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Abstract

Chronic pain is a common and often disabling condition, and is thought to involve a
combination of peripheral and central neurobiological factors. However, the extent and nature
of changes in the brain is poorly understood. Here, we investigated brain network architecture
using resting state fMRI data collected from chronic back pain patients in UK and Japan (41
patients, 56 controls). Using a machine learning approach (support vector machine), we found
that brain network patterns reliably classified chronic pain patients in a third, independent open
data set with an accuracy of 63%, whilst 68% was attained in cross validation of all data. We
then developed a deep learning classifier using a conditional variational autoencoder, which
also yield yielded 63% generalisation and 68% cross-validation accuracy. Given the existence
of reliable network changes, we next studied the graph topology of the network, and found
consistent evidence of hub disruption based on clustering and betweenness centrality of brain
nodes in pain patients. To examine this in more detail, we developed a multislice modularity
algorithm to identify a consensus pattern of modular reorganisation of brain nodes across the
entire data set. This revealed evidence of significant changes in the modular identity of several
brain regions, most notably including broad regions of bilateral sensorimotor cortex, subregions
of which also contributed to classifier performance. These results provide evidence of consistent
and characteristic brain network changes in chronic pain, and highlight extensive reorganisaton
of the network architecture of sensorimotor cortex.
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Introduction
Maladaptive brain processing of pain is thought to have a primary or facilitative role in many types of
chronic pain. In chronic back pain, for example, degenerative musculoskeletal change is considered
unlikely in itself to fully explain persistent pain in most patients, and central processes are thought to
be critical for the chronification and maintenance of pain. Existing data have identified a broad array
of structural and functional brain differences in patients (Baliki, Geha, et al., 2008; Tagliazucchi
et al., 2010; Baliki, Baria, and Apkarian, 2011; Kutch et al., 2017; Hemington et al., 2016; Napadow
et al., 2010; Hashmi, Baliki, et al., 2013), and this has led to the concept of chronic pain as a
brain network disorder (Apkarian, Baliki, and Geha, 2009; Mano and Seymour, 2015; Kuner and
Flor, 2017). However, given the complexity of brain networks, we still do not have a reliable and
consistent characterisation of these changes.

One of the difficulties in identifying robust changes in brain networks underlying chronic pain
is that networks are inherently data-rich, and the patterns of disruption may be complex. One
way to tackle this is to use machine learning and deep learning methods, and a number of studies
have shown how this can be used to successfully build biomarkers (i.e. classifiers) in a range of
psychiatric disease (Yahata et al., 2016; Takagi et al., 2017; Watanabe et al., 2017; Yamada et al.,
2017). However, these methods need to be validated on genuinely independent data sets to be
convincing, and current evidence of generalisable classifiers for chronic pain is lacking.

Even so, interpreting brain network changes based purely on classifiers alone can be difficult.
This is because the classifier pattern itself is often comprised of a large matrix of individual
functional connections, and strongly predictive (i.e. information-rich) functional connections do not
necessarily imply an active role in a disease. A better way of describing and understanding networks
is to instead evaluate the underlying topology (Bullmore and Sporns, 2009; Bressler and Menon,
2010). Since the brain is inherently modular, individual differences in function can be reflected by
differences in a number of network characteristics (Meunier, Lambiotte, and Bullmore, 2010). This
approach offers a way to define specific aspects of network architecture that change in a disease.

With these issues in mind the aim of the current study was to i) to classify, and ii) characterise
brain networks in chronic back pain in a multi-site study using resting state fMRI. For classification,
we applied machine learning and deep learning classifiers based on data from two sites (Cambridge,
UK and Osaka, Japan) as a discovery cohort, and used an open data set (Chicago, USA) as a
validation cohort. For characterisation, we investigated hub disruption across all datasets, and
developed a method to identify brain regions that undergo modular reorganisation in the chronic
pain state.
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Methods

Participants
Across two sites (UK and Japan), a total of 41 adults with chronic musculoskeletal low back pain
(CLBP) and 56 approximately age, sex, and IQ-matched adults without CLBP participated in the
study. Patients were recruited under the following inclusion criteria: Chronic back pain for over 6
months, no other chronic pain condition, no other major neurological or psychiatric disease, and no
contraindications to MRI scanning. The study was approved by the local research ethics committee
at Addenbrookes Hospital in Cambridge, and Osaka University Medical hospital in Osaka. Prior to
the participation, all participants gave written informed consent.

For all participants, the pain scores were taken in the form of visual analog scale (VAS) and
Short-Form McGill Pain Questionnaire. Mood information was collected with Beck Depression
Inventory (BDI) and Hamilton Depression Rating Scores. IQ information was collected using the
National Adult Reading Test (NART) 1 for the participants in the U.K., and the Japanese Adult
Reading Test (JART) 2 for the participants in Japan. Their demographic information is summarised
in Table 1.

MRI data acquisition
All the scans were performed on a 3.0-T MRI Scanner (3T Magnetom Trio with TIM system;
Siemens, Erlangen, Germany) equipped with echo planar imaging (EPI) capability and a standard
12-channel phased array head coil either at Addenbrooke’s hospital (Cambridge, UK) or CiNet
(Osaka, Japan). Participants remained supine and wore MR-compatible headphones with their heads
immobililised with cushioned supports during scanning. Resting-state functional MRI (rsfMRI)
was acquired using a single-shot EPI gradient echo T2*-weighted pulse sequence with the following
parameters: for the participants in the U.K.; TR 2000 ms, TE = 30 ms, FA = 78 degrees, BW =
2442 Hz, FOV = 192 × 192 mm (covering the whole brain), acquisition matrix = 64 × 64, 32 axial
slices with a interleaved slice order of 3.0mm slice thickness with 0.75mm inter-slice gap, 300
volumes; for the participants in Japan; TR 2500 ms, TE = 30 ms, FA = 80 degrees, BW = 2367
Hz, FOV = 212 × 212 mm (covering the whole brain), acquisition matrix = 64 × 64, 41 axial slices
with a ascending slice order of 3.2mm slice thickness with 0.8mm inter-slice gap, 234 volumes. A
high-resolution three-dimensional volumetric acquisition of a T1-weighted structural MRI scan was
collected using a MPRAGE pulse sequence: for the participants in the U.K.; TR = 2300 ms, TE =
2.98 ms, time of inversion = 900 ms, FA = 9 degrees, BW = 240 Hz, FOV = 256 × 256 mm, 176
sagittal slices of 1mm slice thickness with no inter-slice gap, acquisition matrix = 256 × 256. for
the participants in Japan; TR = 2250 ms, TE = 3.06 ms, time of inversion = 900 ms, FA = 9 degrees,
BW = 230 Hz, FOV = 256 × 256 mm, 208 sagittal slices of 1mm slice thickness with no inter-slice
gap, acquisition matrix = 256 × 256.

Resting-state fMRI data preprocessing
High-resolution T1-weighted anatomical imaging and a resting-state functional imaging were
performed for each participant, and all those images were preprocessed with SPM8 (Wellcome Trust
Centre for Neuroimaging, University College London, UK) on Matlab (R2014a, Mathworks, USA).
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The first five volumes were discarded to allow for T1 equilibration. Slice timing was adjusted to the
intermediate slice and all images were realigned to the first volume of each scan with the estimated
6 rigid-body head motion parameters. After T1 weighted structural image was co-registered to
the mean EPI volume, tissue segmentation of the structural image into three tissue classes; gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF), based on the T1-weighted image
contrast was performed in the common Montreal Neurological Institute (MNI) space. The relevant
parameters estimated in the tissue segmentation were applied to warp functional images into MNI152
template space with a 2 × 2 × 2 mm spatial resolution. Subsequently, smoothing was applied with a
6 × 6 × 6 mm FWHM Gaussian kernel.

Inter-regional correlation analysis
To investigate the inter-regional functional relationship among regions over the whole brain, we used
the digital BSA-AAL composite atlas composed of 140 ROIs consisting of the BrainVISA Sulci
Atlas (BSA) and the Anatomical Automatic Labeling (AAL) package (with a spatial resampling of
2× 2× 2 mm3 grid in MNI space); a band-pass filter with a transmission range from 0.008 to 0.1 Hz;
regression out of the nuisance regressors from a mask of white matter, cerebrospinal fluid, and the
whole brain based on the segmentation of individual T1 weighted image, and three translational and
three rotational head motion parameters; To protect against motion artifact, we performed scrubbing
with a threshold of frame displacement (FD) of 0.5 mm. This preserved 91.7% and 85.0% of slices
in control and CLBP patients in the Japan data respectively, 81.3% and 75.4% in the UK data, and
93.5% and 88.8% in the US data. Subsequently a 140 × 140 Pearson’s full correlation matrix was
computed on all pairs of each of intra-regional average time-series of the ROIs.

Classification
A classification model built from UK and Japan data sets was tested on an open data set available
from the “Open Pain Project” (http://www.openpain.org/, Department of Physiology, Northwestern
University). Anatomical MRI data in the test data set were provided with skull stripping during
preprocessing. We chose to exclude six participants (three CLBP patients and three controls had
lost a small part of brain coverage in their anatomical image during the skull stripping procedure.
The US dataset differed in only 1 aspect of the inclusion criteria (choosing to exclude patients with a
BDI score of over 19).

Classification using Support Vector Machines
We used a support vector machine (SVM) classifier (Cortes and Vapnik, 1995) based on the
connectivity (correlation) matrices to classify subjects as patient or control. SVMs learn a
hyperplane, or decision boundary, that separates the two classes as well as possible (i.e. maximises
the margin between the samples in the two classes). Once this boundary is learnt new samples are
classified according to the side of the hyperplane they fall. The optimal margin is parameterised by
a weight vector, W . Each entry of W corresponds to a particular feature, in this case a connectivity
measure between two brain regions, and is interpreted as the contribution of the feature to separating
the classes. However, it is important to note that the predictions are based on all features. Linear
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kernel SVMs have only one hyperparameter, C, controlling the trade-off between the width of the
margin separating the two classes and the number of misclassified samples.

To assess the predictive performance of the SVM classifier we ran two validation models:
i) pooling together the UK and Japan data as the training dataset, and using the US data as an
independent validation dataset (validation model 1); ii) pooling the three datasets together (UK,
Japan and US) to increase power and testing the performance of the classifier using a stratified
Leave-Two-Subjects-Out (LTSO) cross-validation (CV) (validation model 2). LTSO CV allowed for
one subject of each class to be left out for testing, and the remaining subjects from both classes to be
used for training in each CV fold. To account for multi-site effects, the pairs that were left out were
always from the same acquisition site (stratification).

Due to the slightly higher number of controls compared to patients, we also bootstrapped 100
models in both validation approaches. In other words, each time we ran the whole validation model
we randomly selected a balanced sample (as large as possible) with an equal number of patients and
controls. The predictive accuracies were averaged across bootstraps.

Feature selection was carried out on the training data using a univariate two-sample t-test
(Guyon and Elisseeff, 2003): we Fisher-transformed the correlation data and kept only the features
(connections) statistically significant between patients and controls (p < 0.05, uncorrected).

For both validation approaches the SVM C parameter was optimised using grid search (between
10−3 to 103) and a Leave-3-Out CV on the training data. This CV was nested within the LTSO CV
in the second validation model.

We used as performance measures the accuracy (percentage of correctly classified samples) and
both sensitivity and specificity (percentage of correctly classified patients and controls, respectively).
The obtained results were tested for statistically significance (i.e. how unlikely the results would
be if the classifier was randomly attributing the class labels) using a permutation approach, where
we repeat the entire classification procedure (including the two validation models, parameter
optimisation, bootstrapping and feature selection) 1, 000 times, each time permuting the labels
(patient or control) (Nichols and Holmes, 2002).

We used python 2.7.12 and the scikit-learn 0.17.1 machine learning library (Pedregosa et al.,
2011) for this analysis.

Classification using Deep Learning
We used a conditional variational autoencoder (CVAE) based on the 140 ROIs to classify subjects
(Kingma et al., 2014; Tashiro, Matsubara, and Uehara, 2017). A CVAEs is a generative probabilistic
model based on multilayer neural networks. Given an input data x and a condition y, a CVAE
builds a model of the conditional probability log p(x |y). We used a CVAE as a classifier based
on log-likelihood. We emphasize that the CVAE is not based on the 140 × 140 Pearson’s full
correlation matrices but is based on 140-dimensional vectors, each corresponding to the intra-
regional average signal intensities of the 140 ROIs at one time point. Let x(i)j denote the signal
intensity of the i-th ROI obtained from a subject at time point j. Each sample is a 140-dimensional
vector x j = (x(1)j , . . . x(140)j )T and all the samples obtained from a subject is represented by the set
X = {x j}. The CVAE consists of two neural networks called encoder and decoder. The encoder
accepts a sample x j and the condition y of a subject, and infers a posterior probability of the latent
variable z j , which is considered to correspond to a nuisance component unrelated to the disease
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such as something comes into the subject’s mind at the time point j. The decoder accepts the latent
variable z j and the condition y, and generates an artificial sample x̃ j . After training the encoder
and decoder jointly, the CVAE reconstructs a given signal x j under the condition y accurately, and
the reconstruction error indicates (an upper bound of) the negative log-likelihood − log p(x j |y) of
the given signal x j (see the original study (Kingma et al., 2014) for details). Since we considered
that each sample x j was sampled independently from each other, the log-likelihood log p(X |y) of
all the samples X of a subject was equal to the summation of the log-likelihood of each sample,
i.e., log p(X |y) = ∑

j log p(x j |y). Given the samples X , the posterior probability p(y |X) that the
subject belongs to the class y is assumed as p(y |X) = p(X |y)p(y)/p(X) ∝ p(X |y)p(y) according to
Bayes’ theorem. Therefore, p(X |y = 1)p(y = 1) > p(X |y = 0)p(y = 0) indicates that the subject is
classified into the class y = 1. Finally, we assumed that p(y = 1) = p(y = 0) = 0.5 for adjusting the
imbalance.

We used the encoder and the decoder consisting of 4 layers: The number of units were denoted
by n0, n1, n2, and n3. The hidden layers employed ReLU and layer normalization as their activation
functions, and the output layers employed identity function. The condition y was represented
by the bias terms of the second hidden layer of the encoder and the first hidden layer of the
decoder. The CVAE was trained by Adam optimization algorithm with the parameter α = 10−3,
β1 = 0.9, and β2 = 0.999. For each learning iteration, 10 patients and 10 controls were randomly
chosen from each site, and 50 samples were randomly chosen from each of the chosen subjects,
indicating that a mini-batch comprised 2000 samples. The number of units were searched for
within the ranges of n0 = 140, n1 ∈ {50, 100, 200}, n2 ∈ {50, 100, 200}, and n3 ∈ {5, 10} using a
Leave-Four-Subjects-Per-Group-Out CV for validation model 1 and a 10-fold CV for validation
model 2, where the 10-fold CV was nested within the LTSO CV. We also used python 2.7.12 for this
analysis.

We can obtain a marginal log-likelihood log p(x(i)j |y) of the i-th ROI at the time point j using the
trained CVAE. A large difference between the marginal log-likelihood log p(x(i)j |y) given the different
class labels y = 0 and y = 1 indicates that the i-th ROI largely contributes to the classification.
Hence, we defined Li =

∑
j log p(x(i)j }|y = c) − log p(x(i)j }|y = 1 − c)) given the correct label c as

the contribution weight of the i-th ROI.

Characterisation of network changes: Hub disruption
To study the topology of brain networks, we thresholded the Pearson’s full correlation matrices to a
produce binary adjacency matrix (consisting of 1’s and 0’s) for each subject. Each of the correlation
matrices was thresholded in an adaptive manner to produce an adjacency matrix with a 10 % link
density. This value was chosen based on previous studies that have found such a link density to
provide optimal discriminative ability (Achard et al., 2012; A. Mansour et al., 2016; Termenon
et al., 2016; Itahashi et al., 2014). Using the adjacency matrices, we calculated the Hub Disruption
Index (HDI) - a well-recognized method that characterises functional reorganisation in resting-state
brain networks in disease (Achard et al., 2012; A. Mansour et al., 2016; Termenon et al., 2016;
Itahashi et al., 2014). HDI is calculated based on the difference in a nodal graph-theoretic property
of the network, and references the distribution of this metric across all nodes in a single subject, in
comparison to the equivalent referential distribution in a cohort of healthy controls. Nodal degree is
the most-used index, but any nodal graph measure can be used. Using the Brain Connectivity Toolbox
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(Rubinov and Sporns, 2010), we examined HDIs for degree, clustering coefficient, betweenness
centrality, eigenvector centrality, K-coreness, flow Coefficient, local efficiency, and participation
coefficient. This choice is based on the measures that have been applied in previous studies (Achard
et al., 2012; Hashmi, Kong, et al., 2014; A. Mansour et al., 2016).

Each of the HDIs, defined as a summary of profile of nodal topological metrics in either a patient
compared with the cohort of healthy controls or a control out of the cohort of healthy controls
compared with the rest of the cohort of healthy controls (in the same manner as leave-one-out
cross-validation), were compared between groups by two-sample two-tailed t-tests and the differences
were assigned statistical significance at p values less than 0.05.

Characterisation of network changes: Modular reorganisation

In order to study the architecture of brain networks in more depth, to identify (and localise, where
possible) key differences between patients and control groups, we next probed the network’s modular
structure. Our approach was designed to focus on the differences in brain network modularity
between patients and control groups by identifying a measure of the consensus modularity pattern
across all of the data. We did this by using a new method based on calculation of the multislice
modularity (Mucha et al., 2010) - which allows estimation of the basic community or modular
architecture across large and complex network data sets. In the categorical multislice modularity
algorithm (Jeub et al., 2011), the same node is coupled among all subjects of the same group using
a coupling parameter ω to create a single symmetric agreement matrix representing each group, see
Fig. 1.

This agreement matrix is generated with two free parameters, which we defined a priori. First,
we chose a modularity resolution of γ∗ = 1.5, given that this leads to roughly 10-20 modules overall,
which is consistent with known architecture of brain networks. Second, we chose a ‘moderate’
coupling strength of ω∗ = 0.1 based on (Mucha et al., 2010).

The agreement matrix was estimated across all three data sets, separately for the pain patients
and the control groups. Since there are slightly more control subjects (n = 87) pain patients (n = 71),
we selected a subset of 70 subjects randomly from each group to match the estimation between each
group. Since the modularity estimation is a probabilistic procedure, we repeated this 1000 times,
selecting the 70 subjects randomly each time, and computed the average agreement matrix across all
repetitions.

We next defined an agreement difference matrix AD as the difference of agreement matrices of
pain minus that of the control group. Since each agreement matrix has entries within [0, 1], large
positive entries in AD represent those node pairs that have high agreement in pain, i.e., nodes that
are frequently in the same modules for the pain group, but not in the same modules in the control
group. Similarly, large negative entries indicate the opposite case, i.e., nodes that frequently join the
same modules in the control group, but are not in the same module for the pain group. Nodes with
agreement differences near 0 indicate that two nodes are either in the same module for both groups
or they are in different modules.

Since the agreement difference matrix has both positive and negative entries in each column, we
independently summed the positive-valued and negative-valued elements. This permitted computing
a profile of the strongest contributing ROIs in both cases. The sum of the positive and negative
contributions provides an overall metric of modular reorganisation for each ROI.

To statistically evaluate the modularity of each ROI, we performed an approximate permutation
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Figure 1: Overview of the computation pipeline for multislice modularity and agreement matrices.
First, we calculated the multislice modularity and agreement matrices separately for the pain and
control groups, and then calculated their difference. This difference matrix consists of positive values
(red) which reflect the likelihood of the two corresponding ROIs (defined by the row and column
index) appearing in the same module in the pain group, but not in the control group. Negative values
(blue) reflect the opposite - that the two ROIs are less likely to be in the same module in the pain
group. Furthermore, values that are near zero (white) reflect pairs of ROIs the do not significantly
change or had near-zero agreement in pain and control. The absolute sum of positive and negative
values yields an overall metric of modular reorganisation for each ROI (purple plot in lower panel),
which can be compared to a chance level calculated from random permutations of the pain and
control groups.

test, in which we mixed and randomly resampled the pain and control subjects into two groups, and
repeated the full analysis. We did this also 1000 times, and calculated the one-sided p-value based
on the proportion of times the resampled modularity reorganisation metric exceeded the value based
on the correctly specified groups. These results are presented uncorrected for multiple comparisons
(across ROIs) below an arbitrary threshold of p < 0.01. However we had prior hypotheses related to
the 3 sets of regions commonly implicated in chronic pain: sensorimotor cortices, insular-cingulate
cortices, and striatal-medial prefrontal cortex.

Data Availability
fMRI data: the data from both UK and Japan are available at the ATR Open Access Database
https://bicr-resource.atr.jp/decnefpro/ (as raw connectivity matrices).
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For the validation fMRI data, we used existing open data from the OpenPain Project (OPP;
Principal Investigator: A. Vania Apkarian). OPP funding was provided by the National Institute of
Neurological Disorders and Stroke (NINDS) and National Institute of Drug Abuse (NIDA). OPP
data are disseminated by the Apkarian Lab, Physiology Department at the Northwestern University,
Chicago. Our fMRI data (as dicom files) are in the process of being uploaded here).

Analysis code: SVM data analysis code for fMRI data (PRoNTO) was co-written by MR
is available at http://www.mlnl.cs.ucl.ac.uk/pronto/. The code for modularity reorganisation is
available on our github site: https://github.com/leiken26/pain-network. Toolboxes for
deep learning analyses are available at https://www.tensorflow.org/about/bib, and we will make
openly available user-friendly code for imaging data in due course.

Results

Classification using Machine Learning (Support Vector Machine)
Using validation model 1 (i.e. training on the UK and Japan data and validating on the US data) and
correlation as features for classification, the SVM framework correctly predicted 70%, p-value <
10−3, of patients (sensitivity) and 56%, p-value < 10−3, of controls (specificity), corresponding to a
total accuracy of 63%, p-value < 10−3. Using validation model 2 (i.e. training and testing using
all available data, UK, Japan and US, with LTSO-CV) and the same features, the SVM framework
correctly predicted 68%, p-value < 10−3, of patients (sensitivity) and 67%, p-value < 10−3 of controls
(specificity), corresponding to a total accuracy of 68%, p-value < 10−3. The classification results
are summarised in Table 2.

To test whether these results were driven by confounds such as gender (the sample was not
gender balanced) or depression (many patients also had a depression diagnosis) we tested two new
models where instead of the original labels (patient or control) we used ‘male’ and ‘female’ and
‘depressed’ and ‘not-depressed’, respectively. We used exactly the same SVM framework described
above and validation model 1 (trained on UK and Japan data and validated on US data). To obtain
the depression-related labels we divided the subjects according to their Beck Depression Inventory
(BDI) scores: BDI >= 3 (depressed), BDI < 3 (not-depressed).

The accuracy of the gender model was only 48% (p-value = 1.00) with sensitivity = 55% (p-value
= 0.01) and specificity = 41% (p-value = 1.00). The accuracy of the depression model, although
statistically significant, was lower than with the pain-related labels: accuracy = 59% (p-value <
10−3), sensitivity = 68% (p-value < 10−3), specificity = 50% (p-value = 0.40). This result was
expected given that the depression labels are highly correlated with the pain labels.

Finally, we also tested if the output of the classifier for each validation sample (i.e. how far is the
sample from the decision boundary for both sides) correlated with the BDI score for each individual.
The correlation was found to be low (0.22) and not statistically significant (p-value = 0.074). This
result together with the two confound models are consistent with the hypothesis that the classifier is
related to pain.
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Classification using Deep Neural Networks
Deep learning algorithms represent a novel approach to classification for complex data sets, and
have recently been applied to neuroimaging data (J. Kim et al., 2016; Plis et al., 2014; Suk and Shen,
2013). Here, we used a CVAE with the units of n1 = 100, n2 = 50, and n3 = 10, which achieved
the best validation accuracy for validation model 1 (i.e. training on the UK and Japan data and
validating on the US data). The CVAE correctly predicted 55% of patients (sensitivity) and 72% of
controls (specificity) on average of 100 trials, corresponding to a total accuracy of 63%. Recall
that we built a model pk(X |y) for k-th trial. We used the likelihoods

∏
k pk(X |y) of all the 100

models for an ensemble. Then,
∏

k pk(X |y = 1)p(y = 1) > ∏
k pk(X |y = 0)p(y = 0) indicates that

the subject is classified into the class y = 1. The ensemble achieved a total accuracy of 68%.
Contribution weights varied over trials, and were relatively evenly matched across contributing

nodes: Table 5 summarizes the regions which were frequently highly weighted.
Using validation model 2 (i.e. pooling the three datasets together (UK, Japan and US) and using

an LTSO CV), the CVAE correctly predicted 56% of patients (sensitivity) and 71% of controls
(specificity) on average of 10 trials, corresponding to a total accuracy of 64%. The ensemble of the
10 trials achieved a total accuracy of 68%.

Characterisation of Network Changes: Hub Disruption
Evidence of reliable network-based classification suggests a possible disturbance of network topology
in chronic pain. One way to investigate this further is to apply graph theoretic measures, which
allow characteristation of the basic network topology of brain networks (Rubinov and Sporns, 2010).
This approach has been widely applied to brain data across a range of psychiatric and neurological
conditions (Bullmore and Sporns, 2009; Bressler and Menon, 2010). Of particular relevance is ’hub
disruption’, which refers to a change in the nodal graph topology for any individual metric across
the whole brain (Achard et al., 2012). It has previously been shown that brain networks undergo
hub disruption for degree (the number of connections for each node) in chronic pain, with evidence
from both in human chronic back pain patients and rodent pain models (A. Mansour et al., 2016;
Termenon et al., 2016). Here, we estimated hub disruption indices across all 3 data sets using a
range of nodal graph metrics (see methods). As shown in Fig. 2, we found changes in HDI for
clustering coefficient and betweenness centrality consistently across all 3 data sets, and evidence for
changes in degree HDI in the US cohort, but not other cohorts.
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Figure 2: Hub disruption results for a) Clustering coefficient, b) Betweenness centrality, and c)
Degree. The figure shows the HDI index individually for each site, and for the entire dataset. For
each metric, we show the distribution of subject-wise HDI on the left panels, and the scatter plot of
the ROI-specific changes in nodal graph metric on the right panels.
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Characterisation of Network Changes: Modular Reorganisation

The modular structure of the brain - the fact that certain groups of brain regions are especially
well-connected with each other, is one of the fundamental properties of brain networks (Meunier,
Lambiotte, and Bullmore, 2010; Sporns and Betzel, 2016; Nicolini and Bifone, 2016). Different
modules reflect information processing subnetworks that have some degree of independence from
each other. The pattern of changes in hub disruption index might suggest a change in the underlying
modularity of the network. More specifically, a reduction in the extent to which nodes tend to
cluster together, and a reduction in betweenness centrality (the number of shortest paths between
nodes that pass through a node), in the absence of other aspects of hub disruption, could relate to a
reorganisation of the modular architecture of the network.

To investigate the pattern of modular reorganisation across our chronic pain and control datasets,
we developed a method to estimate the common modular architecture across all subjects in each
group. Specifically, we computed the multislice modularity within each group, which effectively
couples together all subjects within each group into a single large network, and estimates the modular
structure of this graph to compute a consensus (or ‘agreement’) matrix (Lancichinetti and Fortunato,
2012). Then, we computed the difference between the agreement matrix for the chronic pain and
control groups, to determine the agreement difference matrix (Fig. 1). This matrix consists of
positive (red) and negative (blue) values. The positive values reflect pairs of nodes that are estimated
to appear more commonly in the same module in pain patients, and the negative values represent
pairs of nodes that are estimated to appear less commonly in pain patients. We defined the overall
modular reorganisation for each node as the sum of both positive and negative values for each node
(i.e. the sum of each column in the agreement difference matrix). That is, the larger the value, the
greater the reorganisation (purple plot in Fig. 1).

To statistically evaluate the amount of reorganisation, we performed a permutation test of
reorganisation estimation, to yield one-sided p-values across all ROIs. As illustrated in Table
6 at an uncorrected threshold of p < 0.01, changes were most commonly seen across bilateral
sensori-motor regions (Fig 3). We also saw significant changes in right inferolateral prefrontal
cortex, and bilateral temporal cortical regions. Looking separately at the positive and negative
values related sensorimotor regions, we noted that reorganisation tended to be dominated by negative
reorganisation i.e. a reflecting a reduction in the number of modular ’partners’ of sensorimotor
regions in patients.

Discussion
The results show that there are sufficient brain network changes in chronic back pain to allow reliable
classification. Furthermore, the way in which networks are changed follows a characteristic pattern,
with global disruption of hub connectivity and modular reorganisation. In particular, we show that
bilateral sensorimotor cortical regions undergo the substantial reorganisation, including in regions
that also carry predictive weight in classification.

Since chronic pain dominates many aspects of cognition and action, the existence of widespread
connectivity changes is not surprising (Baliki, Geha, et al., 2008; Tagliazucchi et al., 2010; Baliki,
Baria, and Apkarian, 2011; Kutch et al., 2017; Hemington et al., 2016; Napadow et al., 2010; Hashmi,
Baliki, et al., 2013). A challenge, therefore, is to try and identify regions that may have an important
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Figure 3: Brain regions showing modular reorganisation. This shows brain ROIs with the best
evidence for modular reorganisation in the pain group, compared to the control group, based on the
arbitrary theshold of p < 0.01, as listed in table 6. The ROIs are colour coded according to their
basic anatomical region (cortical lobe).

or driving role in pain. The approach we take here looks across several methods: connectivity-based
machine learning to identify changes important for classification, and a modularity analysis to
identify brain regions that show fundamental changes in their functional network identity. Although
it is not possible to differentiate causal from consequential connectivity changes, these methods can
identify regions that appear to be important in chronic pain at an informational level.

In particular, we present a network modularity analysis approach that aims to identify brain
regions that are reorganised in chronic pain. Modular reorganisation is defined on the basis of
connections from a particular ROI that appears to join or leave modules with other ROIs - effectively
reflecting a change in the ROIs modular identity. This analysis identifies a number of brain
regions, but were dominated by sensorimotor cortical regions (i.e. sensory, motor, and premotor
cortex). Sensorimotor cortex has been repeatedly implicated in chronic pain (Kutch et al., 2017;
Kuner and Flor, 2017; Yanagisawa et al., 2016; Eto et al., 2011; S. K. Kim and Nabekura, 2011;
Flor et al., 1997), and consequently is a well-recognised target for intervention. The efficacy of
these interventions implies an important role of sensorimotor cortex in chronic pain experience
(Yanagisawa et al., 2016; Tsubokawa et al., 1991; Antal et al., 2010; Garcıa-Larrea et al., 1999;
Hosomi et al., 2008). Furthermore, voxels in SI have been shown to carry the greatest weight in
classifiers trained on BOLD responses to experimental electrical lower back stimulation (Callan
et al., 2014), and structural imaging also identify sensory and motor cortices with high classification
weights (Ung et al., 2012; Koush et al., 2013), which would be consistent with an important role for
multiple subregions of sensorimotor cortex in the chronic back pain state.

Network changes may arise in chronic pain for a variety of distinct reasons, and it is difficult
to distinguish these on the basis of a single rsfMRI scan. First, some regions may have a primary
causative or risk factor role in the clinical manifestation of chronic pain, and therefore might be
expected to be apparent before chronic pain is itself established (e.g. striatal - medial prefrontal
cortical regions are candidate regions for this role (Baliki, Petre, et al., 2012). Alternatively, other
regions might have no role in the cause or expression of chronic pain, but instead reflect downstream
changes, for example perceptual learning of a new sensory environment in which pain is more
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common (Mancini et al., 2016; Mano, Yoshida, et al., 2017). Such regions might be expected to
manifest later, and resolve with successful pain treatment (Rodriguez-Raecke et al., 2009).

Further complications of studying network changes in pain relate to confounding factors such
as medication use, secondary effects of pain such as disability, and co-morbid disease such a
depression. We also cannot determine the specificity of our results to chronic back pain, as opposed
to other chronic pain conditions, and recent evidence suggests that many aspects of network changes
may be common (Baliki, A. R. Mansour, et al., 2014; A. Mansour et al., 2016). Hence future
network studies can be greatly enhanced by longitudinal data (and pre-morbid data when available),
better identifying correlations with pain severity, evaluation of response to drugs, and use of open
data sources to provide larger data sets to test generalisation across diagnoses. This should allow
identification of components of the network that reflect the cumulative impact of chronic pain, from
those reflect a more state-dependent biomarker for ongoing symptomatic experience.

Other caveats that should be noted are that identification of network may depend on the brain
atlas used. Higher resolution atlas (i.e. greater number of smaller ROIs) may have a better ability
to detection small regions that are important, but greatly increase the numbers of features for
classification, which can lead to spurious over-fitting and worse generalisation of the results.

In terms of classification methods, the accuracy of the SVM is comparable with that seen in
other disease biomarkers with independent generalisation validation cohorts (Yahata et al., 2016;
Takagi et al., 2017) that use machine learning (albeit less than that seen with classifiers for phasic
BOLD responses to acute painful stimulation in healthy individuals (Wager et al., 2013)). Here, we
also adopted a deep learning approach using deep convolutional neural networks. Deep networks
are best known for solving natural image recognition problems with high accuracy, often using very
large training data sets. This is typically necessary since they have to extract features from images
automatically. With smaller data sets, accuracy is reduced, but performance may still be strong, and
this has led to their application to human neuroimaging data. Here, we used a CVAE with a small
number of network layers, which suppresses over-fitting in return for a lower classification accuracy
than ordinary deep neural networks. An important difference between the connectivity-based
decoding and the deep neural network is that the input to the latter is the ROI time-series, not
a correlation matrix. In principle, this allows it to use nonlinear and non-pairwise correlations
between ROIs implicitly, and hence confers the capacity for much more complex feature extraction.
This means that performance may improve when new data becomes available, and help to make
deep neural networks a promising method for future classifiers and biomarkers.

In terms of theories of chronic pain, the data here support the general notion of chronic pain
as a network disorder, albeit with different aspects of specific regions of the network disturbed in
different ways. This approach adds to and complement a substantial body of studies identifying
and characterising network changes in chronic pain (Apkarian, Baliki, and Geha, 2009). The
limitations of rsfMRI network analysis also also emphasises the importance of understanding the
underlying behaviour and computational function of network nodes in chronic pain, and data-
driven methods should ideally complement hypothesis-driven task-based studies in clinical groups.
Notwithstanding this, a particularly attractive property of the network-theory based approach is their
translational applicability to animal models, since topological metrics are relatively independent of
brain morphology. In principle, this allows targeted experimental interventions to test whether there
is a direct relationship network specific changes and the manifestation of chronic pain.
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N Age BDI Duration VAS JART/NART
JP 24 21-66 15.2 ± 10.5 11.6 ± 9.2 2.6 ± 2.4 31.23 ± 9.25

CLBP UK 17 20-61 15.9 ± 11.5 10.4 ± 7.5 4.8 ± 2.8 29.31 ± 6.76
US 34 21-62 6.3 ± 5.8 15.7 ± 11.3 6.7 ± 1.7 — —
JP 39 21-68 4.7 ± 3.4 0 0.3 ± 1.1 34.66 ± 7.38

TD UK 17 20-62 3.7 ± 5.3 2.4 ± 7.5 0.3 ± 0.7 37.29 ± 6.84
US 34 21-64 1.5 ± 2.6 0 0 — —

Table 1: Demographic details of participants.
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SVM classifier results (measure, p-value)

Labels Measure Valid.
model 1

Valid.
model 2

UK+JP >
US

LTSO-CV

Pain Accuracy 63 %
(<10−3)

68 %
(<10−3)

Sensitivity 70 %
(<10−3)

68 %
(<10−3)

Specificity 56 %
(<10−3)

67 %
(<10−3)

Gender Accuracy 48 % (1.00) -
Sensitivity 55 % (0.01) -
Specificity 41 % (1.00) -

Depression Accuracy 59 %
(<10−3)

-

Sensitivity 68 %
(<10−3)

-

Specificity 50 % (0.40) -
BDI Correlation 0.22 (0.07) -

Table 2: SVM classification results, showing the accuracy, sensitivity and specificity for the two
validation models for pain, and also for gender and depression.

Weight ROI ROI Name MNI Centroid Coords
0.0207 83 – 128 R. olfactory sulc. — L. Hippocampus (12,22,-18) – (-25,-22,-15)
0.0185 62 – 72 R orb. front. sulc. – L. ant. occipito-temporal lat. sulc. (42,52,0) – (-41,-21,-28)
0.0179 42 – 111 R. cent. sulc. – R. post. inf. temp. sulc. (42,-17,49) – (54,-60,1)
0.0178 51 – 128 L. ant. inf. frontal sulc. – L. Hippocampus (-48,39,1) – (-25,-22,-15)
0.0174 81 – 138 R. occipito-polar sulc. – L. cerebellum (15,-94,-4) – (-25,-61,-35)
0.0164 118 – 132 L. post. branch of sup. temporal sulc. – R. Caud. (-47,-66,17) – (13,10,10)
0.0163 109 – 132 R. ant. infer. temp. sul. – R. Caudate (62,-24,-19) – (13,10,10)
0.0162 13 – 111 L. ant. sub-cent. ramus lat. fiss. – R. post. inf. temp. sulc. (-48,0,7) – (54,-60,1)
0.0155 43 – 111 L. cent. sylvian sulc. – R. post. inf. temp. sulc. (-60,-2,16) – (54,-60,1)
0.0139 61 – 66 L. orb. front. sulc. – R. sup. frontal sulc. (-41,50,1) – (26,24,49)

Table 3: Classification using support vector machine: top 10 positive weights based on validation
model 1 (from UK, Japan data, tested on the US data).
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Weight ROI ROI Name MNI Centroid Coords
-0.0192 69 – 135 R. ant. intralingual sulc.. – R. Hippocampus (15,-60,-4) – (27,-20,-15)
-0.0168 16 – 62 R. post. sub-cent. ramus lat. fissure – R. orb. frontal sulc. (49,-12,16) – (42,52,0)
-0.0164 8 – 87 R. asc. ramus of lat. fissure – R. int. parietal sulc. (50,19,5) – (6,-56,44)
-0.0162 26 – 61 R. sup. postcent. intraparietal sulc. – L. orb. frontal sulc. (48,-28,48) – (-41,50,1)
-0.0157 106 – 117 L. rhinal sulc. – R. ant. branch of sup. temporal sulc. (-26,-7,-36) – (56,-47,27)
-0.0154 62 – 124 R. orbital frontal sulc. – L. Thalamus (42,52,0) – (-10,-19,7)
-0.0152 1 – 100 L. ant. lateral fissure — L. sup. precentral sulc. (-33,13,-21) – (-39,-6,51)
-0.014 20 – 21 R. calloso-marginal post. fissure – Left calcarine fissure (8,-27,45) – (-10,-65,4)
-0.0143 6 – 62 R. ant. ramus of lat. fissure – R. orbital frontal sulc. (45,27,-2) – (42,52,0)
-0.0140 26 – 42 R. sup. postcentral intraparietal sulc. – R. central sulc. (48,-28,48) – (42,-17,49)

Table 4: Classification using support vector machine: top 10 negative weights based on validation
model 1 (from UK, Japan data, tested on the US data).

Frequency ROI number ROI name network MNI coord.
0.116 41 Left central sulcus sensorimotor (-41,-20,48)
0.116 36 Right insula sensorimotor (42,4,2)
0.116 83 Right olfactory sulcus default (12,22,-18)
0.114 59 Left median frontal sulcus default (-15,20,58)
0.112 44 Right central sylvian sulcus sensorimotor (61,0,17)
0.111 23 Left collateral fissure default (-25,-45,-13)
0.111 46 Right subcallosal sulcus default (4,-14,25)
0.111 40 Right paracentral lobule central sulcus cingulo-opercular (4,-30,55)
0.110 33 Left parieto-occipital fissure default (-9,-69,22)
0.110 42 Right central sulcus sensorimotor (42,-17,49)

Table 5: Classification with deep learning: ROIs which are frequently significant in the CVAE for
validation 1
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AD (+/-) p-value ROI Anatomical label Anat. MNI coord.
10.63 (4.23, -6.39) 0.001 8 R. ascending ramus of the lat. fissure F (50,19,5)
9.20 (3.54, -5.66) 0.001 10 R. diagonal ramus of the lat. fissure F (54,17,12)
14.30 (5.29, -9.01) 0.002 3 L. post. lat. fissure TP (-54,-20,10)
12.84 (4.62, -8.22) 0.002 16 R. post. sub-cent. ramus of the lat. fissure P (49,-12,16)
12.02 (5.59, -6.43) 0.002 27 L. intraparietal sulcus P (-30,-66,40)
8.20 (1.52, -6.68) 0.003 98 L. median precentral sulcus F (-20,-15,66)
11.10 (3.67, -7.42) 0.004 11 L. retrocent. trans. ramus of lat. fissure P (-62,-20,23)
12.82 (4.59, -8.24) 0.004 15 L. post. sub-central ramus of the lat. fissure TP (-50,-15,13)
8.50 (1.68, -6.83) 0.004 39 L. paracentral lobule central sulcus FP (-5,-29,57)
11.61 (3.90, -7.71) 0.004 43 L. central sylvian sulcus F (-60,-2,16)
13.88 (5.12, -8.76) 0.005 4 R. post. lat. fissure TP (55,-15,13)
7.67 (1.27, -6.40) 0.006 42 R. central sulcus FP (42,-17,49)
7.84 (1.35, -6.49) 0.006 99 R. median precentral sulcus F (17,-15,68)
8.15 (1.45, -6.70) 0.006 103 R. sup. postcentral sulcus P (26,-39,63)
7.78 (1.34, -6.39) 0.006 120 L. paracentral sulcus F (-6,-16,58)
10.48 (3.20, -7.28) 0.007 44 R. central sylvian sulcus FP (61,0,17)
8.17 (1.46, -6.72) 0.007 96 L. marginal precentral sulcus F (-28,-11,60)
8.52 (1.68, -6.84) 0.007 97 R. marginal precentral sulcus F (27,-8,61)
8.04 (1.43, -6.62) 0.007 121 R. paracentral sulcus F (5,-22,58)

Table 6: Brain ROIs that show modular reorganisation at a cut-off threshold of p < 0.01. The table
lists the ROI by number (in the BSA-AAL composite atlas), with its corresponding anatomical
label, region and MNI coordinates. The overall modularity reorganisation metric AD is listed,
included it’s decomposition into positive and negative contributory factors. For anatomy, F=frontal;
TP=temporoparietal; FP=frontoparietal; P=parietal
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