
deepNF: Deep network fusion for protein function prediction

Vladimir Gligorijevića, Meet Barota, Richard Bonneaua,b,c

aCenter for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
bCenter for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10009, USA

cCourant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, NY 10009, USA

Abstract

The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale
molecular and functional interaction networks. The connectivity of these networks provide a rich source
of information for inferring functional annotations for genes and proteins. An important challenge has
been to develop methods for combining these heterogeneous networks to extract useful protein feature
representations for function prediction. Most of the existing approaches for network integration use
shallow models that cannot capture complex and highly-nonlinear network structures. Thus, we propose
deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of
proteins from multiple heterogeneous interaction networks. We apply this method to combine STRING
networks to construct a common low-dimensional representation containing high-level protein features. We
use separate layers for different network types in the early stages of the multimodal autoencoder, later
connecting all the layers into a single bottleneck layer from which we extract features to predict protein
function. We compare the cross-validation and temporal holdout predictive performance of our method
with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our
method outperforms previous methods for both human and yeast STRING networks. We also show sub-
stantial improvement in the performance of our method in predicting GO terms of varying type and specificity.

Availability: deepNF is freely available at: https://github.com/VGligorijevic/deepNF

1. Introduction

Methods for automated protein function predic-
tion allow us to maximize the utility of functional
annotations derived from costly and time-consuming
protein function characterization and large-scale ge-
nomics experiments. The accuracy of these meth-
ods has been improved with the advent of high-
throughput experimental methods that have enabled
construction of different types of genome-scale molec-
ular and functional interaction networks, including
protein-protein interaction networks, genetic inter-
action networks, gene co-expression networks and
metabolic networks [2]. Extracting biological infor-
mation from the wiring patterns (topology) of these
networks is essential in understanding the function-
ing of the cell and its building blocks-proteins. A
key insight behind this approach is that the func-
tion is often shared between proteins that physically

Email address: rb133@nyu.edu (Richard Bonneau)

interact [27], have similar topological roles in the
interaction networks [18], or are part of the same
complex or pathway [6].

Systematic benchmarking efforts, such as the
Critical Assessment of Functional Annotation
(CAFA)[25] and MouseFunc [23], has shown that the
current state-of-the-art methods for protein func-
tion prediction use machine learning techniques to
train classifiers on a multitude of network-, sequence-
and structure-based data sources to make predic-
tions [25, 23]. Due to the complementary nature of
these different data sources, such techniques have
been shown to be more accurate than those that
use a single data source [16, 8, 31]. However, the
heterogeneous nature of biological networks, as well
as their different levels of sparsity and noise, make
development of such techniques challenging. Here
we focus on integrating only network-based features
in order to limit the scope of the work, better isolate
general results aimed at biological networks, and

Preprint submitted to Elsevier November 21, 2017

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

to better compare to important recent works on
biological network integration.
Most previous approaches for network integra-

tion either use probabilistic methods, like Bayesian
inference [11, 17] or kernel-based methods [34, 21]
to fuse different protein-protein network types, de-
rived from different proteomic and genomic data
sources, into a single network. The resulting net-
work, along with the set of proteins’ function labels,
are fed into a kernel- or network-based classifier
to derive functional associations of annotated pro-
teins and generate hypotheses about unannotated
proteins. For example, GeneMANIA [22, 20] is a
widely used method that first integrates kernels of
different network types into a single kernel by solv-
ing constrained linear regression problem; then, it
applies Gaussian label propagation on the result-
ing kernel to make label predictions. However, as
pointed out by [7], these methods suffer from the
information loss incurred when combining all the
network types into a single network. Moreover, they
are not robust to noisy links and dense structures
often present in certain network types (e.g., large
blocks in gene co-expression networks or large hubs
in protein-protein interaction networks); in this case,
the resulting network is obscured by links from the
noisy network types and can significantly impair the
classification performance. To overcome these prob-
lems, some approaches train individual classifiers
on these networks and then use ensemble learning
methods to combine their predictions [35, 26, 32].
Lastly, such methods do not typically take into ac-
count correlations between different data sources,
and often suffer from learning time and memory
constraints. Previous work has also benefited from
considering the hierarchical structure of Gene On-
tology (GO) [10, 3], using statistical principles to
choose negative examples (i.e., proteins without a
given function) [33] or modeling the incomplete set
of protein function annotations as a matrix comple-
tion or recommendation system problem [12].

2. Related work

A recent study proposed Mashup [7], a network
integration framework, to address the challenge
of fusing noisy and incomplete interaction net-
works. Mashup takes as input a collection of protein-
protein association networks and applies a matrix
factorization-based technique to construct compact
low-dimensional vector representation of proteins
that best explains their wiring patterns across all

networks. These vectors are then fed into a Support
Vector Machine (SVM) classifier to predict func-
tional labels of proteins. The key step in Mashup
is the feature learning step that constructs informa-
tive features that have been shown to be useful in
multiple scenarios including highly accurate protein
function and protein-protein interaction prediction.
There are several challenges to learning a useful

low-dimensional network representation (also known
as network embedding) while preserving the network
structure. In particular, most protein-protein associ-
ation networks are characterized by diverse connec-
tivity patterns. Specifically, proteins with the same
or similar functional annotations in these networks
often exhibit a complex mixture of relationships,
based both on homophily (close proximity to each
other in the network) and structural similarity (sim-
ilar local wiring patterns, regardless of the position
in the network).
Thus, it is a challenging task to learn a low-

dimensional embedding of proteins that preserves
non-linear network structure while remaining pre-
dictive of protein function. Even more challenging is
the construction of such a compact low-dimensional
embedding of proteins that is consistent across dif-
ferent protein functional and molecular interaction
modalities (i.e., across different types of protein-
protein association networks).
The majority of previous network embedding

methods use shallow and linear techniques that can-
not capture complex and highly non-linear network
structure. These include methods such as node2vec
[13] and DeepWalk [24] that are mainly used on
social networks. On the other hand, deep learning
is a promising technique to deal with such prob-
lems, and has been shown to work well for problems
such as speech recognition, natural language pro-
cessing (NLP) and image classification, as well as for
several biological problems [1]. Motivated by the re-
cent success of deep learning techniques in learning
powerful representations from complex data, a few
recent studies propose using deep neural networks
(DNNs) for computing network embeddings [13, 4,
30]. DNNs apply multiple layers of non-linear func-
tions to map input data into a low-dimensional
space, thereby capturing highly non-linear network
structure in efficient low-dimensional features. A
multi-layer architecture of DNN is a key to learn-
ing richer network representation. The advantage
of using DNNs has been demonstrated in learn-
ing embeddings of large-scale social networks for
performing different tasks, such as link prediction,

2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

network clustering and multi-label classification [30,
28, 4]. However, none of these methods can con-
struct embeddings by handling different network
modalities (i.e., types, views), i.e., these methods
cannot be used for integrative analysis. Thus, we
propose deep Network Fusion, deepNF (also pro-
nounced deep enough), an integrative framework
for learning compact low-dimensional feature rep-
resentation of proteins that 1) captures complex
topological patterns across multiple protein-protein
association networks, and that 2) is used to derive
functional labels of proteins. To explicitly address
the diversity of protein-protein interaction network
types, we use separate layers for handling each net-
work type in the early parts of the deep autoencoder,
later connecting all the layers into a single bottle-
neck layer from which we extract features to predict
protein function for different species. Similar to
Mashup, in the last phase, deepNF trains an SVM
on the resulting features to predict each protein
function label.

deepNF is based on a Multimodal Deep Autoen-
coder (MDA) to integrate different heterogeneous
networks of protein interactions into a compact, low-
dimensional feature representation common to all
networks. An autoencoder is a special type of neural
network that is composed of two parts: 1) an en-
coding part, in which the input data is transformed
into low-dimensional features, and 2) a decoding
part, in which those features are mapped back to
the input data [29]. Our method, deepNF, has the
following conceptual advances: 1) it preserves the
non-linear network structure by applying mul-
tiple layers of non-linear functions, composing the
DNN architecture of deepNF, thereby learning a
richer network representation; 2) it handles noisy
links present in the networks, as autoencoders have
also been shown to be effective denoising systems
capable of constructing useful representations from
corrupted data [29]; and 3) it is efficient and scal-
able as it uses the MDA to learn low-dimensional
protein features from all networks in a fully un-
supervised way and independently of the function
prediction task. This allows for the use of the entire
data set in the training of the MDA, resulting in
high-quality features. Our method enables semi-
supervised approaches to function prediction. Here
we demonstrate such a semi-supervised approach
to function prediction task by training an SVM for
each function on these features. Additionally, the
reduced dimension of the extracted features makes
the training of the SVMs computationally efficient.

We apply this method on human and yeast
STRING networks to construct a compact low-
dimensional representation containing high-level pro-
tein features. For each species, we perform 5-fold
cross validation, as well as temporal holdout valida-
tion, in which we train our method on GO annota-
tions from 2015 and test it on those from 2017. We
report the performance of our method for different
DNN architectures. We contrast the performance of
our method with the state-of-the-art network inte-
gration methods, Mashup and GeneMANIA. We re-
port a significant improvement of deepNF over these
methods on both yeast and human protein function
annotations. We also report a significant improve-
ment in performance when training deepNF on all
STRING networks together than when training it
on each individual STRING network, demonstrating
the success of our integrative strategy.
To the best of our knowledge, this is the first

method that uses a deep multimodal technique to
integrate diverse biological networks. We demon-
strate that deep learning methods offer the great
advantage of being able to capture non-linear infor-
mation contained in large-scale biological networks,
and that using such techniques could lead to im-
proved network representations. Features learned
by using these methods not only lead to substantial
improvements in protein function prediction accu-
racy but also our temporal holdout results indicate
that our method can also be used for prioritizing
novel experimental target proteins for a given func-
tion.

3. Approach

In this section we introduce our framework for
predicting protein functions from multiple networks,
deepNF, including the preprocessing step, adopted
from [4], and the cornerstone of our method, the
Multimodal Deep Autoencoder (MDA). In the pre-
processing step the structural information of each
network is converted into a high-dimensional vector
representation that is used as input to the MDA.
We also provide implementation details and a de-
scription of our testing schemes: cross-validation
and temporal holdout validation.

4. Methods

We consider a set of N = 6 undirected weighted
STRING networks whose connectivity patterns are

3

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

......

......

X(1)

X(2)

X(N)

X(1)

X(2)

X(N)

_

_

_
encoder decoder

compressed

features

Multimodal Deep Autoencoder

GO_1, GO_2, , GO_m

SVM

......

A(1)

A(2)

A(N)

......

RWR PPMI
P(1)

P(2)

P(N)

pt
i

......

......

......

......

Figure 1: Method overview. In the first step networks are converted into vectors after the Random Walk with Restarts
method (left). After this preprocessing step, the networks are combined via our MDA (right). Low-dimensional features are
then extracted from the middle layer of the MDA and used to train a final classifier (bottom).

represented by a set of symmetric adjacency matrices
{A(1),A(2), . . . ,A(N)}. Each matrix, A(j) ∈ Rn×n,
is constructed over the same set of proteins n.
deepNF learns low-dimensional latent feature repre-
sentation of n proteins, Hc ∈ Rn×dc (where dc � n),
shared across all networks. In order to do so, the
method follows three steps (see Fig. 1): (i) it con-
verts structure of each network into a high-quality
vector representation by first applying the Random
Walk with Restarts (RWR) method and then con-
structing a Positive Pointwise Mutual Information
(PPMI) matrix capturing structural information of
the network; (ii) it fuses PPMI matrices of networks
by using the MDA, and from the middle layer ex-
tracts a low-dimensional feature representation of
proteins; (iii) it predicts protein function by training
an SVM classifier on the low-dimensional features
computed in the previous step. An outline of the
procedure is provided in Algorithm 1. We provide
details of each step below.

4.1. Random walk-based network representation

To capture network structural information and to
convert it to high-dimensional protein vector repre-
sentation suitable for input to the MDA, we adopt
the approach of [4] and further modify it for mul-
tiple networks. For each network j ∈ {1, . . . N} we
construct high-quality vector representations of pro-
teins, X(j) ∈ Rn×n, preserving potentially complex,
non-linear relations among the network nodes. To do
so, we first use the RWR model to capture network
structural information and to characterize the topo-
logical context of each protein. We chose the RWR

method for converting network structure into ini-
tial node vector representations over the previously
proposed sampling-based procedure in node2vec [13]
and DeepWalk [24], because these methods are com-
putationally more intense and require additional
hyperparameter fitting. The RWR approach can be
formulated as the following recurrence relation:

p
(t)
i = αp

(t−1)
i A+ (1− α)p(0)

i (1)

where p
(t)
i is a row vector of protein i, whose k-th

entry indicates the probability of reaching the k-th
protein after t steps, p(0)

i is the initial 1-hot vector,
α is the probability of restart controlling the relative
influence of local and global topological information
of a network represented by adjacency matrix A. By
expanding the iterations in the recurrence relation
in equation 1, the probabilities of reaching to all
proteins in a network after T steps can be written
as:

p
(T)
i = αKATp

(0)
i + (1− α)

T−1∑
t=0

αtAtp
(0)
i

It has been shown that for constructing a
good node representation, random walks of greater
lengths should be given less weight in order to cap-
ture relevant local connections and reduce the in-
troduction of noise coming from distant nodes of
the network. Thus, the final representation of the
i-th protein can be constructed in the following way:
pi =

∑T
t=1 w(t)p

(t)
i ; where w(t) is a monotonically

decreasing weight function [13, 4, 19]. Here, we

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

Input: Adjacency matrices {A(1), . . .A(N)},
annotation matrix Y ∈ Rn×f

Output: Predicted function score matrix
Ŷ ∈ R|r|×f

for j ∈ {1, . . . N} do
P(j) = RWR(A(j)); (Eq. 1)
X(j) = PPMI(P(j)); (Eq. 2)

end
θ = MDATrain({X(1), . . . ,X(N)}); (Eq. 3)
Hc = ExtractMDAFeatures({X(1), . . .XN});
for h ∈ {1, . . . f} do

βh = SVMTrain(Hc{q}, Y:h{q});
end
for h ∈ {1, . . . f} do

Ŷ:h{r} = SVMPredict(βh, Hc{r});
end

Algorithm 1: deepNF protocol. N is the number of
protein networks, n is the number of proteins in each
network, and f is the number of function columns in
Y. The training and test protein indices are given by q
and r, respectively. θ is the set of the MDA parameters
trained to reconstruct the input PPMI matrices. βh is
the set of SVM parameters trained for function h.

adopt the weighting strategy proposed by [4], which
results in the following mathematical form used for
computing node representations:

pi =
T∑
t=1

p
(t)
i (2)

Repeating this process for every node i ∈
{1, . . . n} in the network j, results in a represen-
tation matrix P(j) ∈ Rn×n, characterizing the prob-
ability of co-occurrence of network nodes. Next,
from the probabilistic co-occurrence matrix, P(j),
of network, j, we construct a vector representation
of proteins by computing PPMI matrix defined as:

X
(j)
ik = max

(
0, log2

(P(j)
ik

∑
i

∑
kP

(j)
ik∑

iP
(j)
ik

∑
kP

(j)
ik

))
(3)

It is important to note that this process occurs
as a first step and thus the RWR representation is
mitigating the sparsity of some individual network
types prior to the deeper integration described in
next steps below.

4.2. Integrating networks with MDA
Although the above approach is fast, it results in

protein features that still represent individual net-
works in the high-dimensional space. As such, these
features cannot be readily used for protein function
prediction. Here, we describe MDA, a novel method
for integrating multiple networks represented by
PPMI matrices, reducing their dimension and cre-
ating protein features, extracted from all networks,
that are more suitable for training a classifier and
predicting protein functions.
The MDA constructs a low-dimensional feature

representation of n proteins, that best approximates
all networks, j ∈ {1, . . . , N}, by projecting their
PPMI matrices, X(j), using multiple non-linear ac-
tivation functions, into a common feature space,
Hc ∈ Rn×dc (i.e., a common bottleneck layer in
DNN architecture of the MDA, see Fig. 1). Fol-
lowing the standard definition of autoencoders [29],
we formulate the encoding and decoding part of the
MDA as follows:

• Encoding: in the first hidden layer of the MDA,
we first compute low-dimensional non-linear
embedding, H(j) ∈ Rn×dj , for each network
j ∈ {1, . . . , N}:

H(j) = σ(W
(j)
1 X(j) +B

(j)
1)

then, we compute a common feature representa-
tion by applying multiple non-linear functions
(i.e., by stacking a series of hidden layers in the
MDA) on the feature representation obtained
by concatenating features from all networks ob-
tained in the previous step (i.e., the previous
layer):

Hc = σ(W1[H
(1), . . . ,H(N)] +B1)

• Decoding: we compute reconstructed PPMI ma-
trices, X̂(j), for each network, j ∈ {1, . . . , N},
by mapping the common representation, Hc ∈
Rn×dc , first to the lower dimensional represen-
tations of the individual networks, and then
back to the original space, by also applying
multiple non-linear functions:

X̂(j) = σ(W
(j)
2 Hc +B

(j)
2)

where, θ = {W1,B1,W
(j)
1 ,B

(j)
1 ,W

(j)
2 ,B

(j)
2 } is the

set of all parameters in both the encoding and decod-
ing parts of our model to be learned in the training

5

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

process, σ(x) = 1
1+e−x is the sigmoid activation

function and [∗] denotes concatenated matrices.
The aim of the MDA method is to find optimal

θ̂ that minimizes the reconstruction loss, L(θ), be-
tween each original and reconstructed PPMI matrix:

θ̂ = argmin
θ

L(θ) = argmin
θ

N∑
j=1

l(X(j), X̂(j)) (4)

where l(∗) is the sample-wise binary cross-entropy
function.
A key step of our approach is the second step in

the encoding part of the MDA that constructs a
common feature representation by first denoising
each individual network, by constructing their cor-
responding low-dimensional feature representations,
and then projecting them into a common feature
space.

The loss function (equation 4) can be optimized by
standard back-propagation algorithm. We use mini-
batch stochastic gradient descent with momentum
for training the MDA. We also explore the perfor-
mance of the MDA with different batch sizes, learn-
ing rates, and different architectures (i.e., number
and sizes of hidden layers). Values of all hyperparam-
eters are provided in Section 3 of the Supplementary
Material. After the training of the MDA is done, we
extract the low-dimensional features, Hc ∈ Rn×dc ,
from its bottleneck layer.

4.3. Predicting function from multiple networks

We model the problem of protein function pre-
diction as a multi-label classification problem. We
use the compressed features, Hc, computed in the
previous step, to train an SVM classifier to pre-
dict probability scores for each protein. We use
the SVM implementation provided in the LIBSVM
package [5]. To measure the performance of the
SVM on the compressed features, we adopt two eval-
uation strategies: (a) 5-fold cross validation and (b)
temporal holdout validation.

In the 5-fold cross validation, we split all anno-
tated proteins into a training set, comprising 80% of
annotated proteins, and a test set, comprising the
remaining 20% of annotated proteins. We train the
SVM on the training set and predict the function
of the test proteins. We use the the standard ra-
dial basis kernel (RBF) for the SVM and perform a
nested 5-fold cross validation within the training set
to select the optimal hyperparameters of the SVM

(i.e., γ in the RBF kernel and the weight regulariza-
tion parameter, C) via grid search. All performance
results are averaged over 10 different CV trials.
In the temporal holdout validation, we use the

protein GO annotations from 2015 and 2017 to form
training, validation and test sets. We form the
training set from proteins whose annotations did
not change from 2015 to 2017. We form the test set
from the proteins that did not have any annotations
in 2015 but gained annotations in 2017. We use
the same setup for the SVM classifier as in 5-fold
cross validation. To fit the hyperparameters of the
SVM, we created a validation set comprising pro-
teins who had annotations in 2015 but also gained
new annotations in 2017. We choose the optimal
hyperparameters based on the SVM performance on
the validation proteins, and report the final results
on the test proteins. The performance results are
averaged over 1,000 bootstraps of the test set.

We compare the performance of our method with
2 state-of-the art methods, Mashup and GeneMA-
NIA. For each method, we apply the validation
strategies described above. We use the following
metrics to evaluate the prediction performance: (i)
Accuracy (ACC), that measures the percentage of
test proteins that were correctly predicted (i.e. a
protein is correctly predicted if the set of its pre-
dicted functions exactly match the set of its known
functions); (ii) Micro-averaged F1 score (F1) is com-
puted in the same way as in [7]; (iii) Micro-averaged
area under the precision-recall curve (m-AUPR) is
computed by first vectorizing the protein-function
matrices of predicted scores and known binary an-
notations, and then computing the area under the
precision-recall curve by using from these two vec-
tors; Macro-averaged area under the precision-recall
curve (M-AUPR) is computed by first computing
the AUPR for each function separately, and then
averaging these values across all functions. Here,
we do not consider receiver operating characteristic
(ROC) curves as protein labels are highly skewed,
and AUPR is less biased in that case and thus better
choice [9].

4.4. Data preprocessing
To make the cross-validation performance compar-

ison of deepNF with Mashup fair, we use the exact
same dataset (i.e., the six STRING networks and
functional annotations) used in the Mashup paper
[7]. The basic network measures and properties of
the STRING networks are provided in Table S1 in
the Supplementary Material. Also, we report the

6

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

results of the methods on both yeast and human
STRING networks. The functional annotations for
yeast are taken from Munich Information Center for
Protein Sequences (MIPS) (again, this is done to
make a perfect comparison to validations performed
in [7]) and they are organized into three functional
categories: Level 1 (consisting of 17 most general
functional categories), Level 2 (consisting of 74 func-
tional categories) and Level 3 (consisting of 153
most specific functional categories). All functional
annotations for human are taken from GO. Similar
to yeast, they were arranged into three functional
categories, i.e., categories containing GO terms an-
notating 11-30 (covering 153 molecular function,
MF, 262 biological process, BP, and 82 cellular com-
ponent, CC GO terms), 31-100 (covering 72 MF,
100 BP and 48 CC GO terms) and 101-300 (cover-
ing 18 MF, 28 BP and 20 CC GO terms) proteins
respectively.
To compile function annotation data for tempo-

ral holdout validation, we use the same strategy
proposed in the CAFA challenge [25, 15]. We ob-
tain protein annotation data for 2015 (release 145)
and 2017 (release 167) year from UniProt-GOA [14]
database. For each ontology (i.e., MF, BP and CC)
and each model organism (i.e., yeast and human),
we create our training, validation and test sets of
proteins as described above, specifically: the train-
ing set is formed of proteins whose annotations did
not change from 2015 to 2017, the test set comprises
proteins who did not have any annotations in 2015
and gain at least 10 new annotations in 2017, and
the validation set comprises proteins that had anno-
tations in 2015 but also gained new annotations in
2017. We consider only GO terms that were gained
by test proteins from 2015 to 2017 and that have
between 10 and 300 training proteins in 2015. The
number of training, validation, and test proteins, as
well as the number of new functions for MF, BP
and CC, for yeast and human, are summarized in
Table S2 in the Supplementary Material.

5. Results

Here, we use cross-validation and temporal hold-
out to evaluate deepNF and compare its performance
to GeneMANIA and Mashup. In all of our exper-
iments we set α = 0.98 in the RWR step of our
method as this leads to the best generalized results
across all function label types and architectures
tested for both organisms. Other choices of α (e.g.,
α = 1.0) have been shown to result in lower quality

of extracted features (see Sec. 4.1) [4]. In the train-
ing of the MDA, we explore different layer configu-
rations (also known as architectures) and regulariza-
tion parameters. Values of all the hyperparameters
and the details of the MDA training strategy are
provided in Sec. 3 in the Supplementary Material.

m -PR M-PR F1 ACC
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Yeast : Level 1

*

*
*

*

m -PR M-PR F1 ACC
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Yeast : Level 2

*

*

m -PR M-PR F1 ACC
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Yeast : Level 3

GeneMANIA

Mashup

deepNF

*

*

Figure 2: Cross-validation performance of our method
in integrating yeast networks. Performance of our
method, with the MDA architecture [6 ×N, 6 × 2000, 600],
in 5-fold cross validation in comparison to function predic-
tion performance of the state-of-the-art integration method,
Mashup, and GeneMANIA. Performance is measured by the
area under the precision-recall curve, summarized over all GO
terms both under the micro-averaging (m-PR) and macro-
averaging (M-PR) schemes; F1 score and accuracy (ACC).
Performance of the methods is shown separately for MIPS
yeast annotations for Level 1 (left), Level 2 (middle) and Level
3 (right). The error bars are computed based on 10 trials.
Asterisks indicate where the performance of deepNF is sig-
nificantly higher than the performance of Mashup (rank-sum
p-value < 0.01).

5.1. Cross-validation performance

To evaluate the quality of the low-dimensional
features, extracted from the bottleneck layer of the
MDA (Fig. 1), we run the same five-fold cross-
validation procedure as in the Mashup paper [7].
We train the MDA for different layer configurations
for Yeast and Human STRING networks. The per-
formance of our method in yeast and human, for
different architectures, is provided in Figs. S1 and
S3 in the Supplementary Material, respectively. We
find that the features obtained from the 5-layer archi-
tecture (2 encoding, 1 feature layer and 2 decoding
layers) of the MDA, trained on the Yeast STRING
networks, leads to the best performance in terms
of the m-AUPR across all three levels of MIPS on-
tology. Performance of the same model on different
annotation levels of the MIPS hierarchy, in compar-
ison to GeneMANIA and Mashup, is summarized in

7

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

Fig. 2. We observe that deepNF significantly out-
performs (rank-sum p-value < 0.01) both Mashup
and GeneMANIA in terms of m-AUPR at different
levels of MIPS hierarchy. Consistent improvement
of deepNF is also achieved in terms of accuracy
(i.e., the percentage of test proteins with all the pre-
dicted functions exactly matching the correspond-
ing known functions). Namely, deepNF accurately
assigns known functions to 31.3% of proteins, as
opposed to 23.6% for GeneMANIA and 25.5% for
Mashup in Level 1 of MIPS annotations. Note that
this is more rigorous measure than the accuracy
measure used in the Mashup paper by [7] that only
considers top predicted functions for each protein.
Although we observe clear improvements in terms
of m-AUPR across all levels of MIPS annotations,
however, in terms of M-AUPR in Levels 2 and 3 of
MIPS annotations, deepNF performs comparably to
Mashup. We have a highly unbalanced multi-label
problem and M-AUPR aggregates the contributions
of all GO terms with equal weights; thus, M-AUPR
is not as suitable a measure for unbalanced labels
as m-AUPR. Thus, we reason that the consistently
higher values of m-AUPR across different levels of
yeast MIPS ontology that we observe here indicates
that our method can handle the unbalanced labels
much better than the other methods.
The cross-validation performance of the 7-layer

MDA (3 econding, 1 feature layer and 3 decoding)
applied on Human STRING networks in compari-
son to Mashup and GeneMANIA is shown in Fig.
3. Our method significantly outperforms the other
two methods, in terms of all four measures, for the
MF-GO terms belonging to the most general (i.e.,
annotating between 101-300 proteins) and the most
specific (i.e., annotating between 11-30 proteins) cat-
egories. The performance of our method for MF-GO
terms with between 31-100 proteins annotated in
the training set) is comparable to Mashup, except in
terms of F1 measure for which our method achieves
significantly better performance. Similar results are
also observed for both BP and CC ontologies (shown
in Fig. S5 in the Supplementary Material). The
observed improvement in accuracy of our method in
comparison to Mashup can be partially attributed to
the high quality of protein features extracted from
the complex topology of STRING networks in the
hierarchical manner. Unlike Mashup, which utilizes
a shallow matrix factorization-based technique to
construct compact protein feature representation,
deepNF utilizes a hierarchical way of feature con-
struction by incorporating intermediate layers in

m -PR M-PR F1 ACC
0.0

0.1

0.2

0.3

0.4

0.5

Hum an: MF [101-300]

*

*

*

*

m -PR M-PR F1 ACC
0.0

0.1

0.2

0.3

0.4

0.5

Hum an: MF [31-100]

*

m -PR M-PR F1 ACC
0.0

0.1

0.2

0.3

0.4

0.5

Hum an: MF [11-30]

GeneMANIA

Mashup

deepNF

*

*

*

*

Figure 3: Cross-validation performance of our method
in integrating human networks. Performance of
our method, with the MDA architecture [6 × N, 6 ×
2500, 9000, 1200], in 5-fold cross validation in comparison
to function prediction performance of the state-of-the-art
integration method, Mashup, and GeneMANIA. Performance
is measured by the area under the precision-recall curve, sum-
marized over all GO terms both under the micro-averaging
(m-AUPR) and macro-averaging (M-AUPR) schemes; F1
score and accuracy (ACC). Performance of the methods is
shown separately for all three ontologies of GO, i.e., MF,
BP and CC, where each ontology is further divided into
three levels annotating 101-300, 31-100 and 11-30 proteins
respectively.

the MDA architecture (see Fig. 1); features con-
structed in this way capture fine-grained topological
patterns in the large-scale STRING networks. The
de-noising property of the multimodal autoencoder,
underlying our method, leads to better detection
of relevant features from individual networks and
ultimately to a better final integrated feature repre-
sentation. To further demonstrate the usefulness of
such an approach in feature construction, we also
apply our method on individual STRING networks
(i.e., without integration). Namely, we train a deep
autoencoder on each STRING network, separately,
and further assess the quality of the extracted low-
dimensional features of each individual network in
predicting protein functions. The integrative perfor-
mance and the performance on individual networks
of our method in comparison to Mashup is shown
in Fig. 4, for both yeast and human STRING net-
works.

5.2. Temporal holdout performance

Unlike the cross-validation procedure, that ran-
domly divides protein set into folds used for training
and testing the model, the temporal holdout pro-
cedure divides proteins into training and test sets

8

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
-A

U
P

R

Yeast : Level 3

Mashup
deepNF

neighborh
ood

fu
sion

cooccure
nce

coexpre
ssion

experim
enta

l

data
base

inte
gra

te
d

0.0

0.1

0.2

0.3

0.4

0.5

m
-A

U
P

R

Hum an: MF [11-30]

Figure 4: Integrating multiple networks outperforms
individual networks in protein function prediction.
We compare the cross-validation performance of our method
applied on individual STRING networks, measured by m-
AUPR, with the performance of Mashup. The upper panel
shows the performance results on the most specific MIPS
terms (Level 3) for each individual STRING network of yeast,
whereas, the bottom panel shows the performance results on
the most specific MF-GO terms for each individual STRING
network of human. The low-dimensional features of these net-
works are extracted from the bottleneck layer of autoencoders
trained on each individual network. We use architecture
[N, 2000, 600] for yeast STRING networks, and architecture
[N, 2500, 9000, 1200] for human STRING networks. In ad-
dition to individual network performance, we also show the
integrative performance of both methods.

m -PR M-PR F1
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Yeast -MF

*

*

*

m -PR M-PR F1
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Yeast -BP

*
*

*

m -PR M-PR F1
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Yeast -CC

GeneMANIA

Mashup

deepNF

*

*

*

Figure 5: Temporal holdout validation performance
of our method in integrating Yeast STRING net-
works. Performance of our method with the MDA architec-
ture [6 × N, 6 × 2000, 600], in temporal holdout validation
in comparison to function prediction performance of Gen-
eMANIA and Mashup. Performance is measured by the
area under the precision-recall curve (AUPR) both under
micro-averaging (m-AUPR) and macro-averaging (M-AUPR)
and F1 score. The results are averaged over 1,000 boost-
raps of the test set; asterisks indicate where the performance
of deepNF is significantly better than the performance of
Mashup (rank-sum p-value < 0.01).

based on their annotations at two different widely-
separated time points where older annotations are
used for training and newer ones are used for testing
the model. The temporal holdout approach ensures
a more “realistic” scenario of function prediction.

m -PR M-PR F1
0.00

0.05

0.10

0.15

0.20

Hum an-MF
*

*

*

m -PR M-PR F1
0.00

0.05

0.10

0.15

0.20

Hum an-BP

* *

*

m -PR M-PR F1
0.00

0.05

0.10

0.15

0.20

Hum an-CC

GeneMANIA

Mashup

deepNF

*
*

*

Figure 6: Temporal holdout validaton performance
of our method in integrating Human STRING net-
works in comparison to GeneMANIA and Mashup.
Performance of our method, with the MDA architecture
[6×N, 6× 2500, 9000, 1200], in temporal holdout validation
in comparison to function prediction performance of Gen-
eMANIA and Mashup. Performance is measured by the
area under the precision-recall curve (AUPR) both under
micro-averaging (m-AUPR) and macro-averaging (M-AUPR)
and F1 score. The results are averaged over 1,000 boost-
raps of the test set; asterisks indicate where the performance
of deepNF is significantly better than the performance of
Mashup (rank-sum p-value < 0.01).

The study of individual MDA architectures shows
that the 5-layer architecture of the MDA in yeast
and 7-layer architecture of the MDA in human yields
the best performance in terms of M-AUPR across
different GO ontologies (see Figs. S2 and S4 in the
Supplementary Material). The temporal holdout
validation performance of our method with these
architectures is shown in Figs. 5 and 6, for yeast
and human data, respectively. The performance of
both methods on molecular function terms is higher
than for biological process terms, which is in line
with previous studies [25, 15].

We observe that deepNF substantially outper-
forms both Mashup and GeneMANIA in temporal
holdout validation. We observe clear improvement in
both yeast and human data across all three types of
ontologies. Interestingly, unlike in cross-validation,
where Mashup significantly outperforms GeneMA-
NIA, in temporal holdout validation, especially for
the cellular component (CC) ontology for both yeast
and human data, GeneMANIA achieves higher per-
formance results than Mashup. This could be due to
the very high density of CC annotations (i.e., there
are on average 2.42 CC-GO terms per protein in
the training set out of total 11 CC-GO terms, as
opposed to 2.54 MF-GO terms out of total 20 MF-
GO terms and 3.77 BP-GO terms per protein out
of total 43 BP-GO terms, in the temporal holdout

9

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
U

P
R

yeast -BP

Mashup
deepNF

single-o
rg

anism
 in

t ra
cellu

lar t
ra

nsport

pro
te

in ta
rg

et in
g

carb
ohydra

te
 d

eriv
at iv

e m
eta

bolic
 p

ro
cess

single-o
rg

anism
 cellu

lar l
ocaliz

at io
n

pro
te

in lo
caliz

at io
n to

 org
anelle

org
anophosphate

 m
eta

bolic
 p

ro
cess

esta
blis

hm
ent o

f p
ro

te
in lo

caliz
at io

n to
 org

anelle

endosom
al t

ra
nsport

nucleobase-conta
ining sm

all m
olecule m

eta
bolic

 p
ro

cess

org
anonit r

ogen com
pound cata

bolic
 p

ro
cess

m
ult i

vesicular b
ody sort i

ng p
ath

way

m
odif-

dependent m
acro

m
olecule cata

bolic
 p

ro
cess

negat iv
e re

gul o
f m

eta
bolic

 p
ro

cess

vacuolar t
ra

nsport

pro
te

in lo
caliz

at io
n to

 vacuole

esta
blis

hm
ent o

f p
ro

te
in lo

caliz
at io

n to
 vacuole

pro
te

in ta
rg

et in
g to

 vacuole

oxidat io
n-re

duct io
n p

ro
cess

int ra
cellu

lar p
ro

te
in t r

ansport

pro
te

in t r
ansport

m
acro

m
olecule cata

bolic
 p

ro
cess

re
gul o

f b
iological q

ualit
y

phosphory
lat io

n

re
pro

duct iv
e p

ro
cess

re
pro

duct io
n

cellu
lar m

acro
m

olecule cata
bolic

 p
ro

cess

am
ide t r

ansport

ubiquit i
n-d

ependent p
ro

te
in cata

bolic
 p

ro
cess

m
odific

at io
n-d

ependent p
ro

te
in cata

bolic
 p

ro
cess

pro
te

in cata
bolic

 p
ro

cess

pro
te

olysis in
volved in

 cellu
lar p

ro
te

in cata
bolic

 p
ro

cess

esta
blis

hm
ent o

f p
ro

te
in lo

caliz
at io

n

pept id
e t r

ansport

cellu
lar p

ro
te

in cata
bolic

 p
ro

cess

hom
eosta

t ic
 p

ro
cess

carb
ohydra

te
 m

eta
bolic

 p
ro

cess

chem
ical h

om
eosta

sis

vesicle-m
ediate

d t r
ansport

re
sponse to

 chem
ical

cell c
om

m
unicat io

n

single-o
rg

anism
 carb

ohydra
te

 m
eta

bolic
 p

ro
cess

pro
te

olysis

re
g of t

ra
nscrip

t io
n fr

om
 R

NA p
olym

era
se II

pro
m

ote
r

− 0.1

0.0

0.1

0.2

0.3

A
U

P
R

-d
if

f

Figure 7: Temporal holdout validation shows significant difference in the performance of our method vs. Mashup
in predicting individual yeast BP-GO terms. For each BP-GO term we show the Mashup’s and deepNF’s performance
(5-layer MDA), measured by the AUPR. The lower panel shows the difference in the performance of these two methods. The
names of the GO terms are shown on the x-axis.

set in yeast), that can be handled better by label
propagation framework, such as GeneMANIA, than
by Mashup. However, the high density of annota-
tions per protein is more suitable for a deep learning
technique, such as our method, that achieves higher
performance, across all metrics, than both Gene-
MANIA and Mashup.

We further explored the performance of our
method on specific individual GO terms used in
the temporal holdout study. The AUPR values of
the 43 BP-GO terms computed from the features of
Yeast STRING networks are shown in Fig. 7. From
the figure, we can observe that deepNF achieves
higher AUPR performance than Mashup for the
majority of BP-GO terms. We observe similar re-
sults also for MF- and CC-GO terms (see Fig. S7
in the Supplementary Material), and also for Hu-
man STRING networks in all three ontologies (see
Fig. S8 in the Supplementary Material). Specifi-
cally, we observe that majority of MF-GO terms
associated with “binding” perform better with deep
architecture (i.e. deepNF) than with a shallow one
(i.e., Mashup), whereas, the quite opposite situa-
tion is observed with MF-GO term associated with
“transporter activity”. Surprisingly, this is in con-
trast with one of the findings reported in [25], where
the authors observe that most function prediction
methods consistently perform worse on the “bind-
ing” related terms than on the “transporter activity”
related terms. This indicates that our method pro-
vides complementary results in comparison to the

methods presented in the paper. Furthermore, by
looking into CC-GO terms, we observe that major-
ity of CC-GO terms associated with “membrane”
perform better with our method than with Mashup,
whereas the situation is opposite for CC-GO terms
associated with “vesicle”.

6. Conclusion

Recent wide application of high-throughput ex-
perimental techniques has provided complex high-
dimensional complementary protein association
data; the wide availability of this data has in turn
driven a need for protein function prediction meth-
ods that can take advantage of this heterogeneous
data. We present here, for the first time, a deep
learning-based network fusion method, deepNF, for
constructing a compact low-dimensional protein fea-
ture representation from a multitude of different
networks types. These features allow us to use out-
of-the-box machine learning classifiers such as SVMs
to accurately annotate proteins with functional la-
bels.

deepNF extracts features that are highly predic-
tive of protein function, which is attributed to the
fact that the method relies on a deep learning tech-
nique that can more accurately capture relevant
protein features from the complex, non-linear in-
teraction networks. Unlike Mashup (an innovative
previous method that combines protein networks

10

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

to generate features for function prediction) cannot
extract features that have this quality.
We present an extensive performance analysis

comparing our method with competing protein func-
tion prediction methods. In addition to cross-
validation, the analysis includes a temporal hold-
out validation evaluation similar to the measures
in Critical Assessment of Functional Annotation
(CAFA). Double-blind field-wide validation efforts
(like CAFA) have demonstrated the utility of such
temporal holdouts and established them as the most
accepted way of performance comparison for protein
function prediction methods. We show that deepNF
outperforms previous methods (Mashup and Gen-
eMANIA) in both human and yeast organisms, in
multiple levels of specificity of gene ontology and
MIPS terms.

Given that the features generated by deepNF are
task-independent, they can be used for other appli-
cations besides protein function prediction. Addi-
tionally, our method is not limited to only network
integration: in future work, we hope to explore in-
tegrating non-network information such as protein
sequences and structures into our representations in
order to make more accurate predictions of protein
function.

Acknowledgements

The authors would like to thank Da Chen Emily
Koo for enlightening discussions and help with con-
struction of the temporal hold-out validation sets.
We thank Ian Fisk, Nicholas Carriero and Dylan
Simon of the Simons Foundation for discussion and
help with high performance computing.

Funding

The authors acknowledge the support of the Si-
mons Foundation, the NIH, the NSF and NYU
for supporting this research, particularly NSF:
MCB-1158273, IOS-1339362, MCB-1412232, MCB-
1355462, IOS-0922738, MCB-0929338, and NIH:
2R01GM032877-25A1.

References

[1] Christof Angermueller et al. “Deep learning for compu-
tational biology”. In: Molecular Systems Biology 12.7
(2016). doi: 10.15252/msb.20156651.

[2] A. L. Barabási and Z. N. Oltvai. “Network Biology:
Understanding the Cell’s Functional Organization”. In:
Nature Reviews Genetics 5 (2004), pp. 101–114. doi:
10.1038/nrg1272.

[3] Zafer Barutcuoglu, Robert E. Schapire, and Olga G.
Troyanskaya. “Hierarchical multi-label prediction of
gene function”. In: Bioinformatics 22.7 (2006), pp. 830–
836. doi: 10.1093/bioinformatics/btk048.

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Deep Neu-
ral Networks for Learning Graph Representations”. In:
Proceedings of the Thirtieth AAAI Conference on Ar-
tificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI
Press, 2016, pp. 1145–1152.

[5] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A
Library for Support Vector Machines”. In: ACM Trans.
Intell. Syst. Technol. 2.3 (2011), 27:1–27:27. issn: 2157-
6904. doi: 10.1145/1961189.1961199.

[6] Bolin Chen et al. “Identifying protein complexes and
functional modules—from static PPI networks to dy-
namic PPI networks”. In: Briefings in Bioinformatics
15.2 (2014), pp. 177–194. doi: 10.1093/bib/bbt039.

[7] Hyunghoon Cho, Bonnie Berger, and Jian Peng. “Com-
pact Integration of Multi-Network Topology for Func-
tional Analysis of Genes”. In: Cell Systems 3.6 (2016),
540–548.e5. doi: 10.1016/j.cels.2016.10.017.

[8] Domenico Cozzetto, Daniel WA Buchan, et al. “Protein
function prediction by massive integration of evolu-
tionary analyses and multiple data sources”. In: BMC
Bioinformatics 14.3 (2013), S1. doi: 10.1186/1471-
2105-14-S3-S1.

[9] Jesse Davis and Mark Goadrich. “The Relationship
Between Precision-Recall and ROC Curves”. In: Pro-
ceedings of the 23rd International Conference on Ma-
chine Learning. ICML ’06. Pittsburgh, Pennsylvania,
USA: ACM, 2006, pp. 233–240. isbn: 1-59593-383-2.
doi: 10.1145/1143844.1143874.

[10] R. Eisner et al. “Improving Protein Function Prediction
using the Hierarchical Structure of the Gene Ontol-
ogy”. In: 2005 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Bi-
ology. Nov. 2005, pp. 1–10. doi: 10.1109/CIBCB.2005.
1594940.

[11] Andrea Franceschini, Damian Szklarczyk, et al.
“STRING v9.1: protein-protein interaction networks,
with increased coverage and integration”. In: Nucleic
Acids Research 41.D1 (2013), pp. D808–D815. doi:
10.1093/nar/gks1094.

[12] Vladimir Gligorijević, Vuk Janjić, and Nataša Pržulj.
“Integration of molecular network data reconstructs
Gene Ontology”. In: Bioinformatics 30.17 (2014),
pp. i594–i600. doi: 10.1093/bioinformatics/btu470.

[13] Aditya Grover and Jure Leskovec. “Node2Vec: Scalable
Feature Learning for Networks”. In: Proceedings of
the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16. San
Francisco, California, USA: ACM, 2016, pp. 855–864.
doi: 10.1145/2939672.2939754.

[14] Rachael P. Huntley et al. “The GOA database: Gene
Ontology annotation updates for 2015”. In: Nucleic
Acids Research 43.D1 (2015), pp. D1057–D1063. doi:
10.1093/nar/gku1113.

11

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.15252/msb.20156651
https://doi.org/10.1038/nrg1272
https://doi.org/10.1093/bioinformatics/btk048
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1093/bib/bbt039
https://doi.org/10.1016/j.cels.2016.10.017
https://doi.org/10.1186/1471-2105-14-S3-S1
https://doi.org/10.1186/1471-2105-14-S3-S1
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1109/CIBCB.2005.1594940
https://doi.org/10.1109/CIBCB.2005.1594940
https://doi.org/10.1093/nar/gks1094
https://doi.org/10.1093/bioinformatics/btu470
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1093/nar/gku1113
https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

[15] Yuxiang Jiang, Tal Ronnen Oron, Wyatt T. Clark,
et al. “An expanded evaluation of protein function
prediction methods shows an improvement in accuracy”.
In: Genome Biology 17.1 (Sept. 2016), p. 184. doi:
10.1186/s13059-016-1037-6.

[16] Gert R. Lanckriet, Tijl De Bie, et al. “A statistical
framework for genomic data fusion”. In: Bioinfor-
matics 20.16 (2004), pp. 2626–2635. doi: 10.1093/
bioinformatics/bth294.

[17] Insuk Lee et al. “Prioritizing candidate disease genes
by network-based boosting of genome-wide association
data”. In: Genome Research 21.7 (2011), pp. 1109–
1121. doi: 10.1101/gr.118992.110.

[18] Tijana Milenković and Nataša Pržulj. “Uncovering bi-
ological network function via graphlet degree signa-
tures”. In: Cancer Informatics 6 (2008), p. 257. doi:
10.4137/CIN.S680.

[19] Sara Mostafavi, Anna Goldenberg, and Quaid Morris.
“Labeling Nodes Using Three Degrees of Propagation”.
In: PLOS ONE 7.12 (Dec. 2012), pp. 1–10. doi: 10.
1371/journal.pone.0051947.

[20] Sara Mostafavi and Quaid Morris. “Combining many
interaction networks to predict gene function and ana-
lyze gene lists”. In: Proteomics 12.10 (2012), pp. 1687–
1696. doi: 10.1002/pmic.201100607.

[21] Sara Mostafavi and Quaid Morris. “Fast integration of
heterogeneous data sources for predicting gene func-
tion with limited annotation”. In: Bioinformatics 26.14
(2010), pp. 1759–1765. doi: 10.1093/bioinformatics/
btq262.

[22] Sara Mostafavi, Debajyoti Ray, David Warde-Farley,
et al. “GeneMANIA: a real-time multiple association
network integration algorithm for predicting gene func-
tion”. In: Genome Biology 9.1 (2008), S4. doi: 10.1186/
gb-2008-9-s1-s4.

[23] Lourdes Peña-Castillo, Murat Tasan, Chad L. Myers,
et al. “A critical assessment of Mus musculusgene func-
tion prediction using integrated genomic evidence”. In:
Genome Biology 9.1 (June 2008), S2. doi: 10.1186/gb-
2008-9-s1-s2.

[24] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
“DeepWalk: Online Learning of Social Representations”.
In: Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining. KDD ’14. New York, New York, USA: ACM,
2014, pp. 701–710. isbn: 978-1-4503-2956-9. doi: 10.
1145/2623330.2623732.

[25] Predrag Radivojac et al. “A large-scale evaluation of
computational protein function prediction”. In: Nature
Methods 10 (3 2013), pp. 221–227. doi: 10.1038/nmeth.
2340.

[26] Leander Schietgat, Celine Vens, et al. “Predicting gene
function using hierarchical multi-label decision tree
ensembles”. In: BMC Bioinformatics 11.1 (2010), p. 2.
doi: 10.1186/1471-2105-11-2.

[27] Roded Sharan, Igor Ulitsky, and Ron Shamir. “Network-
based prediction of protein function”. In: Molecular
Systems Biology 3.1 (2007). doi: 10.1038/msb4100129.

[28] Fei Tian et al. “Learning Deep Representations for
Graph Clustering”. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence.
AAAI’14. Quebec City, Quebec, Canada: AAAI Press,
2014, pp. 1293–1299.

[29] Pascal Vincent et al. “Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network
with a Local Denoising Criterion”. In: J. Mach. Learn.
Res. 11 (Dec. 2010), pp. 3371–3408. issn: 1532-4435.

[30] Daixin Wang, Peng Cui, and Wenwu Zhu. “Structural
Deep Network Embedding”. In: Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’16. San Fran-
cisco, California, USA: ACM, 2016, pp. 1225–1234. doi:
10.1145/2939672.2939753.

[31] Mark N. Wass, Geraint Barton, and Michael J. E. Stern-
berg. “CombFunc: predicting protein function using het-
erogeneous data sources”. In: Nucleic Acids Research
40.W1 (2012), W466–W470. doi: 10.1093/nar/gks489.

[32] Han Yan et al. “A Genome-Wide Gene Function Predic-
tion Resource for Drosophila melanogaster”. In: PLOS
ONE 5.8 (Aug. 2010), pp. 1–11. doi: 10.1371/journal.
pone.0012139.

[33] Noah Youngs et al. “Parametric Bayesian priors and
better choice of negative examples improve protein
function prediction”. In: Bioinformatics 29.9 (2013),
pp. 1190–1198. doi: 10.1093/bioinformatics/btt110.

[34] G. Yu et al. “Predicting Protein Function Using Mul-
tiple Kernels”. In: IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 12.1 (2015),
pp. 219–233. doi: 10.1109/TCBB.2014.2351821.

[35] G. Yu et al. “Protein Function Prediction Using Multi-
label Ensemble Classification”. In: IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics
10.4 (July 2013), pp. 1045–1057. doi: 10.1109/TCBB.
2013.111.

12

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted November 22, 2017. ; https://doi.org/10.1101/223339doi: bioRxiv preprint

https://doi.org/10.1186/s13059-016-1037-6
https://doi.org/10.1093/bioinformatics/bth294
https://doi.org/10.1093/bioinformatics/bth294
https://doi.org/10.1101/gr.118992.110
https://doi.org/10.4137/CIN.S680
https://doi.org/10.1371/journal.pone.0051947
https://doi.org/10.1371/journal.pone.0051947
https://doi.org/10.1002/pmic.201100607
https://doi.org/10.1093/bioinformatics/btq262
https://doi.org/10.1093/bioinformatics/btq262
https://doi.org/10.1186/gb-2008-9-s1-s4
https://doi.org/10.1186/gb-2008-9-s1-s4
https://doi.org/10.1186/gb-2008-9-s1-s2
https://doi.org/10.1186/gb-2008-9-s1-s2
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1186/1471-2105-11-2
https://doi.org/10.1038/msb4100129
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1093/nar/gks489
https://doi.org/10.1371/journal.pone.0012139
https://doi.org/10.1371/journal.pone.0012139
https://doi.org/10.1093/bioinformatics/btt110
https://doi.org/10.1109/TCBB.2014.2351821
https://doi.org/10.1109/TCBB.2013.111
https://doi.org/10.1109/TCBB.2013.111
https://doi.org/10.1101/223339
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Related work
	Approach
	Methods
	Random walk-based network representation
	Integrating networks with MDA
	Predicting function from multiple networks
	Data preprocessing

	Results
	Cross-validation performance
	Temporal holdout performance

	Conclusion

