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In the present work, we consider a geometric network ap-
proach to study common biological features of anticancer drug
response. We use for this purpose the panel of 60 human
cell lines (NCI-60) provided by the National Cancer Institute.
Our study suggests that utilization of mathematical tools for
network-based analysis can provide novel insights into drug
response and cancer biology. We adopted a discrete notion
of Ricci curvature to measure the robustness of biological
networks constructed with a pre-treatment gene expression
dataset and coupled the results with the GI50 response of the
cell lines to the drugs. The link between network robustness
and Ricci curvature was implemented using the theory of op-
timal mass transport. Our hypothesis behind this idea is that
robustness in the biological network contributes to tumor drug
resistance, thereby enabling us to predict the effectiveness and
sensitivity of drugs in the cell lines. Based on the resulting
drug response ranking, we assessed the impact of genes that
are likely associated with individual drug response. For im-
portant genes identified, we performed a gene ontology enrich-
ment analysis using a curated bioinformatics database which
resulted in very plausible biological processes associated with
drug response across cell lines and cell types from the biologi-
cal and literature viewpoint. These results demonstrate the po-
tential of using the mathematical network analysis in assessing
drug response and in identifying relevant genomic biomarkers
and biological processes for precision medicine.
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In this paper, we propose the use of certain tools from discrete
geometry to gain new insights into cancer drug response. For

this purpose, we tested our methodology on the panel of 60
human cancer cell lines (the NCI-60). It has been more than
30 years since the U.S. National Cancer Institute (NCI) estab-
lished a human cell line panel for the purpose of discovering
novel cancer drugs. The NCI-60 panel was designed to recast
the previous murine-based drugs from leukemia treatment to
the treatment of more diverse human solid tumors. This depar-
ture was due to the difference and diversity of the biology of
human tumors from murine leukemia (1). This panel was devel-
oped as part of the NCI’s Developmental Therapeutics Program
(DTP, http://dtp.nci.nih.gov) to screen in vitro response to over
100,000 chemical compounds and natural products including
FDA-approved anti-cancer drugs and those currently undergoing

clinical trial. This ongoing service is accepting global submis-
sions and continues screening up to 3,000 small molecules per
year as potential anti-cancer therapies. The 60 human tumor
cell lines represent nine tumor types: leukemia, breast, central
nervous system, colon, skin, lung, ovarian, prostate, and renal
cancers. The NCI-60 panel is thus an established tool for in vitro
drug screening and has significantly improved the philosophy
and research of human cancer drugs (2). This panel has led
to many important discoveries, including a general advance in
the understanding of the mechanism of cancer and the action of
drugs (3, 4). Moreover, comprehensive genomic data including
transcript expression data, protein expression data, re-sequencing
(mutation) data, DNA copy number, and methylation as well as
drug screening GI50 data on the 60 cell lines make it a unique
resource for system pharmacogenomics and systems biology (5).
Most importantly for our work, this data resource enables us to
explore both pre-treatment genomic data and drug responses of
a notable number of FDA approved anticancer agents (∼130)
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which is unmatched by any other cancer databases (1).
We are interested in analyzing the gene interaction network

for these cell lines via mathematical tools. In recent years, there
have been tremendous efforts to elucidate the complex mecha-
nisms of biological networks by investigating the interactions of
different genetic and epigenetic factors. Given that gene/protein
interactions inherently form a mathematical network, it is rea-
sonable to expect that mathematical tools can facilitate a better
understanding of the complexities of such networks (6). The
mathematical methods and tools employed in mathematical net-
work analyses are quite diverse and heterogeneous, ranging from
graph theory as abstract representations of pairwise interactions
to complicated systems of partial differential equations that try
to capture all details of biological interactions. Here, we adopted
the notion of Ricci curvature in a discrete setting to study the
gene interaction network.

The mathematical notions can be summarized as follows.
Ricci curvature is a fundamental concept in Riemannian geome-
try; see (7, 8) for all of the details. Here, we use an analogous
notion on discrete spaces, namely, Olivier-Ricci curvature (9, 10).
The concept of curvature was initially introduced to express the
deviation of a geometric object from being flat. The Riemann cur-
vature tensor of such a manifold encodes key geometric proper-
ties and expresses the deviation from Euclidean (flat) space. The
sectional curvature is defined on two-dimensional subspaces of
the tangent planes, and Ricci curvature is the average of sectional
curvatures of all tangent planes containing some given direction
(7). Interestingly, Ricci curvature also appears in optimal mass
transport theory (11, 12), and serves as the motivation for certain
discrete analogues. Indeed, on a Riemannian manifold, one can
endow the space of probability densities with a natural Rieman-
nian structure (13, 14) employing the 2-Wasserstein distance
from optimal mass transport (15). Thus, given the Riemannian-
type metric, one can define a notion of geodesics on the space of
probability densities. As noted by Lott-Sturm-Villani (16–18),
considering this Riemannian structure, one can relate the Ricci
curvature of the underlying manifold, the entropy of densities
along a given geodesic path, and the 2-Wasserstein distance in
one remarkable formula (see our discussion below for the de-
tails). In conjunction with the Fluctuation Theorem (19), we
can conclude that increases in the Ricci curvature are positively
correlated with increases in the robustness, herein expressed as
∆Ric×∆R ≥ 0. Following our previous work (20–22), we are
interested in finding important nodes (genes) within the network
in terms of robustness.

Coupling the results of the network analysis with the drug
growth inhibition values provides us with a network-based guide
to the sensitivity/ resistance of the tumor cell lines to these drugs.
Here, due to some missing values, we focus on a subset of 58
cell lines. The transcription expression data provided for these
cell lines along with the gene-to-gene relationships enables us
to construct a weighted network. Investigating this network and
relating the information it provides to the drug response gives a
novel insight through the NCI-60 database which has not been
studied using a network mathematical approach before.

Our main results are based on the application of the aforemen-
tioned discrete notion of Ricci curvature to the network generated

from the pre-treatment gene expression for all 58 cell lines. This
notion allows us to identify possible targets for the anti-cancer
drugs. Moreover, for a given drug, we find the average Ricci cur-
vature of the genes whose expressions are significantly correlated
to the GI50 response of the drug. In fact, we identify which part
of the network is most correlated to a specific drug’s action. The
average Ricci curvature for this subnetwork can act as a guide
to the sensitivity/resistance of cell lines to the drug. Specifically,
the more degree of robustness for the subnetwork can identify
the resistance of the drug along the tested cell lines. We are also
interested in the biological processes that the significant genes
of effective drugs are involved in. This can help us to detect key
biological processes associated with the drug response.

The results in the present work are all derived from the net-
work analysis of the NCI-60 genomic information. In our work,
we utilized geometric tools in discrete mathematics to better
understand these complex networks. This point of view can help
to elucidate important drug stratification and biomarkers, which
in turn may allow researchers to glean new clinical information
from the NCI-60 database.

Methods

Background on curvature. In the present study, we employed
an analogous notion of Ricci curvature to analyze cancer protein
expression networks. In the classical continuous setting, the
Ricci curvature tensor provides a way of measuring the degree to
which the geometry determined by a given Riemannian metric
differs from that of ordinary Euclidean space; see (7) for all the
details. We briefly sketch the main ideas to motivate the discrete
definition applicable to the networks of interest.

Assume that M is a complete connected Riemannian mani-
fold equipped with metric g. Positive Ricci curvature at a point
of M is characterized by the following fact. Let x, y ∈ M be
two very close points defining tangent vector (xy). Moreover,
let ω be a tangent vector at x and ω′ be the tangent vector at y
obtained by parallel transport of w along (xy).Then (for positive
curvature), the trajectories of the geodesics corresponding to
ω and ω′ will approach each other. This can be compared to
the traditional flat geometry of a Euclidean space, where such
geodesics are always equidistant from each other with their “di-
rection" being unchanged by parallel transport. Equivalently,
this may be formulated by the fact that the distance between
two small geodesic balls is less than the distance of their centers.
Ricci curvature along the direction (xy) quantifies this, averaged
on all directions w at x. On the other hand, when the curvature
is negative, the geodesics diverge. Lower bounds on the Ricci
curvature prevent geodesics from diverging too fast and geodesic
balls from growing too quickly in volume (7). In other words,
lower Ricci curvature bounds estimate the tendency of geodesics
to converge.

Interestingly, optimal transport offers a formulation of lower
Ricci curvature bounds in terms of entropy (17, 18). Optimal
mass transport theory is concerned with the problem of finding an
optimal transport plan (relative to some cost function) for moving
a given initial mass distribution (or gene expression levels in our
case) µ into a final configuration ν in a mass preserving manner
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Fig. 1. In a positively curved space the distance between the end points
of tangent vectors ω and ω′ is less than δ. Curvature (K) quantifies this
difference.

(11, 12, 16, 23). We will assume that µ and ν are normalized
to be probability measures. Let (X , d) denote a metric measure
space. Then the p-Wasserstein distance between µ and ν is
defined as

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)pdπ(x, y)
)1/p

where the latter infimum is taken over all joint probability mea-
sures π on X × X whose marginals are µ and ν, i.e.:

∀U, V ∈ X µ(U) = π(U ×X), ν(V ) = π(X × V ).

Consider the case X is a Riemannian manifold. The Wasser-
stein distance defines a Riemannian distance function on the
space of the probability measures on X (13, 14) . We denote this
space by P2(X ) := (P (X ),W2). Using the theory of optimal
transport, Lott, Sturm and Villani (17, 18) derived an elegant
connection between Ricci curvature, Ric, and the Boltzmann en-
tropy, Ent. Namely, Ric ≥ k if and only if the entropy functional
is displacement k-concave along the 2-Wasserstein geodesics,
i.e. for all µ0, µ1 ∈ P2(X ) and t ∈ [0, 1] we have:

Ent(µt) ≥ (1−t) Ent(µ0)+tEnt(µ1)+k t(1− t)2 W2(µ0, µ1)2.

[1]
Note that by definition,

Ent(µ) := −
∫
X
ρ log ρ dvol

where ρ = dµ/dvol.

Robustness defined on networks. The relation (1) indicates
a positive correlation between changes in entropy and changes
in Ricci curvature that we express as

∆Ent×∆Ric ≥ 0. [2]

We will describe notions of Ricci curvature and entropy on
graphs below. We just note here that changes in robustness,
i.e., the ability of a system to functionally adapt to changes in
the environment (denoted as ∆R) is also positively correlated

with entropy via the Fluctuation Theorem (19), and thus with
network curvature:

∆R×∆Ric ≥ 0. [3]

More precisely, the measure of robustness employed in (19)
is the rate function, R, from the theory of large deviations (24).
One considers random perturbations of a given network that
result in deviations of some observable. We let pε(t) denote the
probability that the mean of the observable deviates by more
than ε from the original (unperturbed) value at time t. Since
pε(t)→ 0, we want to measure its relative rate, that is, we set

R := lim
t→∞

(−1
t

log pε(t)).

Therefore, large R means not much deviation and small R large
deviation. In thermodynamics, it is well-known that entropy
and rate functions from large deviations are very closely related
(19). The Fluctuation Theorem is an expression of this fact for
networks, and may be written as

∆Ent×∆R ≥ 0. [4]

The Fluctuation Theorem has consequences for just about any
type of network: biological, communication, social, or neural
(19). In rough terms, it means that the ability of a network to
maintain its functionality in the face of perturbations (internal
or external), can be quantified by the correlation of activities
of various elements that comprise the network. In the standard
statement, this correlation is given via entropy. This has been
reformulated geometrically in terms of curvature (21, 22). We
will now give the precise definition for networks modeled as
weighted graphs.

Curvature on weighted graphs. In discrete settings, we as-
sume that our network is represented by an undirected and pos-
itively weighted graph, G = (V,E), where V is the set of n
vertices (nodes) in the network and E is the set of edges. We set

dx :=
∑
z

wxz

µx(y) := wxy
dx

, [5]

where the sum is taken over all neighbors z of x, andwxy denotes
the weight of an edge connecting x and y (it is taken as zero if
there is no connecting edge between x and y).

One of the key characterizations of Ricci curvature on a
discrete metric measure space, is via the Ollivier-Ricci curva-
ture. As discussed by Ollivier (10) and indicated in Fig. 1, the
Ricci curvature of Riemannian manifold can be characterized by
comparing the distance between small geodesic spheres and the
distance between their centers. Ollivier then extended this idea
from the geodesic sphere to an associated probability measure
near a point on a metric space X .

Consider any metric d : V × V → R+ on the set of vertices
V . For example, d(x, y) may denote the number of edges in the
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Fig. 2. Methodology for establishing a network-robustness ranking of genes across cancer drugs and cancer cell lines: A. GI50 drug activity matrix of 129 drugs for
58 cell lines. B. Matrix of 8240 gene expressions for 58 cell lines. C. Pre-treatment network made by the gene expression correlation along 58 cell lines as the
weights, and the underlying topology of gene-to-gene interactions is derived from HPRD. D. Matrix of Spearman’s correlations between each drug’s activity (rows of
matrix A.) and gene expression (rows of matrix B.) along 58 cell lines. E. Ranking drugs in ascending order of average Ricci curvature values of significant genes. F.
Drug ranking used to score the significant genes correlated to the drugs. G. Top 200 genes selected for gene ontology enrichment analysis.

shortest path connecting x and y. For any two distinct points
x, y ∈ V , the Ollivier-Ricci (OR) curvature is defined as follows:

k(x, y) := 1− W1(µx, µy)
d(x, y) , [6]

where µx, µy are defined in (5). In the present study, we used
the Hungarian algorithm (25) to compute the Earth Mover Dis-
tance on our reference networks. This discrete notion of Ricci
curvature has been already used to investigate the robustness of
cancer networks (21, 22).

Using this edge based notion of curvature, we can also define
the scalar curvature of a given node in the graph as follows:

SOR(x) :=
∑
y

k(x, y),

where the sum is taken over all neighbors of x.

Gene expression and drug activity data. The mRNA expres-
sion data for the NCI-60 human tumor cell lines were retrieved
from the CellMiner (http://discover.nci.nih.gov/cellminer).
Cellminer is a web application written by the Genomics & Bioin-
formatics Group, LMP, CCR, NCI (5), which provides freely
accessible analysis tools and downloadable data sets for explor-
ing NCI-60 data. The database contains transcript expression
values for several assays of the NCI-60 cell lines. This study
utilizes Affymetrix HG-U133 (A-B) with GeneChip RMA (GC-
RMA) normalization from this website.

Using these gene expressions arrays, we found the gene-to-
gene correlations to build our weighted networks. The underly-
ing topology has been derived from Human Protein Reference
Database (HPRD, http://www.hprd.org) (26). Affymetrix HG-
U133 (A-B) data contains 34,899 probes. For the repeated gene

IDs, we found the average RNA expression of the corresponding
probes. We used only probes with known gene names. Resulting
in 16,821 genes with RNA expression. We chose the intersec-
tion of these genes with the HPRD database as the nodes of the
pre-treatment network. Overall, the network consists of 8240
genes. The weights of the edges are defined by the Pearson cor-
relation between the gene expressions along the 58 cell lines. We
further used the transformation of (1+corr(i,j))

2 for the genes i
and j to make a positively weighted network. We then found the
Ollivier-Ricci curvature for all the edges, and the scalar curvature
for all the nodes (genes) within the pre-treatment network. We
further identify significant genes (nodes) for each drug in this
network. These important genes were selected based on signifi-
cant Spearman’s correlations (p-value < 0.05) between drugs’
activity, 50% growth inhibition (GI50), and gene expressions
across the cell lines. Finally, we computed the average of Ricci
curvature values for the significant genes associated with each
drug.

The GI50 is the drug concentration resulting in a 50% reduc-
tion in the net protein increase during drug incubation as com-
pared with the same increase in control cells (27, 28). Normal-
ized (− log10) GI50 was retrieved using R package, rcellminer
for exploring CellMiner database. This package complements
the functionality of CellMiner by providing programmatic data
analysis and visualization (31). Fig. 3(b) derived from the
rcellminer package illustrates the Spearman’s correlation (Rs)
between the gene expression of MYC (z-score) and methotrexate
activity (z-score). In this case, the correlation is very signifi-
cant (Rs = 0.41) with a very low p-value (0.001). Finding
the correlation between all selected genes and FDA approved
drugs, we constructed the Spearman’s correlation matrix shown
in Fig. 2. There were no expression information of Affymetrix
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(a)

(b)

Fig. 3. (a) 58 cell lines distribution (b) Using expression data such as this
example (Methotrexate and MYC), Spearman’s correlation between each drug
activity’s GI50 and gene expression along cell lines has been calculated to
create the Spearman’s correlation matrix (D) shown in Fig. 2.

HG-U133 (A-B) for LC:NCI-H23 in non-small cell lung cancer
(NSCLC), and many missing GI50 values for the drug responses
of ME:MDA-N of the melanoma cell line. Excluding these two
cell lines resulted in 58 complete data sets (see Fig. 3(a)).

Ranking drugs and gene ontology enrichment analysis.
The summary of our methodology is shown in Fig. 2. The
FDA approved drugs correspond to 161 NSC drug numbers
(numeric identifiers for substances submitted to the National
Cancer Institute) with less than 2 missing GI50 values and 129
drugs with no missing values across all the cell lines. For each
drug, we identified genes whose expressions were significantly
correlated (p-value < 0.05) to GI50. The median number of
the genes selected for each drug was ∼500 with the minimum
number ∼300. The average Ollivier Ricci curvature of these
genes was calculated for each drug.

We then sorted the 129 FDA approved drugs in ascending
order of the average Ricci curvature (Fig. 2E) arguing that the
sensitivity of drugs in cell lines is positively correlated with the
changes in robustness of the nodes it perturbs in the network.
For the repeated drugs, the GI50 data were different for the dif-
ferent NSC numbers, and therefore, they have different rankings.
Although the rankings were close for these drugs, we generally

chose the highest ranking as a representative for the repeated
drug. Consequently, our final ranking consists of 106 drugs. We
primarily performed most of the programming via Matlab.

We used the drug ranking to assess the importance of 8240
genes in our network across cell lines. More precisely, we gave
a linear weight of (129 − r) + 1 to all the selected genes as-
sociated with the r-th ranked drug. Then, for each gene, we
computed the sum of all these weights and ranked the genes
in descending order of the total weights. Thus, the final gene
score increases if a gene (a) is important for many drugs, and (b)
strongly contributing to robustness across multiple drugs. For
a biological analysis, the top 200 genes were selected where
the histogram has an apparent sharp decline; see Fig. 5. We
performed a gene ontology (GO) enrichment analysis on the
top 200 ranked genes using the MetaCore software (Thomson
Reuters). The MetaCore is an integrated software based on a
manually-curated database of molecular interactions, molecular
pathways, gene-disease associations, chemical metabolism and
toxicity information.

Results

We found the scalar Ollivier-Ricci curvature of all the 8240 genes
in the pre-treatment interaction network discussed previously.
The scalar curvatures range between −210.4 and 3.6 with an
average of −5.2. Table S1 presents the top 40 genes with the
highest absolute value of Ricci curvature. The top two genes,
TP53 and YWHAG, stand out with regards to their Ricci curva-
tures (See Fig. S1). A visualization of the pre-treatment network
is provided in Fig. S2. We then rank the drugs based on the
average Ricci curvature of significant genes for each drug. The
top 30 ranked drugs are presented in Table 1. There are a number
of very effective drugs that are ranked highly in this table; we
elaborate on these drugs further in the discussion section below.
The ranking of all 106 drugs has been presented in Table S3.

Table 1. Top 30 drugs ranked by average Ricci curvature of sig-
nificantly correlated genes.

Drug ranking Drug name Drug ranking Drug name

1 Salinomycin 16 Doxorubicin
2 Gefitinib 17 Simvastatin
3 Homoharringtonine 18 Batracylin
4 Mitomycin 19 Daunorubicin
5 Idarubicin 20 Azacitidine
6 Geldanamycin Analog 21 Itraconazole
7 Cabozantinib 22 Dasatinib
8 Vinblastine 23 Arsenic trioxide
9 PX-316 24 Ibrutinib
10 Raloxifene 25 Tyrothricin
11 Pipamperone 26 Crizotinib
12 Erlotinib 27 Paclitaxel
13 Fluorouracil 28 Trametinib
14 Matinib 29 Fenretinide
15 Irinotecan 30 Tamoxifen

We validated this ranking by running the entire algorithmic
pipeline nine times; see Fig. 2. Each time we excluded all the
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(a)

(b)

Fig. 4. Color map numbered by excluding all the cell lines of the correspond-
ing cancer tissue in the pie chart, (a) Pie chart of cell lines distribution (b)
Spearman’s correlation is high between drug rankings.

cell lines of one of the nine cancer tissues. We then computed the
Spearman’s correlation between drug rankings resulting from all
the cell lines and those based on leave-one-out rankings. Inter-
estingly, correlations are very high with low p-values, showing
relative consistency of the results across cell lines. The color map
in Fig. 4(b) illustrates these correlations. The rows (columns) of
this symmetric map are numbered by excluding all the cell lines
of the corresponding cancer tissue shown in the pie chart in Fig.
4(a). For example, w1 corresponds to exclusion of all the five
cell lines of breast cancer. The 10th row (column) corresponds
to the case of considering all the cell lines. The correlation val-
ues are also included in the color map. As we see in Fig. 4,
the correlation is very significant among the rankings (p-value
<< 0.05), yet it is less significant after excluding the cell lines
of leukemia (4th column or row). In other words, ranking of the
drugs after exclusion of cell lines of leukemia is different from
excluding any of the other eight caner cell lines. This highlights
that the effect of leukemia in the drug ranking is different than
other cancer tissues. Of note, this is not a computational effect
alone, given that leukemia is not even the cancer type with the
greatest number of cell lines (colon, melanoma, lung and renal
have more cell lines; see Fig. 3(a)).

The top 200 ranked genes, which were selected based on the
drug ranking, are presented in Table S3. The results of the gene

ontology enrichment analysis of this 200 gene set are shown
in Fig. 6(a). The top ten biological processes presented with
very small p-values. The top three biological processes are all
involved with cellular localization. Also, the protein-protein
interaction network of this analysis is presented in Figure 6(b).
The network contains two hubs associated with the gene product
of CUX1 and PRKACA which will be elaborated upon in the
discussion section. In addition to analysis of all cancer cell lines,
we performed our algorithmic pipeline for three specific cancer
tissues with the greatest number of cell lines after melanoma:
colon (7 cell lines), lung and renal (both 8 cell lines) cancers. We
performed the gene ontology enrichment analysis using the top
200 genes (Table S3) for the cell lines of these specific cancer
tissues, and compared the results to the biological processes of
all the cell lines. We present the results of the gene ontology
enrichment analysis of the top 200 genes of colon, lung and renal
cancer tumors in Figure S3, S4, and S5. Interestingly, these
cancer types share some similar biological processes to those
resulting from all 58 cell lines, which we will discuss further in
the next section.

Discussion

In the present study, we considered the NCI-60 panel comprised
of 58 individual cancer cell lines derived from nine different
tissues (breast, brain, colon, blood, skin, lung, ovarian, prostate
and kidney). The gene expressions of the cell lines were used
to construct the network consisting of 8240 genes. This is a
weighted graph where the underlying interactions are derived
from Human Protein Reference Database. The weights are the
gene-to-gene (Pearson) correlations. The network was analyzed
by calculating the discrete Ricci curvature. Based on our argu-
ments in the Methods section, we claim that this could be a guide
for the robustness of the network, i.e., the ability to withstand
perturbations in the system. In our case, these perturbations are
induced by the drugs.

The scalar Ricci curvature helps us to identify the important
targets (genes) for the drugs within the network. We present the
top 40 genes with the least negative (highest absolute value) of
Ricci curvature in the pre-treatment network in table S1. The
top two genes, TP53 and YWHAG have very low scalar Ricci
curvatures compared to other genes (See Table S1). Of note,
mutations of TP53 are present in more than 50% of human
cancers, making it the most common genetic event in human
cancer (29, 30). This gene has many connections to other genes
within the network which also contributes to its extreme value of
scalar Ricci curvature (See Figure S2). Even though our primary
focus in this study is to identify the important genes based on
drug response (Figure 5) and the biological processes they are
involved in (Figure 6), we briefly discuss the roles of TP53 and
YWHAG (top 2 ranked genes in the pre-treatment network) in
cancer pathogenesis in the supporting information section.

Furthermore, we measure the effectiveness of the drugs by the
average Ricci curvature of the nodes (genes) it affects. For each
drug, we found the significantly (positive/ negative) correlated
genes by computing the correlation between GI50 and gene
expression along the 58 cell lines. The significant genes for each
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drug were chosen based on p-values less than 0.05. On average
∼500 genes were selected for each drug. The average discrete
Ricci curvature of these genes was calculated for each drug.
Since Ricci curvature and robustness are positively correlated,
we were able to rank the network robustness of the drugs by
calculating the average Ricci curvature. When the network has
higher curvature, we expect that it should show more resistance
to the drug. Therefore, the ranking of the drugs in ascending
order (of average Ricci curvature), can guide us to the efficacy
of the drugs for the cell lines. This network based view of the
drug’s effectiveness considers the gene interactions of the cell
lines as well as the drug response. The table of top 30 drugs is
presented in Table 1. We also provide the table of all 106 drug
ranking in supporting information, Table S3.

Salinomycin, the first ranked drug, has recently been consid-
ered as a promising novel anti-cancer agent for targeting human
cancer stem cells despite its not well-known mechanism of ac-
tion (32–34). The chemotherapeutic property of Salinomycin
can overcome the resistance of tumor cells toward multiple drugs
while selectively targeting the cancer stem cells. This antibiotic
drug has been shown to kill breast cancer stem cells in mice at
least 100 times more effectively than the known anti-cancer drug
Paclitaxel. The study screened 16,000 different chemical com-
pounds and found that only a few drugs, including Salinomycin,
targeted cancer stem cells responsible for metastasis (35).

Gefitinib, our second ranked drug, is a molecular targeted
drug in the treatment of non-small cell lung cancer. Approxi-
mately 85-90% of lung cancer cases, the most deadly cancer in
the US, are NSCLC tumors. Mutations in the EGFR (epidermal
growth factor receptor) gene are present in about 10 percent of
NSCLC tumors (https://www.iressa-usa.com). EGFR overex-
pression leads to inappropriate activation of the anti-apoptotic
Ras signalling cascade, thereby leading to uncontrolled cell pro-
liferation (36). Gefitinib competes with adenosine triphosphate
at the ATP binding site in epithelial cells, blocking its tyrosine
kinase activity, and consequently inhibiting EGFR signaling
pathway, which can induce tumor cell apoptosis (37). In 2015,
gefitinib was FDA approved as a first line treatment in patients
with metastatic NSCLC who harbor the most common types
of EGFR mutations in NSCLC (exon 19 deletions or exon 21
L858R substitution gene mutations) (38).

Omacetaxine mepesuccinate, also known as homoharring-
tonine, the 3rd ranked drug, was originally identified over 35
years ago as a novel plant alkaloid with antitumor properties.
Its mechanism of action is thought to be inhibition of protein
translation by preventing the initial elongation step of protein
synthesis via an interaction with the ribosomal A-site (39). It was
approved by the FDA in October 2012 for the treatment of adult
patients with chronic myeloid leukemia (CML) with resistance
and/or intolerance to two or more tyroskine kinase inhibitors, the
current first-line treatment (40). Furthermore, clinical studies
have shown activity of omacetaxine in other malignancies as
a single agent or in combination with other therapies in acute
myeloid leukemia (AML) and myelodysplastic syndrome (MDS),
and studies are ongoing in this regard (41–43). Also, a number
common antitumor agents were ranked highly: doxorubicin, pa-
clitaxel, fluorouracil (5-FU) and tamoxifen are commonly used

in breast cancer treatment. Paclitaxel, vinblastine and irinotecan
are often used in NSCLC. Homoharringtonine, azacitidine, and
arsenic trioxide are common anticancer agents against leukemia.

The leave-one-out validation of drug rankings suggests that
the orders are not highly dependent on specific cancer tissue. As
in clinical practice, this supports the use of anticancer drugs for
the treatment of different cancer types. Overall, the Spearman’s
correlations are higher among solid tumors as compared to the
liquid tumor, Leukemia. Network-based analysis can also help
to understand important biological processes in which the most
correlated genes of the top ranked drugs are involved. To this end,
we ranked the genes by using our drug ranking. The genes that
are correlated to the top ranked drugs are given higher weights.
The genes were then ranked in the descending order of the sum
of the weighted values. Therefore, the top ranked genes are more
correlated with the drug sensitivity in the cell lines and are better
targets in the network. The gene ontology analysis, performed
via MetaCore, was employed to find the biological processes
with which the top 200 genes are involved.

Fig. 5. Top 200 genes selected for the gene ontology enrichment analysis.

The top three biological processes are concerned with cellular
localization. Cells consists of many different compartments that
are specialized to carry out various tasks. Based on the gene
ontology directory, cellular localization of a protein is involved
with the process whereby a protein complex is transported to,
and/or maintained in, a specific location within a cell, includ-
ing the localization of substances or cellular entities to the cell
membrane. The number of proteins that have reliable subcellular
location annotations is approximately 20% of all known proteins
to date (44). It is of particular interest to determine if a poten-
tial target is a cell surface or secreted molecule which would
be more easily accessible for the targeted drug approach (45).
Therefore, knowledge of the subcellular localization of a protein
can significantly improve target identification during the drug
development process (46). In our framework, these genes are
significant for the top ranked drugs since they were ranked based
on the robustness of the drug networks. In other words, since our
ranking of the drugs is in the ascending order of average Ricci
curvature values of significant genes, the top drugs are involved
with the genes that contribute to the network robustness and are
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likely to be targeted by the drugs.
Furthermore, the protein-protein interaction network of the

gene products is presented in Figure 6(b). There are two notable
hubs in this network: CUX1 and cAMP-dependent protein ki-
nase which is a gene product of PRKACA. CUX1 is specifically
important since it is a transcription factor to a number of our top
ranked genes associated with the drug sensitivity. CUX1 (also
known as CUTL1) is a homeobox transcription factor highly
evolutionarily conserved and plays a known role in embryonic
development, cell growth and differentiation in mammals (48).
Moreover, the role of CUX1 in drug resistance/sensitivity, has
been explored. Specifically, gain-of-function as well as loss-
of-function studies have shown that increased CUX1 activity
significantly enhanced cell sensitivity and cancer tissue response
to chemotherapy drugs and resulted in increased apoptosis and
growth inhibition. In contrast, decreased CUX1 expression re-
duced cell sensitivity to chemotherapy drugs with fewer apop-
toses and resultant drug resistance (49). These studies, which
have been in the context of gastric cancer, suggest an inverse asso-
ciation between CUX1 and drug resistance, implying that CUX1
is an attractive therapeutic target. Whether this phenomenon ap-
plies to cancers other than gastric cancer remains to be elucidated.
The human PRKACA gene encodes the PKA catalytic subunit
alpha (Cα) isoform. With regards to drug sensitivity/resistance,
PRKACA is over expressed in invasive and anti-HER2 therapy
(trastuzumab/ lapatinib)-resistant breast cancers. In addition to
PRKACA conferring resistance to anti-HER2 therapy, it also
impairs apoptosis (50). Consequently, inhibition of PRKACA
and/or its downstream anti-apoptotic effectors in combination
with anti-HER2 therapy may increase the drug sensitivity. Its
role in drug sensitivity/resistance for other cancers needs to be
studied further.

Finally, we were interested in comparing the results of the
gene ontology enrichment analysis of all 58 cancer type cell lines
to some specific cancer tissues. The repeated algorithmic process
for colon, lung and renal cancers yields consistency. Similar to
all cancer type’s genes, the gene ontology enrichment analysis
for the top genes involved with renal and lung cancers results in
cellular localization and cellular component organization. How-
ever, most of the biological processes from the colon cancer gene
ontology enrichment analysis are quite general such as negative
regulation of cellular process, which is also a top biological pro-
cess of all cancer types as well as renal cancer. Of note, colon
cancer has fewer cell lines than lung and renal cancer.

The need for network based techniques is becoming more
and more prevalent as a result of the exponential growth of data
in the genomic era. In this work, we utilized mathematical
techniques to drive a network based analysis in order to explore
the genomic and pharmacogenomics information of NCI-60. The
framework of this study can be extended to find possible optimal
combinations of drugs. Combining anti-cancer agents, whether
cytotoxic or molecularly targeted, with different mechanisms of
action is the most practical approach to overcome single drug
resistance and produce sustained clinical remissions. Also, the
study described in the present work may be extended to tissue-
specific drugs employing a more appropriate tissue-specific cell
line database. This analysis on the NCI-60 is promising and

(a)

(b)

Fig. 6. Gene ontology enrichment analysis (MetaCore) of the significant genes
correlated with the top ranked drugs (a) Top ten biological processes; top three
biological processes are involved with the cellular localization. (b) Protein-
protein interaction network has two hubs: CUX1 and cAMP-dependent protein
kinase.

supports efforts to analyze larger datasets with advanced network
mathematics.
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