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Abstract

Motivation: Naive determination of all the optimal pathways to production of a target
chemical on an arbitrarily defined chassis organism is computationally intractable.
Methods like linear integer programming can provide a singular solution to this
problem, but fail to provide all optimal pathways.

Results: Here we present RetSynth, an algorithm for determining all optimal
biological retrosynthesis solutions, given a starting biological chassis and target
chemical. By dynamically scaling constraints, additional pathway search scales relative
to the number of fully independent branches in the optimal pathways, and not relative
to the number of reactions in the database or size of the metabolic network. This
feature allows all optimal pathways to be determined for a very large number of
chemicals and for a large corpus of potential chassis organisms.

Availability: This algorithm is distributed as part of the RetSynth software
package, under a BSD 2-clause license at
https://www.github.com/sandialabs/RetSynth/

1 Introduction

Flux Balance Analysis (FBA) is a tool widely used in predicting metabolic behavior at
genome scale [1]. A common application of FBA is the determination of pathways for
synthetic genetic manipulation [2]. This may involve the addition of enzymes, usually
by means of plasmids, or gene silencing. The result of this technique is the dynamic
manipulation of an organism’s metabolic output [3].

FBA requires, at a minimum, a stoichiometric matrix (S ). This matrix is ideally
complete with regard to the available reactions and compounds for a given organism.
The reactions, are conventionally tied to a set of explicit enzymes and transporters, but
additional enzymes and transporters may be provisionally assigned as needed to provide
a complete solution. Secondarily, an objective function (Z) is solved for the metabolism
of interest. This may involve minimization of input, maximization of output, or other
constraints [4]. Frequently biomass is an important characteristic of the objective
function. This subfunction, is a mathematical device used to represent the metabolic
requirements and products of the cell division or reproduction process [5].

A well understood problem in FBA, is that the results produce a single v solution to
Sv = b, where many may exist. One way of circumventing this problem is flux
variability analysis (FVA), which gives alternate optimal solutions [6]. These solutions
are presented as ranges over the flux vector and no single optimal solution is presented
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in FVA. This method characterizes the range of available optimal fluxes. A similar
problem is how to characterize alternative optimal pathways using Mixed Integer Linear
Programming (MILP). Lee [7] and Phalakornkule [8] did early work on alternative
optima in linear programming models of metabolism. The work that we will present
draws inspiration from these models. However, our technique characterizes not solely
the metabolic control schemes, but also the available strategies for optimal metabolic
modification.

An interesting problem in synthetic biology, is determining the minimal number of
gene additions that would be required to get an industrial organism to optimally
produce a compound of interest. In the case where the organism natively produces the
compound, non-optimally, this results in a classic FBA problem. A typical approach
then, is to solve the problem twice, maximizing biomass in one solution, then
maximizing biomass and the compound of interest in the second solution. Genes
encoding enzymes controlling reactions with reduced flux in the second solution can be
silenced. Assuming the biomass function is sufficiently complete, this will result in
shunting precursor metabolites to reactions producing the compound of interest and
limiting subsequent reduction of the compound, after it has been produced. Several
caveats must be accepted here, including that the compound of interest does not create
a toxic environment and that the stoichiometric matrix and biomass equations are
sufficiently complete, so that necessary biomass precursors are not consumed by the
reactions producing the compound of interest.

In cases where the organism does not natively synthesize the compound of interest
(hereafter x), a less obvious optimization problem is needed to determine the optimal
strategy for producing x. Naively, it is possible to manually add a single non-native
reaction to the stoichiometric matrix. Here the non-native reaction is the assumed
stoichiometry of a known enzymatically-controlled chemical reaction. If there are k
reactions that produce x, the first step is to try each of the k reactions to see if biomass
and x can be produced. If we want to know all reactions that could be added, we need
to try all k reactions. If there is a single step solution, it solves in FBA(k) time. If there
is no single step solution, the problem explodes exponentially, both in the difficulty and
complexity. A two-step solution requires not just k reactions, but all reactions that
produce the precursors to the k reactions. If the average number of reactions producing
any given compound is g then the number of solutions that must be tested for a y step
solution in the worst case is FBA(gy).

In the description of the algorithm below, which alleviates the worst-case solution
FBA(gy), we show how given a database of potential reactions and a genome scale
metabolic model, we can determine in a roughly linear number of FBA steps, all
optimal genetic additions required to optimally produce a given compound of interest.
This is done by dynamic and recursive manipulation of the constraint space, followed by
integer programming. Setting a maximum number of reaction additions (pathway
length constraints), the solvability of the problem can be efficiently determined. This
technique requires only a genome scale metabolic model, a database of potential
reactions and a compound of interest.

2 Algorithm

The algorithm below shows how to add reactions to a metabolic model, in order to
determine all optimal additions. In general, optimal solutions are defined by the
minimum number of reaction additions to solve a given problem. In cases where
experimental flux can be determined, or enzyme productivity can be calculated,
multiple optimal solutions can be ranked, based on output criteria.

The metabolic system is defined as:
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minv∈RnΨ(v)

s.t. Sv = b

Cv ≤ d
l ≤ v ≤ u

(1)

where v ∈ Rn defines the rate of each reaction (i.e., flux), Ψ is convex and maps the
space of potential fluxes to a single optimal solution, S ∈ Rmxn is the stoichiometric
matrix mxn, with m molecules and n reactions and b is a vector of exchanges, such that
Sv = b and b is conventionally defined as 0, l and u are the lower and upper bounds of
any given reaction, respectively, C is a matrix representing a system of equations
resulting in a linear inequality w.r.t vector d.

The gene addition problem is defined as:

I =


0
0
...
0

E =


1
1
...
1

 (2)

where I is a vector of constraints in C for natively produced chemical reactions in the
organism of interest, and E is a vector of constraints in C∗ for all possible chemical
reactions. The 0-1 MILP problem is defined as:

t =

[
I
E

]
minimize z = tTx (3)

s.t. metabolic system (1) is solvable,

and x ∈ {0,1}|I|+|E|

where z corresponds to the number of external reactions to be added to the system.
This is solved by extracting rows from C∗ where x = 1, appending them to C and
solving (1).

The idea behind our algorithm is to add a penalty function to variables that are
already identified as part of a solution to force the algorithm to seek alternative optimal
solutions. We compute the penalty such that any optimal solution to the modified
problem remains an optimal solution to the original problem. That is
tTx < β∗(1 + 1/(2β∗) < β∗ + 1. This implies that any enzyme added to S∗E is part of an
optimal solution.

We also need to show that the list is complete and any enzyme that is part of an
optimal solution is in S∗E . Assume the contrary, and let the jth enzyme be part of an
optimal solution but not included in S∗E . Then we have tj = 1. The t values for the
other β∗ − 1 enzymes that are part of the optimal solution can be at most 1 + 1/(2β∗).
All together the optimal solution value to the modified problem will be
β∗ + 1/2− 1/(2β∗). However, the algorithm terminates only after the optimal solution
to the modified problem reaches β∗(1 + 1/(2β∗)), which is higher than the solution that
includes the jth enzyme. This leads to a contradiction and proves that our algorithm
includes all enzymes that are part of an optimal solution.

2.1 Sub-optimal solutions

In addition to finding all optimal solutions, we extend this algorithm to find solutions
that may involve more than the optimal number of added reactions. RetSynth is able to
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Data: A set of enzymes SE
Result: A subset of enzymes S∗E ⊆ SE that can be part of an optimal solution to

problem (3)
S∗E ← ∅;
Let β∗ > 0 be the value of an optimal solution to (3);
repeat

Let x be an optimal solution to (3);

foreach i such that tTxi ≥ 1 do
if i /∈ SE then

S∗E ← {i};
ti ← 1 + 1

2β∗ ;

end

end
return S∗E ;

until tTx ≥ β∗(1 + 1
2β∗ );

Algorithm 1: Identifying all enzymes that can be part of an optimal solution

find solutions up to β∗ + k, where k is a parameter set by the user. The modification of
the algorithm involves setting t values to 1 + 1/(β∗(k + 2)) when tTxi > 0 and
repeating the loop until tTx ≥ (β∗ + k)(1 + 1/(β∗(k + 2))). After each increase in
b
∑
i tidi, then 1/2 ∗ β∗c, 1/(2 ∗ β∗ + 1) is added to ti where i ∈ S∗E . This allows a

solution space that includes not only the optimal solutions, but all solutions < β∗ + k.
The correctness of the algorithm can be proven the same way.

2.2 Enumerating and backtracking all solutions

The new set S∗E is typically much smaller than S∗E , and drastically reduces the search
space for enumerating all optimal solutions. Next, we will describe how this can be done.

Define a directed graph G = (V,E) with two types of nodes: V = Vc ∪ Vp and
Vc ∩ Vp = ∅. The process nodes,Vp, represent the enzymes selected in the previous
section, whereas the compound nodes, Vc, represent all compounds that are inputs to
the processes. The directed edges will represent the input/output relationships between
compounds and processes. That is we will add an edge from a compound node to a
process node, if this process requires the compound as an input. Symmetrically, we will
add an edge from a process node to a compound node, if the process produces this
compound. For completeness, we will add a super-process node for all processes that are
already active, along with edges to all compounds these processes can produce.

Conjecture: Given a compound of interest and a dependency graph G, a connected
subgraph which includes the node for the compound of interest and at least one
predecessor node for each compound node describes a feasible solution to our problem.
Symmetrically, any feasible solution is a subgraph that satisfies these conditions.
Subsequently, such a subgraph with minimum number of process nodes (not counting the
super-process node) will define an optimal solution.

Enumerating these results turns into a path enumeration problem, where we
enumerate minimal length paths from the super-process node to the node for the
compound of interest.
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3 Software Description

This software has been distributed with a permissive open source license (BSD 2-clause),
is written in Python and available for use on GitHub
(http://www.github.com/sandialabs/RetSynth/).

3.1 Comparison with other software

A variety of algorithms exist for solving the retrosynthesis problem. These include
BNICE [9], GEM-Path [10], DESHARKY [11], ReBIT [12], RetroPath [13],
PathPred [15], RouteSearch [14] and SimPheny (www.genomatica.com). The difference
between RetSynth and the other available algorithms, is that RetPath provides all
available optimal and β∗ + k solutions. The efficiency of the algorithm (scales by the
number of independent pathways) allows this to be run for any chassis with a fully
characterized metabolic network and for any target chemical.
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