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Abstract 

 
Phenomena of synchronization, rhythmogenesis and coherence found in 

brain networks are believed to be a dynamical substrate for cognitive functions 

such as learning and memory. However, it is still debated whether the rhythmic 

activity emerges from network morphology developed in neurogenesis or as a 

result of neuronal dynamics realized under certain conditions. In this research 

we found, that in neural networks formed in mature hippocampal cultures with 

high cellular density the spiking activity self-organized and converged to long, 

complex and rhythmically repeated superbursts. The superburst lasted tens of 

seconds and consisted of hundreds of short (50-100 ms) small bursts with a high 

spiking rate of 139.0 ± 78.6 Hz that can be associated with high-frequency 

oscillations in the hippocampus. In turn, the interval between peak burst 

activities in the range of 100-150 ms can be treated as a theta rhythm (11.2 ± 1.5 

Hz). Distribution of spikes within the bursts was non-random, representing a set 

of well-defined space-time base patterns or motifs. We found that the long 

superburst can be classified into two types. Each type was associated with a 

unique direction of spike propagation and, hence, can be encoded by a binary 

sequence with random switching between the two “functional” states. Such 

precisely structured bidirectional rhythmic activity developed in self-organizing 

cultured networks were quite similar to what observed in the in vivo 

experiments.  
  

Keywords: rhythmogenesis; neural networks; superburst; hippocampal 

cultures; rhythmic brain activity; microelectrode arrays 
 
1. Introduction 

 
Synchronization and interplay between excitation and inhibition in neural 

networks play crucial role in brain rhythmic activity organization [1–5]. 

Rhythmic oscillatory activity with various frequencies represents a multi-clock 

substrate for cognitive function, memory and sleep [6,7]. It is, however, still a 

question whether the rhythmicity emerged from specific network morphology 

developed in neurogenesis [7–11] or it can be generated spontaneously due to 

network nonlinear dynamics mediated by an interplay of excitation-inhibition 

and sustained by homeostatic balance [12–14]. An answer to this fundamental 

question promises to define network mechanisms of pathological seizure activity 

and, hence, to determine treatment approaches. Recent studies have shown that 
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many brain network functions, normal and pathological states can be studied 

using in vitro models [13–23]. In this aspect dissociated neuronal cultures gives 

us unique possibility to model network dynamics and rhythmicity in vitro.  
It has been shown in several studies that dissociated neuronal cultures 

plated on microelectrode arrays after several days in vitro (DIV) spontaneously 

generated activity in the form of periodic and synchronized network burst 

discharges [24–26,15]. The bursts had various space-time distributions of spikes 

recorded at the electrodes during the discharges. It has been discussed that 

network bursts may be involved in mechanisms of information encoding [16], 

memory [17] and chronic neurological diseases, such as epilepsy [18, 27]. For 

example, similar burst dynamics is developed spontaneously or evoked by 

stimulus in vivo in the cortex, hippocampus, and brain nuclei during brain 

development [19, 20, 28, 29]. Such in vivo bursts were associated with a single 

sharp potential or spindle-shaped field oscillations (approximately 10 Hz) [19].  
Regular bursts in cultured networks were characterized by variable firing 

rates. At the same time, they were composed of highly precise and reproducible 

spatio-temporal spiking patterns. The spiking patterns can be quantified by the 

values of timings and the recruitment order of the first spikes initiating the 

bursts for each electrode, called activation patterns [30]. Such patterns were 

reported to be stable on a timescale of several hours [30–32]. It has also been 

shown that the profile of the spiking patterns (several tens of milliseconds) at the 

beginning of the bursts was precisely repeated in the subsequent bursts, while 

the middle phase of burst formation was highly variable [31]. Analysis of 

spontaneous activity in the cultured networks grown on high-density 

microelectrode arrays (4096 electrodes) also revealed that only short intervals in 

the initial parts of the bursts were reproducible and could be associated with 

spike propagation in the network from certain initiation points (neurons) [33]. 

Detailed analysis showed that bursting activity consisted of several motifs that 

can be distinguished by direction or spike propagation pathways and that appear 

randomly during the recording. Several types of patterns, i.e., motifs, were also 

found in the spontaneous bursting activity using activation patterns (only first 

spike timings) and spiking frequency patterns [21,34]. 
The bursting activity in neuronal cultures changed dramatically during 

development in vitro and essentially depended on initial cell plating density 

[26,35]. The minimum plating density of a cortical culture required for bursting 

activity to emerge was found to be 250 cells per mm2 in Neurobasal medium 

(neuron culture medium) [36]. During the first 3 weeks of development, the 

numbers of GABAergic and glutamatergic terminals increased gradually, 

simultaneously with the bursting rate [36]. A steady state reached after 3-4 
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weeks in vitro in hippocampal [37-39] and in cortical [36, 40, 41] cultures. In 

the mature stages of highly dense cultures, the spiking activity consisted of 

complex sequences of a type of burst often called superburst, showing durations 

from several to tens of seconds. The superburst were observed only in dense 

dissociated cultures (2500 rat cortical cells per mm2 in Dulbecco's modified 

Eagle's medium (DMEM) [22,26], 4000 cells per mm2 in Neurobasal medium 

only with blockers of inhibitory connections [18] or 8x103 and 106 rat 

hippocampal cells per mm2 in DMEM [42, 43]). The overall network activity 

was very complex and characterized by spontaneous superbursts which, in turn, 

may cluster into small superburst series [44]. The superbursting activity was also 

found in multilayered neural cultures [45]. High-frequency oscillations 

resembling network superbursts were observed even in small but dense neuronal 

clusters (up to 40 cells) [35]. Numerical simulation of cultured networks 

revealed that superbursts in larger networks (up to 50 000 neurons) occurred at 

earlier stages of network development comparing to smaller networks (up to 11 

000 neurons) [46]. So that, the network size could be also a crucial parameter 

[46]. 
Superbursts in neuronal cultures represented highly coherent spatio-

temporal spiking activity patterns spontaneously developed in originally non-

structured networks due to self-organization and plasticity [22].  
One of the mechanisms suggested for superburst was the interaction 

between the activity of excitatory and inhibitory neurons in culture. In 

particular, the addition of inhibitory cells from the striatum to the hippocampal 

culture was used to study their impact to burst dynamics. Increase of inhibitory 

cell fraction from 20% to 56% in neuronalculture significantly increased the 

number of small bursts in the superburst structure [47]. The important role of 

GABAergic neurons in bursting activity generation was also confirmed in 

network mathematical models which GABAergic neurons were involved in the 

small burst generation in subsequent superburst [46]. Superbursting activity has 

been increased by blockers of inhibitory synapses (bicuculline, picrotoxin) or a 

low concentration of Mg2+ ions [18, 48] and has been decreased by a 

combination of Na+ channel blockers with picrotoxin [18]. 
The investigation of spiking patterns in the superbursts revealed 

remarkably precise repetition of the internal bursting sequence [22]. Superbursts 

appeared with irregular intervals, but their internal structure contained small 

bursts with highly regular and reproducible activation patterns during hours or 

days [26]. In another study of cortical cultures during the mature stage (4-6 

week in vitro), definite motifs in the burst activation pattern corresponded to 

specific oscillation phase during the ultra-slow oscillations (<0.01 Hz) was 
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found [12]. Such ultra-slow oscillations could also be treated as superbursts with 

regular intervals. Spiking pattern motifs were found to be strongly conserved 

across multiple oscillation cycles, repeating themselves with high spatio-

temporal precision. 
 One recent mathematical model predicted that high neurite and synaptic 

density may also influence on small bursts in the superburst subsequences [46]. 

Other studies showed that stable rhythmic activity in the form of propagating 

synchronized bursts during several minutes can be induced in cortical cultures 

under inhibition of GABAergic synaptic transmission [13]. Such periodic 

synchronized activity at 3-4 seconds time scale was observed only at the 

boundaries of the culture. Thus, the balance of excitation-inhibition should be an 

important parameter to generate in networks stable and reproducible 

synchronized activity. 
In this study, we observed long superbursting activity with well-defined 

and reproducible temporal dynamics in spontaneously developed hippocampal 

culture on the microelectrode array (MEA). Regarding electrophysiological 

activity, we found long (up to 30 seconds) superburst consisting of subsequences 

of (up to hundreds) highly reproducible short bursts in the center of the cultured 

network. The spiking frequency in the bursts was found to be 139.0 ± 78.6 Hz, 

and interburst interval was in the range of 100-150 ms (11.2 ± 1.5 Hz), which 

resembled unique hippocampal activity in in-vivo conditions [49]. Spike 

propagation pathways during short bursts in all long superburst were aligned 

along two major spatial directions. We found that the long superburst could be 

encoded into two types, each associated with a definite orientation of spike 

propagation. The orientation was switched during each single superburst; in the 

following superburst, the orientation was determined at random, with a 

probability of switching to the next orientation at approximately 50%. 

Therefore, the superburst time sequence can be encoded by binary symbols 

reflecting spontaneous activation of two dominant spike propagation patterns 

selected in mature networks of cultured hippocampal cells. Note that such well-

organized rhythmic activity emerged spontaneously in matured culture networks 

in vitro without any specific stimulation and afferentation. We believe that such 

self-organizing dynamics in culture development led to a certain balance of 

excitation and inhibition, where cycling dynamics serves as a homeostatic 

functional state of the culture. It also gives possible mechanism how different 

functional states (like, vortices and synchronized epileptic-like discharges) may 

spontaneously appear in brain network without any stimulation. 
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2. Materials and Methods  

 
2.1 Cell culture 

Hippocampal cells were dissociated from embryonic mice (E18) and 

plated on microelectrode arrays (MEAs) pre-treated with adhesion promoting 

molecules of polyethyleneimine (Sigma P3143) with a final density of 

approximately 15,000–20,000 cells/mm2 (Fig 1). Our cultures were composed of 

4-5 layers of the cells. The mice used in our study were received from Institute 

of Bioorganic Chemistry Pushchino, Moscow Region, Russia. С57Вl/6 mice 

were euthanized via cervical dislocation according to protocols approved by the 

National Ministry of Public Health for the care and use of laboratory animals. 

The protocol was approved by the Committee on the Ethics of Animal 

Experiments of the Nizhny Novgorod State Medical Academy (Permit Number: 

9 - 25.09.2014). All efforts were made to minimize suffering. Embryos were 

removed and decapitated. The entire hippocampus was dissected under sterile 

conditions. The cortex, whole medulla and the lower part of the pons were 

excluded during the dissection. Hippocampi were cut in Ca2+- and Mg2+-free 

phosphate-buffered saline (PBS-minus). After enzymatic digestion for 25 min 

using 0.25% trypsin (Invitrogen 25200-056) at 37°C, cells were separated by 

trituration (10 passes) using a 1 ml pipette tip. Next, the solution was 

centrifuged at 1500 g for 1.5 min, and the cell pellet was immediately re-

suspended in Neurobasal culture medium (Invitrogen 21103-049) with B27 

(Invitrogen 17504-044), glutamine (Invitrogen 25030-024) and 10% fetal calf 

serum (PanEco К055). The dissociated cells were seeded in a 30 μl droplet 

covering the centre of the culture dish with 1 mm2 electrode region of the MEA. 

It resulted to culture size of 6-7 mm in diameter. After the cells had adhered 

(usually in 2 hrs), the dishes were filled with 1 ml Neurobasal medium (NBM) 

supplemented with B-27 and 0.5 mM glutamine with 10% fetal calf serum. After 

24 hrs, the plating medium was replaced with a medium containing NBM 2% B-

27 and 1% glutamine and 0.5% fetal calf serum but with no antibiotics or 

antimycotics. Glial growth was not suppressed, given that glial cells are 

essential for long-term culture health. Half of the medium was replaced every 2 

days. The cells were cultured under constant conditions of 35.5°C, 5% CO2 and 

95% air at saturating humidity in a cell culture incubator (MCO-18AIC, 

SANYO). 
Phase-contrast images of cultures were taken weekly to record the status 

of the culture using a Leica DMIL HC (Germany) inverted microscope with 

10х/0.2 Ph1 objectives. Experiments were conducted when the cultures had been 

grown for 3-5 weeks in vitro. 
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2.2 Electrophysiological methods 

 
Extracellular potentials were collected using 59 planar TiN electrodes 

integrated into the USB-MEA-120 system (Multichannel system, Germany). 

The microelectrode arrays (MEA) had 59 electrodes (8x8 grid) with diameter of 

30 µm and spaced 200 µm apart (Fig 1 A). Data were recorded simultaneously 

from 59 channels at a sampling rate of 20 kHz/channel. All signal analysis and 

statistics were performed using the custom-made software Meaman in Matlab 

(Mathworks, USA). 
 
2.3 Spike detection  

 
The detection of recorded spikes (Fig 1 B) was implemented using 

threshold calculation: 
T = NSσ      (1), 

where σ=median (|x| / 0.6745), which was the estimate of the median normalized 

to standard deviation of a signal with no spikes (see [50] for more details), x is 

the band-pass-filtered (0.3-8 KHz) signal, and NS is the spike detection 

coefficient, which was set to 8. The amplitudes of detected spikes were in the 

range of 20–200 μV. The minimal interspike interval was set to be 1 ms to avoid 

the overlapping of neighbouring spikes. 
 
2.4 Burst detection 

 
The burst detection method was described in detail in our previous paper 

[31]. Briefly, we estimated the total spiking rate characteristic, TSR(t), as the 

number of spikes from all electrodes within each 5 ms time bin. Fast appearance 

of a large number of spikes over all electrodes in a small (2 ms) time bin was 

used as the criterion for burst appearance. Threshold detection was applied to 

estimate burst beginning and ending points. The burst threshold was set to TBurst 

= 0.2 × σTSR, where σTSR is the standard deviation of TSR(t).  
The initiation time of the burst was defined as the burst start time, where 

TSR(t) was above the threshold. Next, the initiation time was adjusted to the 

first spike from all electrodes after a supra-threshold time. Finally, the time point 

at which TSR crossed the threshold after the burst start time was defined as the 

burst end time. 
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2.5 Superburst detection 

 
Superburst and long superburst in the electrical activity were detected 

using the method described previously [51]. First, we defined a Gaussian 

function with an effective width equal to 50 s. Next, that function was iteratively 

moved from the beginning of the recording to the end using a 10 ms time step, 

while cross-correlation of the function with the TSR was calculated for each 

step. The resulting cross-correlation indicated how much of the synchronized 

activity (bursts) was recorded in each 10 s window. To detect superburst in the 

spiking activity, we applied a threshold detection algorithm in which the 

threshold was estimated as the superburst detection accuracy coefficient 

multiplied by the standard deviation of the calculated cross-correlation. The 

superburst detection accuracy coefficient was estimated empirically and was 

equal to 0.4. All time points that crossed the threshold were defined as the 

beginnings and the endings of the superburst, respectively [51].  
 
2.6 Burst classification 

 
Superburst consisted of initiation bursts lasting 50-100 ms and short small 

bursts lasting 30-50 ms. The total number of spikes within initiation bursts was 

in the range of 1000-3000 spikes, while small bursts each contained 10-500 

spikes (Fig 1 F). These two types of bursts were identified using a K-means 

clustering algorithm.  
To represent spatio-temporal properties of all patterns within small bursts, 

we analysed activation patterns consisting of first spike timings of the bursts. 

The first spike timing was averaged for each electrode and each small burst. 

Then, the values from all 60 electrodes were colour coded and plotted on an 

image using cubic convolution interpolation. That image represented a gradient 

map of burst activation profile. 
To represent spatial properties of spike propagation during burst 

activation, we introduced a vector field map of activation timings in the culture. 

For each MEA electrodes we calculated a vector whose direction represented the 

activation-timing gradient around an area of 3 electrodes. The resulting vector 

field resembled a colour-coded activation pattern. We defined this spatial 

representation of the activation pattern as a dynamical pattern. 
To identify motifs of activation patterns in small bursts of all long 

superbursts, we applied the K-means clustering method. The activation patterns 

for each small burst consisted of the first spike timings for each of the 59 

electrodes of the MEA. This method required a number of clusters to be 
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estimated. First, we estimated two clusters and evaluated cluster separation by 

calculating the Davies–Bouldin (DB) index [32]. The DB index estimated the 

ratio between internal cluster distance and distance between clusters. Then, the 

clustering procedure was repeated for various numbers of clusters (2, 3...30), 

and the DB index was estimated. We found that the minimum DB index value 

among all tested clusters numbers was 2 or 3, indicating that the activation 

patterns were optimally clustered into 2 or 3 motifs of small bursts. Small values 

of DB-index corresponded to compact clusters whose centers were far away 

from each other. DB values in the range of 0 to 1 indicated “robust” clustering. 

We also tested the motif separation by expectation–maximization algorithm 

(EM clustering). To represent clustering evaluation, we plotted two Principal 

Component coefficients for each activation pattern and highlighted the estimated 

clusters in different colours. As in the previous case, we used the DB index to 

evaluate the optimal number of clusters with EM clustering. This method 

applied to 3 Principal Component coefficients divided data into the clusters 

more accurately and, hence, was used in further analysis. 
 
3. Results  

  
First, we analysed spontaneous activity of the hippocampal cultures. We 

obtained complex bursting patterns similar to those reported previously in 

cortical cultures [26]. An example of the spikes recorded from single electrode 

within a small burst is shown in Fig 1 C. After 3-4 weeks in vitro, we obtained 

the activity described as superburst (Fig 1 E). A typical superburst consisted of a 

sequence of 3-20 small bursts of 50-100 ms in duration and a 50-150 ms 

interburst interval. During the period of 30-40 DIV, the cultures generated long 

superbursts that were similar to regular superburst but lasted longer, 10-30 

seconds, and consisted of hundreds of regular small bursts. In summary, we 

analyzed 11 cultures from 3 plating experiments and observed long superbursts 

in 8 cultures. We found that 6 cultures generated more than 6 long superbursts at 

least during 20 minutes which were included in the statistical analysis. In other 

cultures we observed no more than 2 long superbursts. The signals from a single 

electrode during the long superburst on timescales of 15 and 2 seconds are 

illustrated in Figs 1 A and B. Raster plots of the spiking activity recorded from 

all 59 electrodes during the superburst and long superburst are shown in Fig 1 G. 

Each point on the raster represents the spike occurrence time for a particular 

electrode. The long superburst were composed of relatively long initiation bursts 

(50-100 ms) followed by shorter bursts, i.e., the small bursts. The initiation 

bursts and the small bursts can be easily identified by K-means clustering (Fig 1 
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F) using burst firing rate features (see Methods).  

 

 
Fig 1. Long superburst activity in hippocampal culture recorded by the 

microelectrode array at DIV 35. (A) Electrophysiological signal of spikes 

within a long superburst recorded from a single electrode. (B) Long superburst 

at a 2 s timescale and (C) a 200 ms timescale. (D) Dissociated hippocampal 

neurons grown on a microelectrode array (DIV 35). (E) Regular superburst 

activity with a duration of 1-2 seconds. (F) Initiation burst and subsequent small 

bursts can be separated by clustering the numbers of spikes per burst. The 

threshold (the vertical line) was identified using K-means clustering. (G) Raster 

of a long superburst (left) and a regular superburst (right).  
 

Next, we estimated the frequencies of the small bursts, the initiating bursts 
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and intervals between the long superburst were excluded from analysis. 

Interburst peak intervals (IBPIs) were calculated as the time interval between 

adjacent peaks from the total spike rate (TSR) diagram (see Methods) of 

detected small bursts (Fig 2 A). Each IBI corresponded to the instantaneous 

frequency (IF) of each pair of the small bursts. Note that the IFs were not 

normally distributed (Kolmogorov-Smirnov test, p<0.01) and for each culture 

the median value of the IF was estimated. Typical example of frequency 

distribution for a small burst sequence in one culture is shown in Fig 2 B. Note 

also that the IBPIs were highly stable, having median frequency at 9.8 Hz. Less 

than 5% of the bursts were in the range of 15-30 Hz. Then the medians were 

averaged for the all cultures and the IF was equal to 11.2 ± 1.5 Hz (mean ± 

standard deviation, n=6 cultures). Average histogram of the IFs for the cultures 

with long superbursts is illustrated in Fig. 2 D. Most of the IFs were 

concentrated in range from 8 to 15 Hz. 
We also estimated the mean spiking frequency for each electrode during 

small bursts only in intra-burst periods (Fig. 2 A, red rectangle marked period in 

sample burst). For the raster presented in Figure 1 A the most of the electrodes 

had spiking frequency in range 100-300 Hz, and mean frequency was equal to 

178.5 Hz (Fig 2 C). On average the spiking frequency per electrode was 139.0 ± 

78.6 Hz (mean ± standard deviation, n=6 cultures, 264 active electrodes) (Fig. 2, 

E). 
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Fig 2. The sequence of small bursts in a long superburst had a stable 

rhythmic structure with a frequency similar to the hippocampal rhythmic 

activity. (A) Example of long superburst activity recorded on MEA and a 

fragment of 5 detected small bursts (bottom). The green horizontal line 

represents the burst detection threshold, and the red vertical lines represent the 
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burst initiation and end time points. (B) Distribution of burst frequencies in one 

culture. The median burst frequency was 9.8 Hz. (C) Distribution of spiking rate 

frequency from the electrodes in the small bursts in one culture. The mean 

spiking rate was 178.5 Hz. (D) Distribution of burst frequencies (n=6 cultures). 

The median burst frequency was 11.2 ± 1.5 Hz  (mean ± s.d., n=6 cultures). (E) 

Distribution of spiking rate frequency from the electrodes in the small bursts (n 

= 6 cultures). The spiking rate was 139.0 ± 78.6 Hz (mean±s.d.).  
 

Next, we analysed spiking patterns in sequences of small bursts within 

long superburst recorded for 30 minutes. The set of the first spikes in the burst 

recorded from all electrodes was considered as activation pattern [31]. To 

investigate different motifs (clusters) of activation patterns, we applied the EM 

clustering algorithm for 3 Principal Component features. This method required 

the estimation of a number of clusters. First, using two clusters, we evaluated the 

cluster separation by calculating the Davies–Bouldin (DB) index (see Methods). 

Then, the clustering procedure was repeated for various numbers of clusters (2, 

3...30), and the DB index was estimated (Fig 3 A). We found that the minimum 

DB index value among all tested numbers of clusters was 3, indicating that the 

activation patterns were optimally clustered into 3 motifs in the presented raster. 

The activation patterns and the profiles of the spiking patterns in the bursts from 

separate clusters (motifs) represented different sequences of spike occurrence, 

i.e., different dynamics of the spike propagation (Fig 3 B). Note that the 

difference in the first spike time sequence in the pattern can be observed visually 

from Fig 3. Examples of the raster plots for all of the small bursts from all 3 

motifs are shown in Figs 3 C, D and E. To investigate the spatio-temporal 

properties of all patterns within each motif, we averaged the activation patterns 

and calculated the dynamical patterns (see Methods (Figs 3 F, G, H)). The first 

spike timings from all 59 electrodes were colour coded and plotted on the image 

created using cubic convolution interpolation. Surprisingly, we found that the 

burst activation was implemented in the form of wave-like spike propagation 

dynamics with a wide wave front. Arrows represent the gradient of activation 

time, i.e., the mean direction of spike propagation during burst initiation across 

each electrode. Eventually, the patterns were organized with a uniform direction 

in space. Remarkably, motifs #1 and #2 presented similar directions of the 

activation pattern, from the upper electrodes to the bottom of the MEA, whereas 

motif #3 presented the opposite direction. 
Next, we analysed the sequence in which the motifs appeared in the 

structure of the long superburst. Some of the long superburst (Fig 3 I) were 

composed of bursts of motifs #1 and #2, whereas other long superburst in the 
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same recording (Fig 3 J) were composed mostly of bursts of motif #3. 

 
Fig 3. (A) Small bursts from several long superburst can be clustered into 

spatio-temporal patterns. The DB index (see Methods) showed a minimum of 3 

clusters, indicating that there are 3 most dissimilar groups (motifs) of small 

bursts according to the activation spiking pattern. (B) Examples of the bursts 

from two motifs. Red dots indicate activation pattern - first spike timings for 

each electrode. Examples of the bursts from 3 motifs (C, D, E) and spatial 

representation of dynamical patterns (F, G, H), respectively. Motif #1 was 

observed in 10.6 % of small bursts, motif #2 in 56.4% and motif #3 in 32.9 % of 

all small bursts in superburst. Examples of two types of long superburst (I, J) 

that were composed of the 3 motifs. The left long superburst consisted of motif 

#1 bursts (blue markers) and motif #2 bursts (green markers) (F). The second 
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type of long superburst consisted of bursts of motif #3 (red markers, J). 
  

Note that the firing rate in the burst sequence (Fig 3 J, TSR - total spiking 

rate) was quite variable but that the sequence of the first spike timings, i.e., the 

activation patterns, of the bursts remained largely unchanged. 

 
 
Fig 4. Clustering of the spiking patterns of small bursts in long superburst. 

(A) Clustering of the activation patterns with K-means revealed two motifs 

(green and blue dots) plotted on principal component analysis (PCA) 

coefficients. (B) Dynamical patterns as average activation patterns of two motifs 

found with K-means clustering. Colour represents the average first spike timing 

of the bursts. (C) Dependence of the Davies–Bouldin (DB) index on the number 

of clusters, as estimated by K-means. (D) Clustering of the same spiking 

patterns using EM clustering applied to two principal components. (E) 

Dynamical patterns of motifs found with EM clustering. (F) Dependence of the 

DB index on the number of clusters, as estimated by EM clustering and (G) its 

average (mean±s.d., n=6 cultures). (H) EM clustering of the spiking patterns 

applied to three principal components estimated 6 motifs. (I) Dynamical patterns 

of 6 motifs estimated by EM with 3 principal components. (J) DB index 

dependence on the number of clusters, estimated by EM clustering with 3 

principal components and (K) its average (mean±s.d., n=6 cultures).   
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Furthermore, we verified the clustering results for activation patterns 

using EM clustering for two principal components (PC), three PC and K-means 

clustering (see Methods). We applied all three methods to one data set: varied 

the number of clusters and estimated clustering using DB index as in Fig. 3 A. 

We found that for  K-means and EM clustering with 2 PC the DB index had 

minimum at 2 clusters (Fig. 4 C and F), while DB index for EM with 3 PC had 

minimum at 6 clusters (Fig. 4, J). Interestingly, whole activation patterns (spike 

timing over 59 electrodes) reduced to 2 principal components were clustered 

into just two motifs, whereas the patterns reduced to 3 PC - into 6 motifs. To 

visualize clustering results we illustrated all patterns by a color scale on 2 PC 

plot for K-means and EM 2PC (Fig. 4 A and D) and on 3 PC plot for EM 3PC 

(Fig. 4 H). Note that even without clustering the patterns in 3 PC space can be 

visually identified as 6 clustered set, while K-means and EM 2PC could identify 

only 2 clusters. However, among 6 motifs one can note 2 motifs found by other 

algorithms (Fig. 4 B, E, I). On average, the optimal number of motifs (minimum 

DB index) found by the EM clustering for 2 PC (Fig. 4, G) and EM for 3 PC 

(Fig. 4, K) displayed clear minimum in 2 clusters (n=6). Interestingly, in all 

cases visual inspection of the clustering demonstrated two major motifs 

associated with global spike propagation pathways across MEA. To emphasize 

this we applied the following analysis. 
The activation patterns can be characterized by one major direction of 

spike propagation pathway. For each pattern we estimated the angle of major 

direction by averaging all 59 vectors (Fig. 5 C). Next, the clustering of the major 

direction angles revealed two major direction motifs in the raster (Fig. 5 D). The 

DB index value was equal to 0.08 which represent robustly separable two 

clusters, which also can be seen on a major direction angles histogram (Fig. 5, 

F). Mean of the angles from two motifs were equal to 29° and 302° and the 

difference between them was statistically significant (t-test, p<0.01). 

Interestingly, clustering of the activation patterns composed of spike timings 

(EM 2 PC, Fig. 4, E) and major directions angle showed similar dynamical 

patterns (Fig. 5, G). Average DB index of the major direction angle clustering 

showed that in all cultures (n=6 cultures) with long superbursts the patterns 

clearly clustered into two major directions (Fig. 5, E). Minimum value of the DB 

index in the cluster estimation was equal to 0.33±0.27 (mean and s.d.). Note, 

that DB index value below 1 indicated well separated clusters when the inter-

cluster distance was higher than the intra-cluster volume.  
To test whether such well-defined bidirectional dynamics is a unique 

feature of long superburst, we shifted from analysing long superburst to 

analysing regular superburst for the presence of stable spike-propagation 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 24, 2017. ; https://doi.org/10.1101/223230doi: bioRxiv preprint 

https://doi.org/10.1101/223230
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

pathways. Such superburst are also composed of an initial burst (100-150 ms) 

followed by subsequent 3-10 small bursts (Fig 5 H). The profile of the small 

bursts within such superburst was less clearly organized than we observed for 

the long superburst. In many cases, the small bursts cannot be clearly separated 

due to the high variability of activity in development. We found that for this 

example 2 clusters could not be estimated correctly because one cluster 

contained more than 95% of all patterns. Also, the DB index characteristic was 

not monotonic (Fig. 5, I) in contrast to long superburst clustering (Fig. 5, D) 

suggested the absence of the motifs. Indeed, histogram of all major directions 

from this raster plot (Fig 5 K) indicated the existence of one cluster (e.g. motif) 

with average angle of 192°. DB index characteristics averaged over 5 rasters 

(n=5 cultures) did not indicate any clustered structure. Note, that for 2 clusters 

average DB index was equal to 1.06±0.65 (mean and s.d., excluding one sample 

with <5% in one motif) which was significantly different from the mean DB in 

the long superbursts 0.33±0.27 (n=6 cultures, t-test, p<0.05). In average, the 

cluster analysis of the short bursts did not reveal a clear minimum for the DB 

index in 2 clusters (Fig 5 J, boxplot, red lines - median values) in contrast to the 

recordings with long superburst (n=6 cultures) (Fig 5 E). Thus, the patterns in 

the long superbursts were clustered into two motifs associated with significantly 

different spike propagation directions, while regular superbursts did not show 

such a feature. Note that mean DB index for the long superbursts 0.33±0.27 was 

lower than 1. Such low values indicated two clusters without inter-cluster 

overlapping [52] and, hence, can be treated as statistical evidence of error-free 

clustering. 
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Fig 5. Bidirectional spike propagation pathways form two types of long 

superburst. Rasters of two types (A and B) of the long Superburst obtained in 

one recording (bottom) and its TSR diagram (top, see methods). (C) Schematic 

view of major direction in spike propagation estimation. (D) DB index 

dependence on cluster number in clusterization of major directions in the long 

superburst for example raster and (E, boxplot) for 6 cultures. (F) Histogram of 

major directions of the bursts from the culture with long superbursts. Two 

colored clusters of the histogram represented two motifs. (G) Spatial 

representation of dynamical patterns of motif #1and motif #2 indicated different 

spike propagation pathways after clusterization of major directions. (H) Raster 

of superburst (bottom) and TSR diagram of the superburst (top, see Methods). 

The superburst composed of an initial burst (100-150 ms) followed by a 

subsequence of 3-10 small bursts. (I) DB index dependence on cluster number in 

clusterization of all major directions of the small bursts in superburst. (J) 

Boxplot of DB index of the small bursts in superbursts (L) (n=5). (K) Histogram 

of major directions of the bursts from culture with superbursts.  
 

Then we analyzed the reproducibility of motif appearance in long 

superburst sequence.  Motifs in the long superburst were represented using raster 

plots (Fig 6 A). The vertical black lines in the plot represent the motifs in the 

sequence of the small bursts in all long superburst. We applied EM clustering to 

the long superburst based on their motif frequency. This analysis identified two 
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clusters associated with the two types of the long superbursts, which are marked 

in blue and pink color in the motif raster (Fig 6 A, top). Note, that each type 

appeared randomly in the sequence. Surprisingly, a switch probability between 

the two types of the long superbursts was equal to 50% ± 13%  (n=6 cultures), 

indicating random nature of such activity in macroscopic timescale. Each long 

superburst was composed of 100-150 small bursts, which can be clearly 

associated with a certain major angle of the motif (Fig 6 B). Surprisingly, the 

first type in the presented example was composed mostly of small bursts of 

motif #1 (96.9% of all small bursts) and partially of motif #2 (3.1%). This fact 

indicated the presence of stable and directed spatio-temporal patterns of spike 

propagation pathways during the long superburst activity. In contrast, the other 

type of long superburst was mostly associated with motif #2 (motif #1 - 18%, 

motif #2 - 82%), representing different direction of spike propagation. Figure 6 

C shows dynamical patterns of two estimated motifs where these major 

directions can be clearly seen. In average, each motif appearance probability 

within its own type of the long superburst was equal to 91.5% ± 4.7% (n=6 

cultures). Such remarkably high appearance of the motif in the long superbursts 

clearly demonstrated the presence of stable functional structure of the network 

and, hence, reproducible dynamics.  
To quantify the stability of the motifs in the small bursts sequence, we 

also measured the probability of switching between the motif types in the whole 

raster without considering long supeburst indexing (Fig 6 A). We found that the 

switch probability was quite low - 9% ± 5% (n=6), which shows that motif 

switched quite rarely Thus, spontaneous bursting activity employed two basic 

spike propagation pathways (types of motifs) that were activated and sustained 

during long superburst (10-20 sec). Examples of similar bidirectional activity of 

the bursts from another culture is shown in Figs 5 D, E, F. Notably, motifs from 

different long superburst types eventually show significantly different (DB 

index directions of spike pattern propagation using major direction measure or 

dynamical pattern representation. For each motif we estimated  mean major 

angle and the difference between two mean angles. In average, the difference 

between them were equal to 95° ± 31.1° (mean± s.d. n=6 cultures). Surprisingly, 

such almost perpendicular spike propagation pathways were self-replicated in 6 

cultures spontaneously. 
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Fig 6. Spike propagation pathway switch during long superburst. (A) Motif 

appearance within each superburst. Blue and pink bars mark two types of long 

superbursts in one recording. Black vertical lines illustrate bursts of a particular 

motif type inside each superburst. Note that one superburst type (blue) was 

associated with motifs #1, and the other one (pink) was associated with motif 

#2. (B) Histogram of major directions for small bursts from culture with long 

superbursts. Two colored clusters of the histogram represented two motifs after 

clusterization, which appeared in (A). (C) Motif dynamical patterns #1 and #2  

with respect to B. Note that in all cases, the motifs from different types of 

superburst have clearly different activation gradients (arrow directions) and 

major directions (B). The other culture showed similar principal results using the 

same analysis: two motifs were associated with two types of long superbursts 
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(D), bursts from the motifs had significantly different major directions (E, DB 

index <0.1) and spatio-temporal activation patterns (F). (G) Switch probability 

of burst patterns during a long superburst (motif) and between subsequent long 

superbursts (superburst type). 
 
4. Discussion 

  
In this study, we discovered that neuronal networks formed in 

hippocampal cultures in their mature state (30 DIV and older) generated specific 

network activity with surprisingly long sequences of bursts, i.e., long superburst 

of up to hundreds of constituent bursts, with highly regular spiking patterns. In 

previous studies, superburst activity was reported with much shorter duration 

(up to ten bursts) [26]. In our experiments, we also observed similar activity, but 

in addition, more than 70% of the cultures (8 out of 11) at DIV 30-35 began to 

spontaneously generate long superburst with durations of up to hundreds of 

seconds. We found 6 cultures out of 11 generating more than 6 long superburst 

at least during 30 minutes. The other cultures generated less than 2 long 

superbursts with a regular superburst in the background. A precise biophysical 

mechanisms of the long superburst are still largely unknown we suggest that for 

matured cultures (DIV from 35) spontaneously organized in the well balanced 

excitation-inhibition networks where cycling dynamics represents homeostatic 

(“natural mode”) pattern “sustaining” the functional connectivity. 
This long superbursting activity persisted for several days. Each 

superburst consisted of an initial burst with the highest firing rate, followed by a 

subsequence of small bursts with 50-100 ms duration and a relatively stable 100-

200 ms interburst interval (Fig 1). This interval corresponded to the bursting 

frequency 11.2 ± 1.5 Hz (n=5) (Fig 2) which represented a hippocampal 

rhythmic activity [49]. Such periodic bioelectrical activity in a form of theta 

oscillations in cultures can be considered a fundamental feature of hippocampal 

network formation, which has been widely investigated in vivo and in slices in 

vitro [7–11]. In hippocampal neural networks the theta frequency range was 

defined at 4-10 Hz and the beta range at 10-30 Hz [53, 54]. Other authors define 

the theta range at 4-12 Hz and beta at 12-30 Hz [55]. Our analysis suggests the  

features of both rhythms and indicate a  fundamental feature of hippocampal 

network to generate theta rhythm for behavioral (active motor behavior [49]), 

memory tasks and also by complex electrophysiological signatures of sleep state 

[14] in theta and beta range. Low-frequency synchronized firing in cortical 

cultures was associated with classical sleep signatures [14]. The lack of external 

stimuli during the neural network development could trigger such stable low-
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frequency spiking activity in cortical and hippocampal cultures and indicate 

functional state of sleep [14].   
The spiking rate in the small bursts was found to be 139.0 ± 78.6  Hz 

(n=6), which we suggest may be associated with high-frequency oscillations and 

sharp wave-associated ripples in the hippocampus (100–250 Hz) [7,10] or fast 

gamma oscillations (90–140 Hz) [56]. Such a high spiking frequency was also 

observed in regular superburst and hence cannot be directly associated with the 

unique characteristics of the observed long superburst. However, the interplay 

between the dynamics of small bursts and the generation of high-frequency 

spiking plays important functional roles in vivo. High-frequency oscillations 

have been found to be modulated by slow theta activity in isolated rat 

hippocampus [57] and in vivo [58]. Interestingly, coupling of the theta and high-

frequency oscillation has been observed during REM, slow-wave sleep and 

immobility behaviour, whereas ripples have been associated with memory 

consolidation [10].  
We suggest that such unique and rare activity appeared in cultures in 

which a specific balance of morphology and cell density developed 

spontaneously from the specific initial conditions due to mechanisms of self-

organisation. It has been shown that the cell density of neurons surviving to DIV 

30 decreased dramatically from 2500 cells/mm2 to 150 cells/mm2 [36]. In 

another study, the cell density was decreased from 5000 cells/mm2 2500 

cells/mm2 after two weeks of culture development [46]. Hippocampal cultures 

(E18) with high density of 106 cell/mm2 in DMEM medium generated 

superbursts with long duration in range of 46-91 seconds with relatively low 

interbursts frequency of 0.4 - 4.6 Hz [43], which was associated with 

epileptiform activity[61]. Superbursts in the rat hippocampal cultures E17–E18 

with high density of 7800 cells/mm2 were also observed in [42,60], but detailed 

activity analysis was not presented. Superbursts with 10 Hz frequency were 

observed only in conditions of increased cAMP in 600 cell/mm2 cellular density 

[63] or with additional inhibitory cells  dissociated from striatum [47] in the 

cultures with 1000 cell/mm2. In our cultures initial cellular density was 15000-

20000 per mm2. The plated culture contained about 250000 cells and formed 4-5 

layers. To our knowledge it was the first time that the spiking activity was 

observed in such plating conditions at that stage of culture development. Thus 

we suggest that the plating density of the cultures was the major factor 

responsible for the appearance of such activity.  
Note that the culture medium was changed every 2 days in our 

experiments, while in other studies the medium was changed once or twice a 

week [15,26]. In this aspect we suggest that frequent change of small amounts of 
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the medium minimized physiological stress and sustained homeostatic balance 

during culture development which could affect on cultured network stable 

activity. It has also been shown that the densities of glutamatergic and 

GABAergic synaptic terminals increased during first 3 weeks in vitro and then 

saturated by DIV 30-35 [63]. In cortical cultures [63] and in hippocampal 

cultures [64,65], the ratio of glutamatergic to GABAergic receptors in synapses 

and somata during development showed a similar tendency to that observed in 

vivo. We suggest that the ratio of inhibitory and excitatory cells and the cell 

density formed by DIV 30 in our experiments were also important components 

for the development of the in vitro neural networks with such remarkable 

features of activity and will be investigated in detail in further studies.  

Many studies have shown that theta rhythmic activity in the hippocampus 

can be induced and modulated by external signals originating from the 

entorhinal cortex. Our results suggest that the spiking activity in the range of the 

hippocampal theta rhythm can be generated in isolated networks of hippocampal 

cells without any stimulation applied under stable homeostatic conditions. 

Further studies using immunohistochemistry will reveal key features of such 

culture conditions.  
Important to note, that in cortical cultures the superbursting activity did 

not demonstrate such long and stable rhythmic activity [14, 22, 26]. 

Reverberation of activity in a form of periodic synchronized bursts on a time 

scale of hundreds of milliseconds emerged or modulated only under suppression 

of inhibitory synaptic transmission [18, 48]. Superbursting activity in dense 

cortical cultures (1000-5000 cells/mm2) of rats and mice consisted of sequence 

of the bursts in range from 0,25 to 1,25 Hz [26,46,67-69]. Such activity was 

associated with epileptic seizures in vitro [61]. In rat hippocampal slices similar 

epileptiform bursts had high-amplitude (1 mV) and low-repetition frequency 

(0.5– 1.5 Hz), whereas theta oscillations had a low-amplitude (0.5 mV) and high 

frequency (5–14 Hz) [70,71]. It was also shown that in cortical cultures of 

postnatal neurons with high density (4000 cells/mm2) in some cases the 

superbursts were generated with frequency of 10 Hz, and could be induced by 

GABA synaptic transmission blockers [18]. Therefore, the observed result of the 

bursting activity in theta and delta range could be unique to the hippocampal 

cultures. 
Note that the recording area of the MEA (1.6 x 1.6 mm) was in the centre 

of the circular culture and had an approximate diameter of 4-5 mm. These 

spatio-temporal patterns may be part of a global cycling activity with highly 

stable specific features of the hippocampus in vivo - theta rhythmic oscillations. 

The cycling pattern of the bursting activity might be triggered by pacemaker 
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neurons [72] or may be self-organized in spiral wave dynamics. Similar spike 

propagation patterns were observed in cortical cultures with chemically 

mediated inhibition in the network [13]. Disinhibition of GABAa synaptic 

transmission by biccucline induced episodes of seizures composed of stable 

short burst subsequence with 2-3 sec of interburst intervals. Further studies 

using high-density MEA systems, or fast CCD cameras for calcium imaging 

[61], to observe the activity of the whole culture will address such questions.  

Analysing the profile of the spiking patterns in the long superburst, we 

found that they also become well organized, containing a small number (2-4) of 

basic motifs, in contrast to regular superburst activity (Figures 4 and 5). Using 

clustering methods we found that the patterns of first spike timings in the bursts 

have two clusters (motifs). We used DB index measure to estimate clustering 

efficacy. We found that DB index for long superbursts was 0.33±0.27 (mean, 

s.d.). DB value in that range implies that significant parts of two clusters do not 

overlap (see Methods), thereby leading to robust clustering. 
Such motifs defined the presence of two basic types of spike propagation 

directions in the burst activation pattern. These two “functional” directions 

further defined the activity in the form of wave-like bidirectional firing patterns 

repeated from burst to burst. The stability of the motif appearance within single 

long superbursts were equal to 91.5% ± 4.7% (n=6 cultures). Such remarkable 

stable pattern reentry clearly demonstrates stable functional structure of the 

network. Considering spike timings variability in the culture and clusterization 

inaccuracy such motif uniqueness would be even closer to 100%. Notably, the 

angle between two major spike propagation pathways of the small bursts 

activation patterns were equal to 95° ± 31.1° (mean± s.d. n=6 cultures) (Fig. 6 

B, E). Such almost perpendicular activity propagation pathways were self-

organized in 6 cultures spontaneously and were remarkably stable during such 

rhythmic bursting. The long superbursts were also clearly clustered into two 

types according to the motif appearance in small bursts subsequence (Fig. 6, A). 

Each motif appeared mostly within its own type of the long superburst with high 

probability 91.5% ± 4.7% (n=6 cultures) indicated that during each long 

superburst only one of two motifs was generated. We suppose that on a 

timescale of milliseconds (activation patterns), seconds (small bursts) and tens 

of seconds (long superbursts) the dynamics of the neural network was quite 

stable and reproducible. Interestingly, on a timescale of minutes where several 

long superburst can be observed in the activity pattern switched from one motif 

to another with 50% ± 13%  (n=6 cultures) chance. The switch appeared mostly 

from the first small burst in the sequence. We suggest that the first initiation 

burst with higher duration and firing rate in the long superburst sequence 
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determined that motif. Therefore, the spiking patterns with unique orientation of 

activity propagation demonstrated an interplay of two complex dynamical states 

in the network with stochastic switch on a several minutes timescale which 

initiated rhythmical activity with precise activity pattern on a timescale of 

seconds and milliseconds. Such conclusion complements the results of regular 

superburst study [22] and can be further extended to the modeling of brain 

dynamics development. The results suggest that hippocampal neuronal cultures 

can demonstrate the activity with the features similar to in vivo conditions. 

Further study of plating protocols and neuroengineering methods mimicking 

realistic hippocampal tissue conditions can uncover key factors of functional 

structure development in the neural networks. 
Notably, such well-organized global dynamics of spontaneous culture 

networks can be encoded by a binary sequence and represented, in fact, as a 

telegraphic signal conveying information about the functional state of the 

system. We sincerely believe that such stability and reproducibility of the 

network states will further permit the control of the switching between the states 

in mature cultures and that such culture will be useful in the design of living 

networks with definite functional properties in hybrid information processing 

systems (neurally controlled robots, “brain-on-chip”, etc.). 
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