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Abstract 
Background. A  major problem in treating  acute kidney injury (AKI)  is that clinical  criteria for 
recognition are markers of  established  kidney damage  or  impaired function; treatment before 
such  damage manifests is desirable.  Clinicians could intervene  during what may be a crucial 
stage for  preventing  permanent kidney injury if patients  with incipient  AKI  and those at high risk 
of  developing AKI  could be identified.  
 
Methods.  We used  a machine  learning technique, boosted ensembles of  decision trees, to train an 
AKI  prediction tool on retrospective  data from inpatients  at Stanford Medical  Center and 
intensive care unit patients  at Beth Israel Deaconess Medical  Center. We tested the algorithm’s 
ability to detect  AKI  at onset, and to predict  AKI  12, 24, 48, and 72 hours  before onset, and 
compared its 3-fold cross-validation  performance to the SOFA  score for  AKI  identification in 
terms of  Area Under  the Receiver  Operating Characteristic  (AUROC).  
 
Results. The prediction  algorithm achieves AUROC  of  0.872 (95%  CI 0.867, 0.878)  for  AKI 
onset detection,  superior to the SOFA  score AUROC  of  0.815 ( P < 0.01).  At 72 hours  before 
onset, the algorithm  achieves AUROC  of  0.728 (95%  CI 0.719, 0.737),  compared to the SOFA 
score AUROC  of  0.720 ( P < 0.01).  
 
Conclusions. The results of  these experiments  suggest that a machine-learning-based  AKI 
prediction tool may offer important  prognostic capabilities  for  determining which patients  are 
likely to suffer  AKI,  potentially allowing clinicians  to intervene  before kidney damage  manifests. 
 
 
Introduction 
Acute kidney injury (AKI)  is common, affecting  5-7%  of  all hospitalizations  and causing $10 
billion of  additional healthcare-related expenditures per year through per-hospitalization  excess 
costs of  $7933 [1-3].  AKI  is associated with increased  mortality, end-stage renal disease, and 
chronic kidney disease, which can require ongoing dialysis and kidney replacement  [4-6].  There 
exists some controversy as  to how  to best treat  patients experiencing AKI.  Standard approaches 
include reducing or  eliminating  nephrotoxic and antibiotic  medications, relieving possible 
obstruction, and correcting  electrolyte and fluid imbalances  [7,  8].  However,  the effectiveness  of 
these interventions  may be limited  by an inability  to consistently  identify patients with active  or 
incipient AKI  [9].  A  system which identifies incipient AKI  or  predicts clinical  manifestations of 
AKI  with a substantial lead time  may enable  clinicians to better  assess  existing and novel 
interventions, and to ultimately  provide more effective  therapy which mitigates  or  avoids AKI 
and long-term  kidney damage. 
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It has  been recognized  that early identification  of  AKI  is desirable in hospital settings, and that 
even small increases in serum creatinine  levels are associated  with long-term  damage and 
increased mortality [2,10].  Further, accurate  prediction of  AKI  onset before patients  meet clinical 
criteria for  recognition is advantageous,  as  such  current clinical  criteria represent markers of 
established kidney damage  or  impaired function [11,  12].  Electronic  health records present an 
opportunity to utilize  machine learning techniques for  predicting AKI  and sending automated 
alerts for  individual  patients at risk of  developing  AKI.  Several studies have assessed  clinical 
decision support (CDS)  tools for  early detection  of  AKI,  but many of  these tools suffer  from a 
variety of  design and performance  problems. These issues  include  lack of  predictive  ability, lack 
of  an e-alert  implementation, heavy tradeoffs between sensitivity  and specificity,  and restrictions 
to limited  patient populations such  as  ICU,  post-cardiac  surgical, or  elderly  patients [13-16]. 
 
In  this paper, we  describe an approach based on a machine  learning algorithm (MLA),  the result 
of  which is a prediction  tool intended  to provide significant,  accurate advance warning of  AKI. 
We compare  the performance  of  this prediction  tool to the Sequential  Organ  Failure Assessment 
(SOFA) score [17].  In  past work,  the SOFA  score has  been shown  to independently  predict AKI 
risk and outcomes, and thus serves  as  an important  comparator for  our  approach [12,18].  
 
 
Materials and  Methods 
Datasets 
Data used  in this study were drawn  from the 651 bed Beth Israel Deaconess Medical  Center 
(BIDMC;  Boston, MA)  and from the 613 bed Stanford University Medical  Center (Stanford, 
CA).  BIDMC  data were collected  from the Medical  Information Mart for  Intensive Care III 
(MIMIC-III)  v1.3 database [19].  This database  was  compiled by the MIT  Laboratory  for 
Computational Physiology, and contains 61,532 inpatient  Intensive Care Unit (ICU)  encounters 
collected between 2001 and 2012. The Stanford University dataset  contains 286,797 inpatient 
encounters from all hospital wards  between December  2008 and May  2017. For  both datasets, 
we  included only those patients  who  were 18 years of  age or  older who  had at least one 
measurement of  each required measurement  (see Imputation  and Feature Creation),  and who 
were in the hospital for  a period of  5 to 1000 hours.  The inclusion chart is presented in Table  1. 
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Table 1. Inclusion criteria  for  patients in the BIDMC  and Stanford datasets. Patients  who  met all 
inclusion criteria  were included  in this study. *Required measurements  include heart rate, 
respiratory rate, temperature,  Glasgow  Coma Scale (GCS)  and Serum creatinine  (SCr).  
 BIDMC Stanford 

Total patients 52,917 286,797 

Patients with  5 to  1000 
hours  of  data 50,219 138,956 

Patients with  at  least one 
observation of  each 

required measurement* 
48,663 19,772 

Patients with  age data 
available and  ≥ 18 years 

old 
48,582 19,737 

Patients used  to  train/test 
the  classifier 48,582 19,737 

 
 
Patient demographics differed in several important  ways  between the two datasets (Table  2).  The 
BIDMC  dataset contains only patients  admitted to the ICU,  while the Stanford dataset  contains 
all inpatients;  BIDMC  patients therefore represent a more critically  ill population. Additionally, 
the two datasets display differences  in age and gender. The Stanford dataset  skewed  younger 
than the BIDMC  dataset,  with around 15%  of  Stanford patients  in the 18-29  year old group  and 
only around 4.5%  of  BIDMC  patients in this group.  Around  41%  of  BIDMC  patients were over 
the age of  70, while only around 14%  of  Stanford patients  fell into this age group.  The BIDMC 
dataset also skewed  more heavily  male than the Stanford dataset,  with more than 56%  of  BIDMC 
patients male. Around  49%  of  Stanford patients were male.  Prevalence of  AKI  was  higher in the 
BIDMC  than in the Stanford dataset.  
 
Data collection  for  both datasets was  passive, and had no impact  on patient safety. Both datasets 
were deidentified  in compliance  with the Health Insurance Portability  and Accountability  Act 
(HIPAA) Privacy Rule. Studies performed on de-identified  data constitute  non-human subject 
research, and thus no institutional  or  ethical approvals were required for  this study.  
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Table 2:  Patient  demographic information for  complete BIDMC  and Stanford cohorts. 
*Prevalence of  Stage 2 or  Stage 3 AKI  before filtering  patients according to inclusion criteria. 
 Characteristic BIDMC  (%) Stanford  (%) 

Gender 
Female 43.66 51.19 

Male 56.44 48.81 

Age 
(Years) 

18-29 4.51 15.23 

30-39 5.26 11.22 

40-49 10.64 11.22 

50-59 17.50 13.20 

60-69 20.98 12.69 

70+ 40.91 14.07 

Severe AKI  based  on 
NHS  England 

algorithm* 

Yes 2.7% 0.5% 

No 97.3% 99.5% 

In-Hospital Death 
Yes 9.2% 2.78% 

No 90.8% 97.22% 

 
 
Data Processing 
All data from both datasets were processed by custom database  queries. The retrieved  data were 
converted into flat .csv  files, which were in turn loaded into a custom data processing code 
written in the programming  language Python. This code associated  each measurement  or 
observation with a timestamp  and a measurement  type key. Demographics and other patient 
characteristics (e.g., age) were stored with a similar  keyed retrieval  mechanism.  
 
Imputation and Feature Creation 
Beginning at the time  of  the first recorded patient  measurement, all data were discretized  into 
1-hour  intervals. If  multiple observations of  the same patient  measurement were taken within a 
given hour,  those measurements  were averaged  to produce a single value for  that hour.  This 
ensured that the rate at which measurements  were fed into the algorithm  was  standardized across 
patients. If  no measurement of  a clinical  variable was  available for  a given hour,  a carry-forward 
imputation method was  employed  to fill the missing measurement  with the most recently 
available previous measurement.  
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We generated  MLA  predictions using patient  data on heart rate, respiratory rate, temperature, 
serum creatinine  (SCr),  and Glasgow  Coma Score (GCS).  After imputation  and averaging,  for 
each prediction  time we  took our  feature  vector to include  the previous five hourly values of  each 
of  heart rate, respiratory rate, temperature,  SCr,  and GCS,  as  well as  the patient’s  age.  
 
Gold standard 
We implemented  the NHS  England AKI  Algorithm as  our  gold standard [20].  This system is 
based on Kidney Disease: Improving Global Outcomes (KDIGO)  guidelines [21],  but relies 
exclusively on changes in serum creatinine  levels to determine  the presence and staging of  AKI. 
The NHS  algorithm is an appropriate  gold standard for  this work  because it was  designed 
explicitly for  early AKI  detection  and generation  of  e-alerts for  affected patients, and because it 
does  not rely on urine output, which has  been shown  to be a poorer indicator  of  AKI  than serum 
creatinine and is subject to poor  documentation,  particularly in the emergency  department [22, 
23].  
 
We determined  the presence of  AKI  for  adult inpatients  only. Using  either  the lowest value from 
the past 0-7  days  or  the median  value from the past 8-365  days  as  a baseline  reference value, the 
ratio of  current serum creatinine  (SCr)  levels to the reference  value was  calculated  as  in the NHS 
Algorithm (Table  3).  We computed  these ratios using SCr  measurements  from the past 0-7  days 
whenever these data were available,  using measurements  from the past 8-365  days  in all other 
cases. We determined  the machine  learning algorithm’s ability to predict  Stage 2 or  Stage 3 AKI 
at 0, 12, 24, 48, and 72 hours  before onset.  
 
Table 3:  Criteria  used  to determine  the presence of  staging of  AKI,  using the NHS  England 
Algorithm gold standard.  

Stage  1 AKI Stage  2 AKI Stage  3 AKI 

● Ratio between 1.5 and 
2.0  

OR 
● Ratio < 1.5 with 

current creatinine 
levels more than 
6µmol/L above lowest 
result from past 48 
hours 

● Ratio between 2.0 and 
3.0 

● Ratio above 3.0 
OR 

● Ratio ≥ 1.5 with 
current serum 
creatinine levels 
above 354 µmol/L 
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Machine Learning and Experimental Methods 
All predictors trained  in this work  are boosted ensembles of  decision trees produced using the 
XGBoost  package for  Python [24].  The boosting process  improves predictions  by successively 
adding new  decision trees to a growing  ensemble  of  trees, where new  trees are trained  to perform 
better on those patients  who  are misclassified  by the current ensemble. 
 
We used  3-fold cross-validation  to assess  the performance  of  the algorithm  separately on the 
BIDMC  and Stanford datasets: we  divided each dataset  into thirds, trained  a predictor  on two of 
the thirds, and tested the trained  predictor on the remaining  third. We measured AUROC, 
accuracy, diagnostic odds  ratio (DOR),  and positive and negative  likelihood ratios (LR+ and 
LR-) obtained  by the MLA   via this method. Our  reported metrics  are the average  metrics of  30 
independently-trained models. Each model was  trained  on a randomly-shuffled  portion of  the 
dataset.  
 
We compared  these results with those same measures obtained  by the SOFA  organ dysfunction 
score [17]  on both datasets. The SOFA  score was  calculated as  in [25],  with SpO 2/FiO2 ratios 
used  in place  of  PaO 2/FiO2 ratios due to data availability.  Statistical comparisons were performed 
using pairwise, single-tailed  t-tests with significance  set at P  < 0.01.  
 
Results 
At all prediction  windows  and for  each dataset,  the MLA  demonstrated  higher AUROC, 
accuracy, and Diagnostic Odds  Ratio (DOR)  than the SOFA  score. When tested on data collected 
from BIDMC,  the MLA  demonstrated an AUROC  of  0.841 at time of  onset while the SOFA 
score achieved  an AUROC  of  0.762 at time of  onset. MLA  AUROC  improved upon that of 
SOFA for  all prediction  windows  ( P < 0.01 for  all windows).  Additionally,  MLA  accuracy and 
DOR  remained superior for  all prediction  windows  (12,  24, 48, and 72 hours  prior to onset) 
(Table 4 and Table  5).  The algorithm  had higher or  comparable  positive likelihood  ratios (LR+), 
and comparable  negative likelihood ratios (LR-) at onset and for  all prediction  windows.  Full 
performance metrics for  the MLA  and SOFA  when  tested on BIDMC  data are presented in Table 
4.  
 
The algorithm  also demonstrated  superior performance  when  trained and tested on patient  data 
from Stanford Medical  Center. At time  of  onset, the MLA  demonstrated  an AUROC  of  0.872, 
while the SOFA  score demonstrated  an AUROC  of  0.815. As  on BIDMC  data, the MLA 
AUROC  exceeded that of  the SOFA  score for  all prediction  windows  ( P < 0.01 for  all windows). 
MLA  accuracy was  higher than that of  the SOFA  score for  all prediction  windows  (Table 3).  The 
MLA  also demonstrated improved DOR  compared  to the SOFA  score. Full performance 
measures for  the algorithm  and SOFA  when  tested on Stanford data are presented in Table  5.  
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We note that the performance  metrics in Tables 4 and 5 were measured for  prediction 
sensitivities held near 0.80, to facilitate  comparison of  metrics  across  prediction times. The MLA 
performance across  all such  operating  points (i.e. choices of  sensitivity)  is summarized  in 
Figures 1 and 2. Figure 1 provides an ROC  curve comparison across  prediction  times for  the 
MLA  trained and tested on BIDMC  data, and algorithm  performance on Stanford data is 
displayed in Figure 2. On  both the BIDMC  and Stanford datasets, MLA  performance  declined 
gradually as  the prediction  window  was  lengthened from 0 hours  to 72 hours  before AKI  onset. 
 
 
Table 4:  Comparison of  performance  metrics for  the machine  learning algorithm (MLA)  and for 
the SOFA  score measured on patient  data from Beth Israel Deaconess  Medical  Center. 
Predictions were made at 0, 12, 24, 48, and 72 hours  before Stage 2 or  3 AKI  onset. Operating 
points for  the MLA  were chosen to keep sensitivities  close to 0.80. 95%  Confidence  Intervals 
were calculated  only for  the MLA.  
 

Prediction 
Time 

 Onset  12 hours 24 hours 48 hours 72 hours 

Predictor MLA SOFA MLA  SOFA MLA SOFA MLA SOFA MLA SOFA 

AUROC 
(95% CI) 

0.841 
(0.837 
0.844) 

0.762 0.749 
(0.744 
0.755) 

0.734 0.758 
(0.754 
0.762) 

0.716 0.707 
(0.701 
0.713) 

0.675 0.674 
(0.669 
0.679) 

0.653 

Sensitivity 0.81 0.55 0.77 0.54 0.83 0.78 0.83 0.84 0.82 0.82 

Specificity 0.75 0.79 0.62 0.78 0.56 0.57 0.48 0.41 0.45 0.39 

Accuracy 0.81 0.57 0.76 0.55 0.82 0.76 0.82 0.81 0.80 0.79 

DOR 13.1 4.8 5.5 4.2 6.2 4.7 4.5 3.6 3.7 3.0 

LR+ 3.3 2.7 2.0 2.5 1.9 1.8 1.6 1.4 1.5 1.3 

LR- 0.25 0.56 0.37 0.59 0.30 0.39 0.35 0.39 0.40 0.46 
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Table 5: Comparison of  performance  metrics for  the machine  learning algorithm (MLA)  and for 
the SOFA  score measured on patient  data from Stanford  Medical  Center. Predictions were 
made at 0, 12, 24, 48, and 72 hours  before Stage 2 or  3 AKI  onset. Operating points were chosen 
to keep sensitivities  close to 0.80. 95%  Confidence  Intervals were calculated  only for  the MLA.  
 

Prediction 
Time 

 Onset  12 hours 24 hours 48 hours 72 hours 

Predictor MLA SOFA MLA  SOFA MLA SOFA MLA SOFA MLA SOFA 

AUROC 
(95% CI) 

0.872 
(0.867, 
0.878) 

0.815 0.800 
(0.792, 
0.809) 

0.781 0.795 
(0.785, 
0.804) 

0.764 0.761 
(0.753, 
0.768) 

0.732 0.728 
(0.719, 
0.737) 

0.720 

Sensitivity 0.77 0.73 0.75 0.73 0.79 0.55 0.85 0.53 0.78 0.51 

Specificity 0.82 0.78 0.73 0.74 0.64 0.83 0.51 0.79 0.53 0.81 

Accuracy 0.78 0.73 0.75 0.73 0.79 0.56 0.84 0.54 0.79 0.53 

DOR 15.5 9.7 8.0 7.3 6.9 5.9 5.8 4.3 4.4 4.3 

LR+ 4.3 3.4 2.7 2.7 2.2 3.2 1.7 2.6 1.7 2.7 

LR- 0.28 0.35 0.34 0.37 0.32 0.55 0.30 0.60 0.38 0.61 
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Figure 1. Comparison of  the Receiver  Operating Characteristic  (ROC)  and Area Under  the ROC 
(AUROC) for  machine learning algorithm 0, 12, 24, 48, and 72 hour  advance  prediction of  Stage 
2 or  3 AKI  development for  Beth Israel Deaconess Medical  Center (BIDMC)  patient  data. 

 
Figure 2. Comparison of  the Receiver  Operating Characteristic  (ROC)  and Area Under  the ROC 
(AUROC) for  machine learning algorithm 0, 12, 24, 48, and 72 hour  advance  prediction of  Stage 
2 or  3 AKI  development for  Stanford Medical  Center patient  data.  
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Discussion 
The machine  learning approach described here results in a prediction  tool which demonstrates 
strong predictive performance, in terms of  AUROC,  up to 72 hours  in advance  of  Stage 2 or  3 
AKI  onset (Figures  1 and 2).  Further, for  a given degree of  sensitivity,  the MLA  outperforms the 
commonly used  SOFA score in terms of  specificity,  accuracy, and other metrics  (Tables 4 and 
5).  Based on these results, we  believe  this MLA  could potentially  provide clinicians  the 
opportunity to improve patient  outcomes by earlier  AKI  detection and subsequent intervention.  
 
We emphasize  that the MLA  performed similarly  well on the BIDMC  and Stanford datasets, an 
observation which has  important  clinical implications. The BIDMC  data included  only patients 
admitted to the ICU,  while the Stanford dataset  contained information about inpatient  stays from 
all hospital wards  (Table  2).  These two  datasets thus represent hospital  settings with different 
demographics, frequency of  patient  measurement collection, levels of  care provision, and disease 
severity in patients.  The predictive  ability of  the algorithm  across  these datasets suggests  that the 
algorithm can identify  patients at risk of  AKI  onset in a variety  of  hospital settings. Because AKI 
is a common complication  of  hospital stays of  a diverse nature [1],  this ability  is of  central 
importance in an AKI  prediction tool.  
 
Such a machine  learning approach provides advantages  over currently  used  systems. Unlike the 
SOFA score, which is a generalized  disease severity score, this method is specific  to AKI.  The 
measurable benefits (Tables 4 and 5)  of  focusing on AKI  prediction  could allow clinicians  to 
more rapidly determine  the cause of  patient  deterioration, and thus administer  appropriate 
treatments in a more timely  manner. In  addition,  the ROC  curves of  Figures 1 and 2 provide a 
continuous range of  sensitivity-specificity  pairs at which the MLA  can operate.  If  fewer alerts, 
greater specificity, and 72-hours  notice were preferable  over more alerts, greater  sensitivity, and 
nearer-onset notice, the MLA  could function accordingly.  This flexibility  is not available  for  a 
rules-based score like SOFA.  The MLA  also may provide advantages  over manual  AKI  detection 
methods, which may not be implemented  unless a physician already  suspects  AKI,  and are 
subject to human error.  
 
Limitations 
Because this work  presents a retrospective  study, we  cannot draw  strong conclusions about this 
algorithm’s  performance in a live clinical  setting. We cannot determine  from the nature of  this 
study what impact  the algorithm  might have on clinicians  and the care which they provide. In 
prospective settings, if the algorithm  is implemented  on patient populations which differ 
substantially from those used  in this study, the predictive  performance of  the algorithm  may 
differ. Indeed, our  cross-validation  analysis only allows us  to conclude  that the performance  we 
report would generalize  well to patient  populations similar  to the BIDMC  and Stanford datasets. 
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Because there have been several proposed  consensus  definitions  for  AKI,  including the most 
recent Kidney Disease: Improving Global Outcomes (KDIGO)  definition [21],  our  predictive 
algorithm may have different  results when  compared  against various gold standard definitions,  or 
in prospective  clinical settings which utilize  a different  gold standard in their diagnostic 
procedures. However,  due to similarities  between our  gold standard and the KDIGO  gold 
standard, both of  which utilize  increases in SCr  levels to diagnose and stage AKI,  this algorithm 
would likely also perform well against the KDIGO  diagnostic criteria.  
 
Conclusion 
The machine  learning approach described in this study accurately  predicts Stage 2 or  Stage 3 
AKI  up to 72 hours  in advance of  onset on when  trained  and tested on two distinct  datasets. This 
algorithm may improve detection  of  AKI  in clinical settings, allowing for  earlier  intervention and 
improved patient  outcomes.  
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