detection, and 3) inheritance of high-confidence GO 
annotations. BLASTP was used (Altschul et al., 1990) with default parameters to calculate 
sequence-similarity between maize protein sequences and two other datasets: the 
"Arabidopsis" dataset from TAIR, The Arabidopsis Information Resource (Berardini et al., 
2015) and the “Plant” dataset from UniProt (UniProt Consortium, 2015). Valid hits were 
detected using the RBH method from BLASTP results. GO terms with non-reviewed ECs 
(i.e., IEA, NAS, and ND described in the introduction) were removed from input datasets. 
All others were inherited between the RBH pairs of maize and the other plant. 

Arabidopsis has the largest number of reviewed (human curated) EC GO annotations 
among plant model organisms (see Supplementary Table S1). A FASTA file of Arabidopsis 
protein sequences along with the cognate GO Annotation File (GAF) were downloaded from 
TAIR v.10 (Berardini et al., 2015). The TAIR protein file contained predicted protein 
sequences from all transcripts. This file was filtered to retain only the protein sequence 
derived from longest transcript for each gene. Retained protein sequences from TAIR were 
used to create the TAIR BLAST database, and maize protein sequences were used to create a 
maize BLAST database. Maize protein sequences were used to query the TAIR BLAST 
database. Likewise, TAIR sequences were used to query the maize BLAST database. Results 
from both searches were used to detect RBH pairs between Arabidopsis and maize. All non-
reviewed EC GO annotations were removed, and remaining GO associations to Arabidopsis 
genes were inherited to maize genes for each RBH pair. This maize/Arabidopsis RBH 
ortholog dataset is called “maize-TAIR GO annotations”. 

All reviewed EC GO annotations and protein sequences for all plants from the UniProt-
GOA database were downloaded using the QuickGO tool hosted at EBI (Binns et al., 2009). 
Protein sequences and reviewed EC GO annotations were downloaded separately. The 
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UniProt plant GO annotation dataset containing 304,426 annotations from 75,537 unique 
protein sequences. The protein sequences downloaded spanned 292 taxa. Only ten species 
had more than 1,000 annotations (see Supplementary Table S1). Annotations from the top 10 
species (in terms of number of reviewed GO annotations) were retained for our analyses. 
The process to annotate maize genes using UniProt plant data was similar to that for 
Arabidopsis. Maize protein sequences were matched against protein sequences from each 
species separately using BLASTP. Putative orthologs were determined using RBH for each 
maize-plant pair. Terms annotated to the other plant protein were inherited to the maize 
protein sequence for each putative ortholog pair. GO annotations inherited from each plant 
species were concatenated together. The derived dataset is called the “maize-UniProt GO 
annotations”. 

 
3.3 Domain Presence 

InterProScan5 (IPRS) version 5.16-55.0 was used to create domain based GO annotation of 
maize protein coding genes (Jones et al., 2014). IPRS was used to annotate GO terms to 
maize genes to produce the “maize-IPRS GO annotations”. 

 
3.4 Mixed-Method Pipelines 

At the beginning of this project, the first iteration of the CAFA challenge (CAFA1; 
described in the Introduction) had been completed. The results from the challenge indicated 
that CAFA1 mixed-method pipelines performed as well or better than standard methods 
(Radivojac et al., 2013). To determine their predictive power for functional annotation in 
plants, the top-performing mixed-method pipelines from CAFA1 were reviewed to identify a 
group that could be implemented based upon availability of code and sufficient 
documentation. Three tools were selected: Argot2, FANN-GO, and PANNZER (Clark and 
Radivojac, 2011; Falda et al., 2012; Koskinen et al., 2015). 

 
3.4.1 Argot2 

Argot2 has a batch processing tool that can annotate up to 5,000 pre-processed input 
sequences. There are two different pre-processing steps for Argot2: 1) querying the UniProt 
database for sequence-similarity matches to the input sequences, and 2) querying the the 
Pfam database for putative domains present in the input sequences. The maize sequences 
were split into multiple FASTA files containing a maximum of 5,000 sequences. The eight 
FASTA files resulting from the previous step were used to query the UniProt database using 
BLASTP for matches and the output was saved. HMMER was used to search a local Pfam 
database for potential hits for all the input protein sequences (Finn et al., 2011). Pre-
processing each input FASTA resulted in a pair of input files for Argot2: BLAST and 
HMMER files. Each pair of pre-processed files was compressed and submitted to Argot2 
batch processing tool. Results from each pair of pre-processed data were downloaded and 
concatenated to create the "maize-Argot2 GO annotations." 

 
3.4.2 FANN-GO 

The file containing maize protein sequences was imported into MATLAB using a built-in 
function (MATLAB:2017). The MAIN function from FANN-GO was used to pre-process 
and annotate maize protein sequences. FANN-GO uses BLASTP to query FANN-GO 
training sequence dataset (derived from UniProt) for potential matches for the input 
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sequences and converts the results to input feature vectors. The FANN-GO predictor built 
from the training dataset is then used to process the input feature vectors and calculate the 
probability that a particular protein is associated to a particular GO term. These probabilities 
are represented in a matrix where rows represent sequences and columns represent GO 
terms. The matrix was converted to a GAF (GO Annotation File Format) file to be used for 
subsequent evaluations. This dataset is referred to as the “maize-FANN-GO annotations”. 

 
3.4.3 PANNZER 

Maize protein sequences were pre-processed using BLASTP to query a local UniProt 
protein BLAST database, and the output was saved in XML format as required by 
PANNZER. PANNZER was run on the xml file output from the previous step, and the 
output was converted into a GAF file. This dataset from PANNZER is referred to as the 
"maize-PANNZER GO annotations." 

 
3.5 Metrics Used in maize-GAMER 

A number of metrics defined and described by the AIGO (Analysis and the Inter-comparison 
of GO functional annotations) library were used to select high-confidence annotations, clean, 
and evaluate the maize-GAMER derived annotation sets (Defoin-Platel et al., 2011). AIGO 
has defined two type of metrics: analysis metrics and comparison metrics (see Table 2). 

 
3.5.1 Analysis Metrics 

Analysis metrics defined by AIGO measure features of a given annotation set. Four AIGO 
analysis metrics were used for maize-GAMER: Duplication, Redundancy, Coverage, and 
Specificity (see Table 2). With respect to calculating AIGO metrics, an annotation is defined 
as a single gene-GO term pair. Duplication is the proportion of annotations that are not 
unique to a given annotation set. Duplication is calculated for each annotation set as 
described in Table 2.  The collection of more general GO terms that can be inherited from a 
specific GO term are called ‘ancestral’. Redundancy occurs when a GO term and one or 
more of its ancestral terms are annotated to the same gene in a dataset. Redundancy metric 
was calculated by obtaining the mean of the proportion of ancestral terms annotated for each 
gene in a particular dataset. Coverage is the proportion of genes that have at least one GO 
term assigned. Specificity is measured by counting the number of ancestral terms that exist 
for a given annotation, then averaging those counts across all annotations in the set. An 
ideally cleaned annotation dataset would have no duplication, no redundancy, high coverage, 
and high specificity. 

3.5.2 Comparison Metrics 

Comparison metrics defined by AIGO measure how well a given set of annotations match 
with another set of annotations. The AIGO comparison metrics hierarchical Precision (hPr) 
and hierarchical Recall (hRc) were used to evaluate annotation sets against gold standard 
annotations from MaizeGDB (see Table 2 & Supplementary Materials). Different metrics 
have been defined for the evaluation of GO annotations against a gold standard (Clark and 
Radivojac, 2013; Defoin-Platel et al., 2011; Jiang et al., 2016; Radivojac et al., 2013). AIGO 
provided a set of well described evaluation metrics which were adapted by maize-GAMER 
and was utilized for large number of annotations produced by mixed-method pipelines. Both 
hPr and hRc evaluations start with propagating the GO terms in the annotations to the root. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2018. ; https://doi.org/10.1101/222836doi: bioRxiv preprint 

https://doi.org/10.1101/222836
http://creativecommons.org/licenses/by/4.0/


 

 

hPr is the proportion of the GO terms (directly annotated and inferred by propagation) in an 
annotation set which is shared with the GO terms (directly annotated and inferred by 
propagation) in the gold standard. hRc is the proportion of the GO terms in the gold standard 
which are found in the annotation set. hPr and hRc were calculated for the genes in the gold 
standard dataset, and were calculated independently for each GO category. If a gene was 
annotated in the gold standard, but was not annotated in the annotations set then both hPr 
and hRc were set to 0. See supplementary materials for precise steps used to calculate hPr 
and hRc. Harmonic mean (hF1) of hPr and hRc was calculated for each annotation set for 
each GO category to use a single number to compare different annotation methods. 

 
3.6 Cleaning and Combining Component Datasets 
3.6.1 Score Threshold Selection for Mixed-Methods 

Mixed-method pipelines used in the maize-GAMER project provide a confidence score for 
each GO annotation. The confidence score ranges from 0.0-1.0, where a higher score 
indicates more confidence for a given annotation. A score threshold which maximizes hF1 

(hFmax) will select the optimal set of annotations which reduces the total number of false-
positives and false-negatives (see section 2.2 for description of the metrics). The range of 
annotation scores from mixed-method pipelines did not span the whole 0.0-1.0 range, so the 
scores were normalized to fall between 0.0-1.0 independently for each annotation set. A set 
of thresholds (every 0.05 from 0.0 to 1.0; i.e. 0.00, 0.05, 0.1, 0.1, ...., 0.95, 1.00) were 
selected. hF1 score for each GO category and each threshold was calculated by selecting the 
annotations with a normalized score that was ≥ to the threshold and evaluating against the 
gold standard annotations. hFmax for each GO category was determined by getting the highest 
hF1 obtained from the previous step. The score thresholds which resulted in hFmax were used 
to select a subset of annotations from each mixed-method pipeline (see Supplementary Table 
S2). The maize-Argot2, maize-FANN-GO, maize-PANNZER GO annotations described in 
subsequent sections refer to the subset of annotations selected via this selection step. 

 
3.6.2 Removing Redundancy and Duplication 

Duplication is the presence of two or more instances of the same gene-GO term pair in a 
single annotation set. Redundancy is the presence of an ancestral GO term in the annotations 
of a gene which also contains a specific annotation from which the ancestral GO term can be 
inferred by propagation. Component annotation sets from all methods described above were 
cleaned by removing redundancy and duplication for each annotation set across all three GO 
categories. Duplication was cleaned by replacing multiple instances of a gene-GO term pair 
with a single instance for a given annotation set. Duplicate annotations from all six raw 
annotation sets were removed and files with non-duplicate annotations were created for each 
annotation set. Redundancy was cleaned by removing annotations containing GO terms that 
could be inferred from other terms based on the GO hierarchy, and only retaining the 
annotations with GO terms that cannot be inferred. 

 
3.6.3 The maize-GAMER Aggregate Dataset 

Clean (non-redundant and non-duplicated) annotation sets from all component methods were 
merged to generate the maize-GAMER aggregate annotation set. Redundancy and 
duplication introduced by concatenating multiple datasets were removed. 
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A new genome assembly (B73 RefGen_v4) and annotation set (Zm00001.2) for maize 
inbred line B73 was recently released (Jiao et al., 2017). Because this dataset has not been 
available for long, only few published analyses are available and the research community is 
only now in the process of transitioning to general use of RefGen_v4 for large-scale 
analyses. As such, analyses and results described here derive from the well-annotated v3 
assembly and annotation set. To extend outcomes of the work described here for future v4 
efforts, maize-GAMER aggregate annotations have also been created for the maize B73 
RefGen_v4, which can be accessed at MaizeGDB (http://download.maizegdb.org/maize-
GAMER) and via CyVerse (doi.org/10.7946/P2M925). 

 
3.7 Evaluation of GAMER-derived Annotation Sets 

Component and aggregate annotation sets were compared at two levels; a general 
comparison, and a GO category-specific comparison. 

Comparison metrics mentioned in Section 2.2 were calculated for the general comparison 
(see Table 2). All metrics were calculated independently for each annotation set, and 
compared among component annotation sets as well as the aggregate annotation set. 
Coverage and the number of annotations were calculated directly for each annotation set. 
Specificity was calculated for each annotation and the mean across all annotations is 
reported. 

The annotations from component annotation sets and the aggregate annotation set were 
divided into specific GO categories and category-specific annotations were evaluated 
separately. Three different metrics were used for GO category-specific evaluations: 
coverage, number of annotations, and hF1 (see section 2.2 for more details). Coverage and 
the number of annotations were calculated individually for each GO category for each 
dataset. hF1 score was calculated for each annotation set for each GO category. 

 
3.8 Comparisons among the maize-GAMER Aggregate, Gramene, and 

Phytozome Annotation Sets 

The existing Gramene, Phytozome, and maize-GAMER annotations were compared to each 
other. Redundancy and duplication were removed from the Gramene and Phytozome 
annotation sets before evaluations were performed. Evaluation and comparisons were 
identical to the analyses performed in the previous section 2.4. General evaluations for the 
maize-GAMER, Gramene, and Phytozome annotation sets were based on coverage, number 
of annotations, and specificity. These metrics were calculated as described in the previous 
section 2.4. The Gramene, Phytozome, and maize-GAMER annotation sets were also 
compared in a GO category-specific manner to account for biases in performance among 
different categories (i.e., CC, BP, and MF). Comparisons were made based on coverage, 
number of annotations, and mean hF1 score. 

 
3.9 Case Study of the Gene nana plant1 (na1) 

The gene na1 (GRMZM2G449033) had the most terms (7 GO terms) associated with it   in 
the gold standard dataset, and all the terms were from BP GO category. Annotations for na1 
from the three maize annotation sets were obtained. The ancestral nodes were inferred from 
the leaf nodes for each annotation set, and a subgraph for the BP ontology was generated 
(see Fig 5). The nodes in the subgraph were compared to gold standard and nodes shared 
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between a given annotation set and the gold standard dataset were identified. Nodes 
exclusively found only in a given annotation set or the gold standard were also identified. 
Illustrations of the subgraphs without node labels were drawn to compare among the three 
different GO annotation sets. 

 

4 Results 
4.1 Evaluation of maize-GAMER Derived Component Annotation Sets 

The maize-GAMER derived component annotation sets (i.e., the TAIR, UniProt, IPRS, 
Argot2, FANN-GO, and PANNZER) and the maize-GAMER aggregate annotation set were 
evaluated across GO categories as well as within each GO category using metrics described 
in Table 2. 

 
4.1.1 General Evaluation of maize-GAMER Component Annotation Sets 

Initial evaluations and comparisons of datasets created by the maize-GAMER pipeline were 
assessed based on coverage, number of annotations, and specificity among all clean 
component annotation sets as well as the aggregate annotation set (see Tables 2 & 3). The 
TAIR and UniProt annotation sets had the lowest coverage and number of annotations 
among all maize-GAMER component annotation sets (Table 3). The Argot2, FANN-GO, 
and PANNZER annotation sets had the highest number of annotations compared to other 
annotation sets, as well as higher coverage compared to other annotation sets. Notably, 
FANN-GO had the highest coverage at 100% of genes, and Argot2 had annotations for more 
than 90% of the genes. The IPRS annotation set had a lower number of annotations 
compared to the CAFA mixed-method pipelines, but covered more genes than sequence-
similarity methods. Although sequence-similarity methods and IPRS covered a lower 
number of genes, they had higher specificity compared to mixed-method pipelines in 
general. Of the three mixed-method pipelines, only PANNZER had comparable specificity 
to the methods, but had lower coverage than both Argot2 and FANN-GO. Both Argot2 and 
FANN-GO had lower average specificity, but had higher coverage than other methods. The 
maize-GAMER aggregate annotation (made up of all component annotation sets) covered all 
maize genes with at least one annotation (as expected given that the FANN-GO component 
annotation set also covers 100% of genes). In addition, the aggregate annotation set contains 
more than double the number of annotations that occur in any component annotation set. 
This indicates that different component methods assign different GO terms to genes. 
Therefore, combining annotations from different methods results in increased diversity of 
GO term assignments. Moreover, the aggregate annotation set has higher specificity than the 
mixed-method pipelines which have higher coverage, but has lower specificity than all other 
component annotation sets. 

Genes that are annotated with at least one GO term from each component annotation set 
were compared among the three different method types (i.e., sequence-similarity, domain-
based, and mixed-methods; see Fig 3a). This comparison revealed that less than a quarter of 
genes had been annotated by all three methods, but more than half were annotated by two 
different methods. The remainder were only annotated by mixed-method pipelines. 
Sequence-similarity and domain-based methods resulted in annotations to genes that were 
also annotated by mixed-method pipelines. The number of genes annotated by domain-based 
methods and mixed-method pipelines, and are not annotated by sequence-similarity based 
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methods are higher than genes annotated by all three methods. In contrast, sequence-
similarity methods shared more genes with both other annotation sets than only with mixed-
method pipelines. Moreover, only mixed-method pipelines annotate at least one GO term to 
all genes in the maize FGS. 

Although the mixed-method pipelines annotated all genes, they did not capture all GO 
terms annotated to genes by the other methods. GO term assignments were compared to 
evaluate the diversity of the GO terms present in the three types of GO annotation methods 
(see Fig 3b). GO terms annotated directly and ancestral terms inferred from the direct terms 
annotated to genes were compared among the three GO annotation methods used in maize-
GAMER. The number of GO terms annotated by sequence-similarity, domain-based, and 
mixed-method pipelines were 3,794, 8,145, and 14,225, respectively. The number of GO 
terms annotated by the mixed-method pipelines are significantly higher than both other 
methods, however there are a small number of GO terms that are only annotated by 
sequence-similarity (721) and domain-presence (16) methods. Only a small proportion 
(23.05%) of the total (15,028) GO terms are annotated by all three methods. 

 
4.1.2 GO Category-specific Evaluations of maize-GAMER Component Annotation Sets 

CAFA1 indicated that annotations for some GO categories are easier to predict than others 
(Radivojac et al., 2013). This indicated that the GO category specific evaluations could 
provide a more accurate comparison between component methods. This would also allow 
unbiased comparison of tools which do not predict certain categories (e.g., FANN-GO 
doesn’t predict the CC category). Therefore, maize-GAMER derived annotation sets were 
divided into specific GO categories (i.e., CC, BP, and MF) and each category was evaluated 
separately based on coverage, number of annotations, and hF1. 

Mixed-method pipelines had higher coverage across all three GO categories. Argot2 
covered more than 80% genes across all three categories (see Fig 3c). FANN-GO does not 
annotate GO terms for CC category, but had 100% coverage in BP category, and covered 
about 50% genes in MF category. PANNZER had the lowest coverage compared to the other 
mixed-method pipelines, and covered only 30-50% of genes across different categories, and 
had highest coverage in BP. Sequence-similarity methods consistently had lowest coverage 
compared to other methods in BP and MF, but IPRS had the lowest coverage in CC. IPRS 
covered higher number of genes than sequence-similarity methods in BP and MF, but had 
lower coverage than mixed-method pipelines. When comparing IPRS coverage across three 
GO categories, the coverage was highest in MF. Aggregate annotation set covered slightly 
more genes than the component annotation sets with highest coverage in each category, and 
covered more than 88% of the FGS genes in all categories. In the BP category, the aggregate 
annotation set annotated all genes from maize FGS with at least one annotation. 

Mixed-method pipelines produce a higher number of annotations than other methods in 
all three GO categories. Moreover, the number of annotations from mixed-method pipelines 
loosely correlate with coverage in different GO categories. The only exception was 
PANNZER, which annotated more GO terms per gene in BP category (data not shown), than 
any other component annotation set. The number of annotations from sequence-similarity 
methods and IPRS were consistently lower than mixed-method pipelines. The variation in 
the number of annotations was proportional to the number of genes annotated in sequence-
similarity and IPRS methods. The lowest number of annotations was seen in the CC category 
from IPRS, and sequence-similarity methods in other GO categories. As the union of all 
component method annotations, the aggregate annotation set had a higher number of 
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annotations in all three GO categories. The highest number of annotations for the aggregate 
annotation set was from the BP GO category, followed by CC and MF. 

We used hF1 scores as a representation of the quality of annotations and annotation sets. 
As described in materials and methods, the hF1 was calculated individually for all genes in 
the gold standard dataset and then averaged across all genes within an annotation set. There 
are clear differences in hF1 across different GO categories. The highest performance was 
seen in the MF category, and the lowest performance is seen in the BP category. This fits the 
observation from CAFA1 (Radivojac et al., 2013). Mixed-method pipelines outperformed 
other methods in all three GO categories. PANNZER produced the highest hF1 within the 
MF category, but Argot2 had the highest hF1 scores in CC and BP. IPRS outperformed 
sequence-similarity methods in both MF and BP categories, but was the lowest performing 
method in the CC category. Comparison between two sequence-similarity methods indicated 
that maize-UniProt method performs better than the maize-TAIR method in MF and BP 
categories. On the other hand, maize-TAIR method performs better than maize-UniProt 
method in the CC category. Aggregating the component annotations from maize-GAMER 
increased the performance in the CC category. In contrast, aggregating the component 
annotation sets did not increase the performance compared to the top performing tool in 
other categories. 

 
4.2 Evaluation of Existing Maize GO Annotation Sets and Comparison to the 

maize-GAMER Aggregate Annotation Set 

Two existing maize GO annotation sets, Gramene and Phytozome, were downloaded, 
evaluated, cleaned (i.e., redundancies and duplicates were removed), and compared with 
maize-GAMER aggregate annotations (referred to as the “maize-GAMER annotation set”). 
The same metrics used for the evaluation of maize-GAMER derived annotation sets were 
used for the comparison among the existing maize GO annotation sets and maize-GAMER 
aggregate annotation set. 

 
4.2.1 General Evaluation of Public Maize GO Annotation Sets 

The maize-GAMER aggregate annotations covered all genes in the maize FGS with at least 
one GO term, but Gramene and Phytozome covered only about half the genes (see Table 4). 
Phytozome covered the fewest genes (less than half of the genes), and Gramene covered 
slightly more than half of the genes (see Table 4). The maize-GAMER annotation set had 
more annotations than both Gramene and Phytozome. Gramene had two-fold more 
annotations than Phytozome, and the maize-GAMER had severalfold more annotations than 
Gramene. While the maize-GAMER has higher coverage and a higher number of 
annotations, it has lower average specificity than Gramene and Phytozome. Gramene has the 
highest average specificity of all three annotation sets. 

Genes with annotations from each set were compared to see the distribution of annotated 
genes among different annotations (see Fig 4a). Genes from Gramene and Phytozome 
annotations were a subset of the maize-GAMER annotations. Less than half of the genes 
were annotated in all three sets, and slightly more than half of the genes were annotated in at 
least two sets. Comparison of Gramene and Phytozome annotations show that most of the 
genes that were annotated were shared. Both Gramene and Phytozome had genes that were 
annotated in only one of the two (i.e., Gramene or Phytozome but not both; See Fig 4a). 

GO terms annotated directly to genes by different methods and ancestral GO terms 
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propagated from these annotations were compared among the three annotation sets. The 
number of GO terms annotated in each set varied greatly. The least diverse set in terms of 
number of GO terms annotated was Phytozome, which was annotated with only 3,234 GO 
terms (approximately 7% of total GO terms). Gramene has annotated 7,215 GO terms 
(approximately 16%), and was more diverse than Phytozome, but had lower diversity than 
maize-GAMER. maize-GAMER had the highest diversity and contained 15,028 GO terms 
(approximately 33%). A small number of GO terms were used by all three annotation sets, 
and the majority of terms from Phytozome were shared across all three annotation sets. Only 
a single GO term was exclusive to the Phytozome annotations, and small number of terms 
were found to be exclusive to Gramene annotations. Approximately 50% of the GO terms 
from maize-GAMER were unique. The maize-GAMER aggregate annotations shared a 
higher number of GO terms with Gramene than Phytozome. 

 
4.2.2 GO Category-specific Evaluations of maize-GAMER and Existing Maize GO 

Annotation Sets 

Annotations from the three maize GO annotation sets were analyzed in a GO category-
specific manner to identify differences in performance among the different categories (see 
Figure 4c). As was true for the component annotation sets, three different metrics were used 
for evaluation and comparison: coverage, number of annotations, and hF1 score. 

Comparison of coverage across GO categories indicated that all annotation sets had 
lower coverage in CC category, compared to other categories. Both Gramene and 
Phytozome had lower coverage in BP than MF, but maize-GAMER had higher coverage in 
BP than MF. Lowest coverage for all annotation sets and categories was seen in the CC 
category for the Phytozome annotation set, and the highest coverage was seen in the maize-
GAMER aggregate annotation set in the BP category. Comparison among the three maize 
annotation sets indicates that the maize-GAMER annotation set had the highest coverage in 
all three categories by a large margin. Coverage from maize-GAMER was almost twofold 
that of Gramene, which had the next highest coverage in all GO categories. Gramene had 
higher coverage than Phytozome in all three categories. 

When the number of annotations were compared across different GO categories the 
lowest number of annotations for Gramene and Phytozome annotation sets were seen in the 
CC category. In contrast, maize-GAMER had the lowest number of annotations in the MF 
category. Moreover, both Gramene and Phytozome both had a higher number of annotations 
in the MF category whereas maize-GAMER had the highest number of annotations in the 
BP category. Comparison among the annotations sets illustrated that the maize-GAMER 
annotation set has the highest number of annotations in all three categories. Phytozome had 
the fewest annotations in all three GO categories. Number of annotations loosely correlated 
with coverage in different GO categories for both Gramene and Phytozome. Furthermore, 
maize-GAMER had the highest number of annotations in the BP category. The number of 
annotations from the maize-GAMER annotations for the BP was severalfold higher than 
other annotation sets (approximately 9x that of Gramene and approximately 28x that of 
Phytozome). 

The hF1 score reflects the overall quality of annotations produced by different pipelines 
used by the three maize annotation projects. Comparing performance of different pipelines 
across the three GO categories revealed a similar trend that was seen in the previous section. 
All pipelines had higher hF1 scores in the MF category and had lower hF1 scores in the BP 
category. The only pipeline that did not fit this trend was Phytozome, which had lowest 
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performance in the CC category. maize-GAMER had a higher hF1 score than other pipelines 
in the CC category. maize-GAMER also had higher performance than Phytozome in other 
categories, but performed slightly lower than Gramene in those categories. Gramene 
performed better than other pipelines in the MF and BP categories. Phytozome consistently 
had lower performance than other pipelines across all three GO categories. Phytozome’s 
performance was especially low in the CC category, which was the lowest hF1 score seen 
for any annotation set in any GO category. 

To visualize how GO annotation methods perform comparatively, the distribution of 
metrics hPr, hRc, and hF1 can be calculated across all genes included in the gold standard 
dataset. In Supplementary Figure S1, lower coverage by sequence-similarity and domain-
presence methods is illustrated by the high number of genes with a value of zero. In general, 
mixed-method pipelines are shown to perform better than other methods we used.  They 
cover more genes, and two of the three mixed-method pipelines have higher hPr and hRc 
than all other methods. The FANN-GO distribution is different from both other mixed-
methods: in general it has lower performance than other methods. This can be attributed to 
that fact FANN-GO annotations have lower specificity than other methods, and lower 
specificity results in lower values for hPr and hRc. In addition, the maize-GAMER has fewer 
genes with a value of 0 than both Phytozome and Gramene. 

 
4.3 Example Annotations from nana plant1 (na1) 

The gene nana plant1 (na1; GRMZM2G449033) has more annotations than any other gene 
in the gold standard dataset. A classical maize mutant with a dwarf phenotype (Hartwig et 
al., 2011), the na1 recessive mutant results from a loss-of-function mutation in the gene that 
affects the brassenosteroid (BR) biosynthetic pathway where BR is a plant hormone that is 
required for normal plant growth (Hartwig et al., 2011). In the gold standard dataset, na1 had 
7 biological process GO terms annotated. Annotations for na1 from different maize 
annotation sets were compared to the gold standard, and a subgraph for each annotation set 
and gold standard dataset was plotted (see Fig 5). Phytozome did not annotate any GO terms 
to na1 (see Fig 5a), but both Gramene (see Fig 5b) and maize-GAMER (see Fig 5c) have 
annotated BP GO terms for na1. Gramene annotates 3 GO terms na1 while maize-GAMER 
has annotated 13 GO terms to na1. Two GO terms from the gold standard are known to be 
related to na1 dwarf phenotype from previous studies, "brassinosteroid biosynthetic process" 
(GO:0016132) and "unidimensional cell growth" (GO:0009826). While both of these were 
annotated correctly by maize-GAMER (see Fig 5c), only one of them was correctly 
annotated by Gramene (see Fig 5b). Comparison of overlapping nodes indicates that the 
maize-GAMER aggregate annotation set also contains a number of less specific non-leaf 
terms which overlap with nodes inferred from gold standard dataset. Overall, the maize-
GAMER has larger proportion of overlapping nodes with the gold standard than the 
Gramene for the BP GO category. 

The different approaches taken by the pipelines from Gramene and maize-GAMER result 
in different annotations for the example case study of the maize na1 gene. Gramene has a 
lower number of GO terms annotated to na1 than maize-GAMER. The average specificity of 
GO terms annotated in the BP category for na1 (see Figure 5) is not significantly different 
between GAMER (mean=12.154) and Gramene (mean=12.667) pipelines (2-sided 2-group 
Wilcoxon rank-sum test; p = 0.89). This example from na1 indicates that the specificity of 
the annotations are not significantly different for specific instances, but are different when 
compared overall. We further compared the GAMER component and aggregate dataset 
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creation methodologies annotate gene function to that of Gramene and Phytozome by 
comparing the hPr, hRc, and hF1 metrics for the na1 gene (See Supplementary Figure S2). 
Phytozome’s method stands out because it has no annotations for na1, thus all the metrics 
have a value of 0. The GAMER aggregate dataset has higher hF1 score compared to 
Gramene, and has higher hPr and hRc as well. Among the component datasets, Pannzer has 
the highest hF1 score and highest hRc. InterProScan has the highest hPr, but its lower hRc 
reduces the hF1. FANN-GO and Argot2 have lower metrics due to lower specificity of 
annotations compared to other methods. 

 

5 Discussion 
In keeping with our goal, through the maize-GAMER project we were able to improve the 
GO annotation dataset for maize and to document inputs, methods, and results at a level that 
enables both reproducibility and reuse of the pipeline for future genome versions. 

To determine how best to create an improved maize annotation dataset, we tried out 
multiple different methods and compared the resulting datasets based on a gold standard set 
of gene functions. This also enabled us to better understand differences in term assignments 
among the methods we used. Using the same gold standard, we also were able to compare 
resulting datasets to those produced by and available from Gramene and Phytozome. 
We used the hFmax metric to select high-confidence annotations from mixed-method pipelines 
and to evaluate annotation sets resulting from all methods under evaluation. We found that 
mixed-method pipelines developed for the CAFA1 challenge outperformed RBH and domain-
presence methods for GO annotation (Radivojac et al., 2013). They covered more genes with 
annotations, produced higher number of annotations, and had higher hF1 score than both 
sequence similarity and domain-based methods. The higher performance from mixed-method 
pipelines are the outcome of advanced statistical (Falda et al., 2012; Koskinen et al., 2015) 
and machine learning approaches (Clark and Radivojac, 2011) used to reduce the false 
positive and false negative annotations. Mixed-method pipelines do have a limitation: they 
have higher coverage but annotations are less specific in general when compared with 
datasets produced using other approaches. This could be due to the dearth of training dataset 
for the more specific GO terms, which is required for training machine learning methods. 

When we aggregated the predictions from RBH, domain-based methods, and three tools 
from CAFA1, we produced the maize-GAMER aggregate dataset, which covers more gene 
space than the datasets produced by Gramene and Phytozome, and with similar or better 
accuracy. While the higher coverage could cause concern, evaluating the annotations using 
the gold standard has shown that the performance is similar or better than existing datasets. 
This also indicates that maize-GAMER annotations are no less reliable than Gramene and are 
in fact are better than those for Phytozome. Removing less specific GO terms annotated by 
some methods in cases where there were more specific GO terms annotated to the same genes 
was important for aggregating different datasets. In certain cases, more than one annotations 
with lower specificity were replaced by a single annotation with higher specificity. As with 
any computational approach to annotate GO terms, the current maize-GAMER dataset should 
be considered as an initial step in improving the GO annotations in maize. As future iterations 
of the CAFA competition evaluate new tools and methods for GO annotations, we anticipate 
that the quality of computational maize GO annotations could be iteratively improved in a 
reproducible manner by continuing to apply the newest, best performing methods. 

To enable better reproducibility, we have generated a supplementary document with exact 
parameters and commands used to generate the maize dataset. We are currently in the process 
of formalizing the code used to generate the maize GO annotation set into a reusable pipeline 
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called GO-MAP. Once completed, the GO-MAP pipeline can be used for GO annotation of 
newly sequenced plant genomes as well as existing plant genomes. The pipeline will be made 
freely available, and will utilize the same methods and datasets used for maize. 
The set of manually reviewed gene function annotations for maize that we call the gold 
standard is both incomplete and sparse. This situation does not reflect the amount of 
published literature describing gene function for maize. Instead, this situation is due to limited 
curation of gene function into GO terms. While tools exist at MaizeGDB that enable 
researchers to assign GO terms to genes directly, these tools remain poorly utilized. In an 
effort to improve community engagement and to upgrade the evidence codes for GO 
assignments, our next step for maize-GAMER will be to develop and deploy a tool to enable 
experts in the maize community to review existing GO annotations. By enabling GO 
annotation review through expert crowdsourcing, term assignments produced by 
computational pipelines including GAMER can be upgraded from IEA (inferred from 
electronic annotation) to RCA (reviewed computational analysis). In this way, we will enable 
the transfer of collective knowledge members of the maize community have generated over 
the years to produce higher-quality functional annotation datasets for maize with clear 
extension of this practice for other species. 
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10 Figures 

 
Figure 1: Numbers of annotations by EC category. 
Arabidopsis (TAIR10) shown in magenta, maize in green and orange for Gramene and Phytozome, 
respectively. Annotation counts on the y-axis are shown in thousands. Each bar in the histogram is 
labeled with the actual count to show where counts are so small that no bar is visible. 
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Figure 2: Overview of steps to produce the maize-GAMER datasets. 
Three types of methods are used: sequence-similarity (yellow), domain presence, (blue) and 
CAFA mixed-method pipelines (green). Within sequence-similarity, two input datasets were 
subjected to reciprocal-best-hit against maize: TAIR10 (Arabidopsis) and UniProt (the ten most 
well-annotated plant species). For domain presence, InterPro signatures were applied to maize 
using InterProScan (IPRS). From the CAFA mixed-method pipelines, Argot2, FANN-GO, and 
PANNZER were applied to maize. For each individual output, duplications and redundancies 
were removed, then the datasets were combined. A second round of duplication and redundancy 
removal was carried out to produce the maize-GAMER Aggregate dataset. 
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Figure 3: GO assignment metrics for each method type. 
Sequence-similarity in yellow, domain presence in blue, and mixed-method pipeline in green. (a
Number of genes with at least one GO term annotated. (b) Number of GO terms with at least on
gene annotated. (c) Percent coverage, number of annotations, and average hF1 score for each
annotation set across the three GO graphs (i.e., Cellular Component, Molecular Function, and
Biological Process). Color codes as used in (a) and (b), with the aggregate dataset shown in orange
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Figure 4: GO assignment metrics for Gramene, Phytozome, and maize-GAMER.  
Gramene in green, Phytozome in rust, and maize-GAMER in tan. (a) Number of genes with at 
least one GO term annotated. (b) Number of GO terms with at least one gene annotated. (c) 
Percent coverage, number of annotations, and hF1 score for each annotation dataset across the 
three GO graphs (i.e., Cellular Component, Molecular Function, and Biological Process). 
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Figure 5:  
 
Biological Process GO graph for maize na1. 
Leaf terms are toward the bottom, root terms are toward the top. Terms covered only by the gold 
standard are shown in orange (labeled G), those in the dataset but absent from the gold standard 
are shown in blue (labeled D), and those that appear in both are shown in green (labeled DG). Leaf 
terms in each subgraph have an * next to them. Phytozome graph is shown at the top (5a) Gramene 
graph is shown in the middle (5b), and maize-GAMER aggregate graph is shown at the bottom 
(5c). 
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11 Tables 
 

Table 1: Evidence Codes used in gene ontology annotations 
 

Type Evidence Code Description 

Experimental 

EXP Inferred from Experiment 
IDA Inferred from Direct Assay 
IPI Inferred from Physical Interaction 
IMP Inferred from Mutant Phenotype 
IGI Inferred from Genetic Interaction 
IEP Inferred from Expression Pattern 

Computational Analysis 

ISS Inferred from Sequence or structural Similarity 
ISO Inferred from Sequence  Orthology 
ISA Inferred from Sequence Alignment 
ISM Inferred from Sequence  Model 
IGC Inferred from Genomic Context 
IBA Inferred from Biological aspect of Ancestor 
IBD Inferred from Biological aspect of Descendant 
IKR Inferred from Key Residues 
IRD Inferred from Rapid  Divergence 
RCA Inferred from Reviewed Computational  Analysis 

Author statement 
TAS Traceable Author Statement 
NAS* Non-traceable Author Statement 

Curatorial Statement 
IC Inferred by Curator 
ND* No biological Data available 

Automatically-Assigned IEA* Inferred from Electronic Annotation 

* Indicates evidence codes without either curation or biological data supporting them. 
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Table 2: Metrics used to analyze and evaluate the annotation datasets 
 

Analysis Metrics* 
Metric Description Formula 

Duplication (%) Proportion of duplicate annotations in a dataset # of Total Annotations-# of Unique Annotations# of Total 

Annotations 

Redundancy 
(%) 

Proportion of redundant terms in a dataset ∑�
���

# of Ancestral terms annotated to Gene���
# of total Annotations to Gene���

� 100

�
 

Coverage (%) Proportion of Genes annotated in a dataset # of Genes with ≥ one GO annotation 

# of Genes 

Specificity Specificity of the Annotation for a given gene 
∑�
��� # of Ancestral terms inferred for Annotation���

# of total Annotations
 

Comparison Metrics† 

Metric Description Formula 

hPr Hierarchical Precision calculated by evaluating against 
the gold standard 

GO terms predicted in AS ∩ GO terms annotated in GS 

GO terms predicted in AS 

hRc Hierarchical Recall calculated by evaluating against the 
gold standard 

GO terms predicted in AS ∩ GO terms annotated in GS 

GO terms annotated in GS 

hF1 Harmonic mean of hPr and hRc 2 ×     hPr ×hRc 

            hPr+hRc 

 
*Comparison Metrics used here have been described in detail in (Defoin-Platel et al., 2011).  
†See Supplementary Section 11.1 for precise steps to calculate hPr and hRc. Notations used as follows, N:  Total # of Annotations, M:  Total # of Genes, AS:  
Annotation Set, GS:  Gold Standard. 
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Table 3: Results from the general evaluation of maize-GAMER derived annotation sets 
 

Method Type Sequence-Similarity Domain CAFA Mixed-Methods Union 
Annotation Set TAIR-RBH Plant-RBH IPRS Argot2 FANN-GO PANNZER Aggregate 
Raw Annotations 61,528 106,053 200,324 450,013 618,312 1,091,123  

Duplication (%) 9.11 65.89 72.18 0.33 1.07 0.97  
Redundancy (%) 14.18 9.17 10.91 48.25 59.84 73.09  

 
Clean Annotations 35,791 32,085 46,599 224,827 187,850 219,984 515,059 

Coverage (%) 23.70 20.10 48.48 92.64 100.00 47.86 100.00 
Specificity 11.54 12.20 10.45 8.54 5.30 11.58 9.56 
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Table 4: Overall results from maize-GAMER and other existing maize datasets 

Analysis Metric Existing maize-GAMER 
Gramene Phytozome aggregate 

Raw Annotations 111,203 66,709  
Duplication (%) 0.00 37.90  
Redundancy (%) 23.25 7.24  

 
Clean Annotations 81,315 36,987 515,059 

Coverage (%) 55.55 40.87 100.00 
Specificity 10.90 10.41 9.56 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2018. ; https://doi.org/10.1101/222836doi: bioRxiv preprint 

https://doi.org/10.1101/222836
http://creativecommons.org/licenses/by/4.0/

