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ABSTRACT 
 Most epigenome-wide association studies to date have been conducted in blood.  However, 
metabolic syndrome is mediated by a dysregulation of adiposity and therefore it is critical to study 
adipose tissue in order to understand the effects of this syndrome on epigenomes. Therefore, to determine 
if natural variation in DNA methylation was associated with metabolic syndrome traits, we profiled 
global methylation levels in subcutaneous abdominal adipose tissue. We measured association with 32 
clinical traits related to diabetes and obesity in 201 people from the Metabolic Syndrome In Men cohort. 
We performed epigenome-wide association studies between DNA methylation levels and traits, and 
identified significant associations for 13 clinical traits in 21 loci. We prioritized candidate genes using 
eQTL, and identified 18 high confidence candidate genes, including known and novel genes associated 
with diabetes and obesity traits. We also carried out an analysis to identify which cell types may be 
mediating the associations, and concluded that most of the loci we identified were specific to adipocytes. 
We determined whether the abundance of cell types varies with metabolic traits, and found that 
macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we 
developed a DNA methylation based biomarker to assess type II diabetes risk in adipose tissue. In 
conclusion, our results demonstrate that profiling DNA methylation in adipose tissue is a powerful tool 
for understanding the molecular effects of metabolic syndrome on adipose tissue, and can be used in 
conjunction with traditional genetic analyses to further characterize this disorder. 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/223495doi: bioRxiv preprint 

https://doi.org/10.1101/223495
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

INTRODUCTION 
 Metabolic syndrome traits such as obesity, dyslipidemia, insulin resistance, and hypertension 
underlie the common forms of atherosclerosis, type 2 diabetes (T2D) and heart failure, which together 
account for the majority of deaths in Western populations. Metabolic syndrome affects 44% of adults over 
the age of 50 in the US, and people affected with metabolic syndrome have higher risk of heart attacks, 
diabetes and stroke (1). Numerous studies have investigated the genetic basis of metabolic syndrome 
traits such as diabetes (2), and accumulating evidence suggests that epigenetics is associated with these 
phenotypes (3, 4).  
 Methylation of DNA cytosine bases is evolutionarily conserved and plays important roles in 
development, cell differentiation, imprinting, X-chromosome inactivation, and regulation of gene 
expression. Aberrant DNA methylation in mammals is associated with both rare and complex traits 
including cancer, aging (5), and imprinting disorders such as Prader-Willi syndrome. Recent studies have 
demonstrated that much like genome sequence variation, DNA methylation is variable among individuals 
in human (6), plant (7) and mouse (8) populations. Moreover, differences in DNA methylation of 
cytosines are in part heritable and controlled by genetics both in cis and in trans. However, sex and 
environmental factors such as smoking and diet can also influence DNA methylation differences, leading 
to changes in methylation levels over an individual’s lifetime (9). 
 DNA methylation states have been shown to be associated with biological processes underlying 
metabolic syndrome, including obesity, hypertension and diabetes (10). Environment-induced changes in 
DNA methylation have also been associated with fetal origins of adult disease (11), and alterations in 
maternal diet during pregnancy can affect the methylation levels of the placenta, inducing transcriptional 
changes in key metabolic regulatory genes (12, 13). Recent studies have also shown that diet-induced 
obesity in adults affects methylation of obesogenic genes such as leptin (14), Scd1 (15), and LPK (16). 
 Similar to genome-wide association studies (GWAS), epigenome-wide association studies 
(EWAS) aim to identify candidate genes for traits by using epigenetic factors instead of SNP genotypes in 
the association model. EWAS have recently identified associations for gene expression and protein levels 
in humans (6), and complex traits such as bone mineral density, obesity, and insulin resistance in mice 
(17). However, to date, most EWAS studies have been carried out in blood, which is the tissue that is 
most readily collected for large scale studies.   

By contrast, in this study we examined the association of DNA methylation with metabolic traits 
in humans using adipose tissue samples from the Metabolic Syndrome in Men (METSIM) cohort. 
Metabolic syndrome is characterized by a clustering of three or more of the following conditions: 
elevated blood pressure, elevated serum triglycerides, elevated blood sugar, low HDL levels, and 
abdominal obesity. As adipose is known to be a central organ in metabolic syndrome manifestation, 
adipose tissue should be one of the most relevant for defining and studying metabolic syndrome traits 
(18). The METSIM cohort has been thoroughly characterized for longitudinal clinical data of metabolic 
traits including a 3-point oral glucose tolerance test, cardiovascular disorders, diabetes complications, 
drug and diet questionnaire, as well as high density genotyping, and genome-wide expression in adipose 
(19, 20) We performed EWAS on clinical traits using reduced representation bisulfite sequencing data 
and identified 51 significant associations for metabolic syndrome traits, corresponding to 21 loci. These 
associations include previously known genes, FASN (21–23) and RXRA (24–26), as well as loci harboring 
22 new candidate genes for diabetes and obesity in humans. We identify the types of cells that are likely 
to be mediating these associations, and conclude that adipocytes are involved.  We also examine the 
abundance of cell types and show that macrophages increase with the severity of metabolic syndrome 
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traits. Finally, we develop a biomarker for to assess type II diabetes status in adipose tissue. Our results 
demonstrate that DNA methylation profiling is both useful and complementary to GWAS for 
characterizing the molecular and cellular basis of metabolic syndrome.  
 
RESULTS 
 
METSIM COHORT 
 The METSIM cohort consists of 10,197 men from Kuopio Finland between 45-73 years of age. 
Laakso and colleagues (20) have characterized this cohort for numerous clinical traits involved in diabetes 
and obesity, and genome-wide expression levels in adipose tissue biopsies (19). In this study, we 
examined 32 clinical traits related to metabolic syndrome (Table S1), adipose tissue expression levels 
using microarrays, and DNA methylation profiles from adipose tissue biopsies in 201 individuals from 
the METSIM cohort. 
 
DNA METHYLATION OF ADIPOSE BIOPSIES 
 To examine methylation patterns in the METSIM cohort we constructed reduced representation 
bisulfite sequencing libraries (RRBS) from adipose tissue biopsies, corresponding to 228 individuals. The 
sequences obtained from RRBS libraries are enriched in genes and CpG islands, and cover 4.6 million 
CpGs out of the ~30 million CpGs in the human genome (~15%). We sequenced the libraries using the 
Illumina HiSeq platform and obtained on average 34.3 +/- 6.7 million reads per sample. We aligned the 
data to the human genome using BSMAP (27) and obtained on average 21.9 +/- 4.6 million uniquely 
aligned reads per sample (Figure S1A), corresponding to 64% average mappability (Figure S1B), and 19x 
average coverage (Figure S1B). We focused our analyses on CpGs, since CHG and CHH (H = A, C or T) 
methylation in mammals is on average only 1-2%, which makes it difficult to detect significant variation 
in our samples (17, 28). We and others have previously validated RRBS data relative to traditional 
bisulfite sequencing by cloning DNA fragments into bacterial colonies followed by Sanger sequencing 
and found a high degree of concordance between RRBS and traditional bisulfite sequencing results in 
mice (8, 12) and humans (29). RRBS shows limited overlap with the Illumina 450k arrays, a small study 
(n=11) found an overlap between 24,000 - 120,000 CpG sites (30). 
 We filtered our dataset for CpGs with at least 10x coverage, and present in at least 75% of the 
samples, corresponding to 2,320,297 CpGs. However, the methylation state of individual CpGs may be 
subject to stochastic variation or measurement error, and we observed a single or a few outlier samples 
with methylation levels that are very different from the rest of the population (Figure S1C). This 
variability is likely to lead to spurious associations between methylation and traits, and we observed that 
was indeed the case when we performed EWAS using individual CpGs. In contrast to individual CpGs, 
the methylation level of a CpG methylation region (a unit comprised of several CpGs) is a much more 
robust measure of DNA methylation levels (for example see Figure S1D). Methylation regions are likely 
a more biologically relevant genomic unit than individual CpGs, and methylation levels of proximal 
CpGs tend to be correlated over distances of a few hundred bases to 1kb, roughly the typical size of CpG 
islands (31). Therefore, we defined 149,191 methylation regions, where each region is defined as the 
average methylation of multiple CpGs that are near each other and highly correlated. We require that a 
region have a minimum of 2 CpGs whose methylation is correlated (Pearson’s r >= 0.9), and the region 
has a maximum size of 3kb. The distribution of methylation levels for these regions is shown in Figure 
S1E, with average methylation levels of 58.4% +/- 4.7. The range of methylation across all individuals 
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can vary between 0 and 100%. The average range was 33% for individual CpGs, and 25% for methylation 
regions (Figure S1F). These regions are located throughout the genome with no major gaps in coverage, 
with the exception of centromeric and acrocentric regions, and in the y-chromosome where there was 
minimal coverage (Figure S2). 
 
EWAS  
 We performed epigenome-wide association (EWAS) between CpG methylation regions and 32 
clinical traits related to obesity and diabetes, including body weight, body mass index (BMI), body fat 
percentage, oral glucose tolerance test (OGTT) glucose and insulin measurements (Table S1). All clinical 
traits were transformed using inverse normal transformation (see Methods), as is common practice for 
genome-wide association studies of quantitative traits (32). We used the linear mixed model package 
pyLMM to determine associations between DNA methylation patterns and phenotypes. Others and we 
have previously demonstrated that this approach corrects for spurious associations due to population 
structure (17, 33) and tissue heterogeneity (34). Associations were considered significant if the p-value 
for the association was below 1x10-7, based on the Bonferroni correction for the number of CpG regions 
tested.   
 In total, we found 51 significant associations, corresponding to 21 distinct methylation loci and 
15 unique phenotypes (Figure 1 and Table1) where the p-value was below 1x10-7. Of the 21 distinct loci, 
15 methylation loci were intragenic, and 6 loci were intergenic. The distance between intergenic loci and 
nearby flanking genes ranged between 23kb and 440kb. Candidate genes listed for each association in 
Table1 correspond to the gene itself for intragenic associations, and the two nearest flanking genes by 
distance for intergenic associations, with the distance between the locus and each flanking gene listed for 
intergenic associations (Table1). Figure 1 summarizes the genomic distribution of all EWAS hits, where 
each dot represents an association between a phenotype and a methylation region.  
 Some may argue that a significance threshold of 1x10-7 is insufficiently low, since we tested for 
32 traits. Of the 51 associations described above, 26 associations would remain significant using a 
Bonferroni correction (p<1x10-8) which accounts for both CpG regions and the 32 traits. However, we 
believe the additional Bonferroni correction for 32 traits would be too stringent given that several of the 
traits are not independent, for example BMI and fat mass, or plasma insulin and glucose levels. 
Alternatively, 40 associations would remain significant at the commonly used GWAS significance 
threshold (p<5x10-8). 
 We found no evidence of inflation in our EWAS results, where the inflation factor lambda was on 
average 0.99, and maximum of 1.01 (Table 1). Sample EWAS p-value distributions and qqplots are 
shown in Figure S3A-C.  
 
CANDIDATE GENES 

We initially identified a total of 24 candidate genes and non-coding RNAs by proximity to an 
EWAS signal (Table 1). To prioritize candidate genes, we examined adipose expression associations from 
770 individuals of the METSIM cohort previously published by our laboratories (19, 35). We asked if 
there were significant expression quantitative trait loci that overlapped with the methylation loci 
identified in the EWAS. We narrowed down the candidate gene list from 24 to 18 (75%) high confidence 
candidate genes that had significant cis-eQTL in adipose tissue samples from the METSIM cohort (Table 
1). The reported cis-eQTL were significant for the candidate gene reported.   
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 We identified 3 loci where multiple clinical traits mapped to the same methylation region. These 
loci include chromosome 17 at the FASN gene (Figure 2A-B), in chromosome 2 near SLC1A4, and in 
chromosome 5 near CPEB4 (Figure 1, Table 1). The FASN gene has a cis-eQTL (p=9.3x10-10, Figure 2C), 
suggesting that genetic variation in the population affects expression levels of this gene. One of the traits 
associated with this locus is BMI, and we observed a positive correlation between methylation levels in 
the FASN locus and BMI (Figure 2D). Remarkably, the observed correlation of 0.4 suggests that the 
methylation of FASN alone is able to capture 16% of the variation in BMI observed in our cohort. 
Moreover, we also observed an inverse correlation between methylation and FASN expression in adipose 
tissue biopsies (Figure 2E), and an inverse correlation between FASN expression and BMI (Figure 2F).  
 A second locus is located upstream of SLC1A4 and was associated with waist circumference, lean 
mass, fat mass, plasma insulin levels, BMI, and indices of insulin resistance and insulin sensitivity 
MATSUDA, and HOMAIR (Figure 3A-B). SLC1A4 has a cis-eQTL (p=1.6x10-10, Figure 3C), and we 
observed an inverse correlation between methylation at this locus and the insulin resistance index 
HOMAIR (Figure 3D), an inverse correlation between methylation and expression of SLC1A4 (Figure 
3E), and a positive correlation between SLC1A4 expression and HOMAIR (Figure 3F). A third locus is 
located upstream of CPEB4, and was associated with basal plasma insulin levels, OGTT plasma insulin, 
and the indices of insulin resistance and insulin sensitivity MATSUDA, and HOMAIR (Table 1). A cis-
eQTL for CPEB4 expression in adipose tissue biopsies (p=2.4x10-174) makes this gene strong candidate 
gene for this locus. 
  
CELL TYPE DECOMPOSITION OF ADIPOSE TISSUE 
 Whenever we examine molecular phenotypes such as DNA methylation and gene expression in 
tissues, the question arises, what cell-types within the tissue are responsible for the signal we observe? 
We know that subcutaneous adipose tissue is composed primarily of adipocytes, but also contains 
endothelial cells and immune cells such as resident and infiltrating macrophages. Moreover, we know that 
obese individuals show increased macrophage content in their adipose tissue, and hence that 
heterogeneity in people’s phenotypes can influence cell-type composition in the adipose tissue biopsies 
(36). To examine macrophage content in the adipose tissue biopsies, we examined expression levels of 
genes expressed in adipocytes, namely PPARG, CFD, ADIPOQ, FABP4, CIDEC and LEP, and TNMD, 
and genes highly expressed macrophages including TLR1, TLR2, TLR3, TLR4, ABCG, IL10, and TNF. 
We found high expression levels of adipocyte-specific genes and low expression of macrophage-specific 
genes (Figure S3D). These results suggest that there is minimal macrophage content in the adipose 
biopsies. However, the genes selected may not fully reflect the transcriptome of adipocytes and 
macrophages, or additional cell-types that may be present in adipose tissue.  
 To further explore the contribution of different cell-types to the METSIM adipose tissue biopsies, 
we performed cell-type deconvolution using BS-seq methylation data from our samples and from multiple 
reference cell-types including adipocytes, endothelial cells, macrophages, neutrophils, NK-, T-, and B-
cells. Using this approach, we can determine the relative content of different cell types by comparing 
DNA methylation at cell-specific methylation markers in our test samples, to DNA methylation signatures 
derived from purified cell types (see Methods). Consistent with our previous analysis of gene expression 
in adipose- and macrophage-specific genes, we found that the highest cell-type represented in our adipose 
biopsies was indeed adipocyte (Figure 4A), but we also found evidence of macrophage and neutrophil 
content.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/223495doi: bioRxiv preprint 

https://doi.org/10.1101/223495
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 Since highly expressed genes are often correlated with lower methylation levels in their 
promoters, we hypothesize that if our genes with significant associations with metabolic syndrome are 
expressed in adipose tissue, they will also have lower methylation levels in the cell types in which they 
are expressed. When we examine DNA methylation levels in CpG regions associated with traits in our 
EWAS, we find that adipocytes tend to have lower methylation levels at these loci, relative to other cell 
types, suggesting that many of them may be specific to adipocytes. However, two associated loci at RXRA 
and RAP1GAP2 genes also show decreased methylation levels in macrophages and neutrophils, 
suggesting that DNA methylation at these loci may be derived from macrophages and/or neutrophils.  
 Finally, although the relative content of cell-types such as macrophages may be small, they can 
still contribute to expression and methylation levels, and to clinical phenotypes. We studied the 
correlation between the cell-type content and clinical traits across all individuals, and found that 
macrophage content was positively correlated with the clinical traits associated in our EWAS (Figure 4C). 
These results support the notion that both adipocytes and macrophages contribute to DNA methylation 
signatures, and to associations between DNA methylation and clinical traits. The correlation between 
neutrophil content and traits is minimal, suggesting that methylation levels derived from neutrophils are 
potentially derived from blood contamination during collection of biopsies.  
 
CHORMATIN STATES AT CANDIDATE LOCI 
 We used the Roadmap (37) and RegulomeDB databases to examine chromatin marks and 
chromatin states in adipocytes or adipose tissue in each of the EWAS loci. The chromatin marks found in 
each locus are summarized in Figure S4. The sites group into three clusters. The first represents regions of 
active transcription that contain H3K36me3. The third cluster likely contains enhancers, which are 
marked by H4K4me1 and H3K27ac. The second cluster is more heterogeneous and has generally fewer 
marks, with a few sites showing no marks at all.    
  
DNA METHYLATION BIOMARKER FOR TYPE II DIABETES 
 
DNA methylation is a useful biomarker for assessing the age of an individual (38, 39), as well as BMI 
(4). We asked whether we could develop a biomarker for adipose tissue that could be used to assess a 
metabolic health outcome, type II diabetes.  To this end, we first developed an aggregate measure of type 
II diabetes by combining multiple clinical traits measured in the METSIM cohort using principal 
component analysis. Briefly, traits were selected for inclusion into the aggregate measure of metabolic 
health using a greedy algorithm that considered combinations of features that produced the largest 
Welch’s test statistic in the first principal component when comparing healthy individuals to individuals 
who had received a type II diabetes diagnosis at baseline examination in the METSIM cohort (n=10,172). 
Our final measure consists of a linear combination of six traits: two measurements of glucose at baseline 
and at two hours during an oral glucose tolerance test, a binary measure of elevated blood glucose, two 
measurements of urine albumin levels at the start and end of collection, and one measurement of LDL 
levels (Table 2). 

This first principal component allows us to effectively segregate individuals by type II diabetes 
status as baseline (Figure 5A). A follow-up examination was conducted an average of 53.2 months 
(std=12.6) after the baseline examination. This allows us to identify a subpopulation that was healthy at 
baseline but develops type II diabetes at follow-up. We find that based on the PC1 score this group has 
baseline levels that are intermediate between the healthy and type 2 diabetes group (Figure 5A). This 
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suggest that our approach is also able to detect individuals at risk of developing type II diabetes. 
Additionally, the first principal component outperforms individual metabolic metrics commonly used for 
diagnosis of type II diabetes (40) in the classification of type II diabetes status at baseline or follow-up 
examination (Figure 5B). These results suggest that PC1 is a useful metric for assessing risk of 
developing type II diabetes. 

Finally, we asked whether we could predict the value of PC1 using DNA methylation, in order to 
develop a biomarker to assess type II diabetes risk. To this end we used randomized lasso to select CpG 
sites used to generate a linear model that predicts the PC1 value of each individual. We used leave one out 
cross validation, fitting a separate model to test each sample independently, to measure the accuracy of 
this approach, and found that the R-squared between our predicted and measured PC1 values was 0.608 
(Figure 5C). Furthermore, we were able to effectively classify (AUC=0.80) the type II diabetes status of 
an individual using the predicted PC1 value (Figure 5D).  This suggests that using 1456 CpG sites 
measured in adipose tissue we are able to predict the risk of developing diabetes. 
 
DISCUSSION 
 In this study, we utilized natural variation in DNA methylation in the adipose tissue of a human 
population to explore the relationship between DNA methylation and complex clinical traits associated 
with metabolic syndrome. We chose to focus our analysis on adipose tissue as it is believed to be the 
central tissue mediating metabolic syndrome traits. While metabolic syndrome surely involves a complex 
interplay between adipose tissue, liver and immune cells, it is likely that adipose tissue undergoes the 
most dramatic epigenetic changes during the advancement of metabolic syndrome. In fact, previous 
studies have shown that adipose tissue has significant epigenetic differences between lean and obese 
individuals (41). 

Using epigenome-wide analysis we identified 21 novel associations for diabetes and obesity 
phenotypes, corresponding to 24 candidate genes.  We further narrowed our candidates to 18 high 
confidence candidate genes based on presence of cis-eQTL for these genes in adipose tissue (Table 1). 
Our results demonstrate the power of EWAS to identify significant associations for metabolic traits in 
humans using only 201 individuals, and highlight how epigenetic factors such as DNA methylation 
should be considered in conjunction with genetic variation to elucidate the complex cellular mechanisms 
that ultimately lead to observable phenotypes.   
  We found three loci where multiple clinical traits mapped to the same methylation region and 
associated gene, SLC1A4 on chromosome 2 (Figure 3), CPEB4 on chromosome 5 (Table 1), and FASN on 
chromosome 17 (Figure 2). FASN is a known regulator of fatty acid metabolism (42), and its expression if 
associated with mature adipocytes that replete with the downstream products of FASN.  We observed that 
DNA methylation in the FASN gene was correlated with multiple metabolic syndrome clinical traits.  
Remarkably, we show that the variation in DNA methylation levels of FASN capture approximately 16% 
of the variation of metabolic traits such as BMI (Figure 2D), a significant portion of the variation in the 
trait in our population.  

The mechanisms by which metabolic syndrome traits affect methylation levels are still 
incompletely understood. While transcriptional levels of FASN and other genes likely respond quickly to 
insulin release, it is well established that, in contrast, DNA methylation levels are very stable, and change 
on a much slower timescale. We expect that methylation levels in the body of a gene change on the 
timescale of weeks, in response to the daily changes of insulin signaling. Thus, we hypothesize that DNA 
methylation levels at or near genes may reflect the history of insulin signaling during the previous weeks, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/223495doi: bioRxiv preprint 

https://doi.org/10.1101/223495
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

and are thus robust markers for the average physiological state of the individuals. We observed that the 
expression of FASN decreases with increasing obesity, a result that confirms previous observations, (43)  
in agreement with previous multiple studies showing that obese individuals have lower insulin sensitivity, 
leading to lower FASN expression.  The FASN regions we identified in our study are intragenic, and 
associated with several histone marks including H3k36me3, and H3k4me3 and H3k4me1. These marks 
are often associated with the boundaries of promoters and transcribed regions. Thus, we speculate that the 
reduced insulin sensitivity leads to a hypermethylation of the promoter, which is associated with a 
decrease in gene expression.    

We also observed that the methylation levels near RXRA are associated with metabolic traits. 
RXRA is known to form a complex with PPARG, a master regulator of adipogenesis and adipocytes (44). 
In contrast to FASN and RXRA, the amino acid transporter SLC1A4, previously linked to metabolite 
levels and atherosclerosis (45), is a novel gene associated with both diabetes and obesity traits. The 
cytoplasmic polyadenylation element binding protein 4, CPEB4 has been previously associated with 
obesity (46), and waist-to-hip ratio (47), but not with diabetes. Here we find that CPEB4 is associated 
with measures of insulin sensitivity/ insulin resistance.  
 We found several other novel gene associations such as LINC01317 which we found to be 
associated with insulin sensitivity (Matsuda index) and TPCN1 which was associated with body weight in 
our EWAS. In addition,  we found (strawberry notch homolog 2) SBNO2 to be associated with BMI and 
body weight in our study, and with BMI in a previous EWAS (4).  SBNO2 regulates inflammatory 
responses (48), and a Sbno2 mutant mouse model shows impaired osteoclast fusion, osteoblastogenesis, 
osteopetrosis, and increased bone mass (49).  
  As adipose tissue is a heterogeneous tissue that contains adipocytes, endothelial and immune 
cells, among others, we asked whether we could determine which cell types were most significant in our 
analyses. We found that most of our significantly associated loci were hypomethylated in adipocytes 
compared to other cell types. This suggested that most of the methylation variation we observe is likely 
occurring in adipocytes, which constitute the majority of cells in adipose tissue.   
 Using a DNA methylation based deconvolution approach we also estimated the abundance of 
each cell type in each individual. As expected, we found that adipocytes constituted around 80% of the 
cells in our samples. Intriguingly, however, we observed that the abundance of macrophages varied across 
individuals in a manner that was strongly correlated with metabolic traits. This suggests that obese 
individuals have higher macrophage counts in their adipose tissue compared to lean individuals, a result 
that supports pervious observations (36). 
 In previous studies DNA methylation has been used to develop robust biomarkers for multiple 
traits such as age (38) and BMI (4). We therefore asked whether we could develop an accurate biomarker 
to assess type II diabetes risk from our data. We first aggregated clinical traits to define a metric of 
metabolic health that is associated with the risk of developing type II diabetes, by combining measures of 
glucose, LDL and urine albumin. We showed that this metric capably stratifies the population into healthy 
and diabetic individuals. We also showed that high values of this metric strongly associated with the 
development of type 2 diabetes in follow-up measurements in the METSIM cohort. Finally, using a 
limited set of CpG sites, we developed a model that accurately predicts the values of this metric. This 
result suggesting that DNA methylation measurements in adipose tissue can be used to assess the risk of 
developing type II diabetes. 

The current study outlines the usefulness of the studying a disease in the tissue type of interest, 
but is constrained by limited genetic variability of the METSIM cohort.  The METSIM cohort is 
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composed of middle-aged Finnish men, and it is likely that some of our results will not extend to other 
ethnic populations or female cohorts. Global methylation patterns are known to differ between males and 
females in blood (50), and these sex specific methylation differences and their relationship with metabolic 
traits should be explored in future work. Furthermore, an open question is how the epigenetic profile 
varies between multiple tissues under the same physiological conditions. Comparing DNA methylation 
data from tissues such as liver, muscle, and visceral adipose may elucidate how these respond differently 
to metabolic syndrome. Finally, the composition of our study population was enriched for healthy 
individuals, and future work should focus on the epigenetic differences between diabetic/insulin 
insensitive individuals and healthy individuals.”   
 In conclusion, our DNA methylation profiles of adipose tissue allowed us to identify loci that are 
likely reacting to the metabolic state of an individual, but whose modulation is also likely to affect the 
individual’s metabolic profile. Our results demonstrate the usefulness of utilizing population variation in 
DNA methylation for identifying genes associated with complex clinical traits. Here, we identified 18 
novel candidate genes for metabolic syndrome using the adipose tissue of 201 individuals. None of these 
loci could be found using GWAS in 152 individuals of the same cohort. Since DNA methylation in a 
fraction of CpGs is heritable and regulated by genetics in cis and in trans (3, 17, 51), EWAS and GWAS 
can be used in a complementary manner to uncover heritable factors contributing to the etiology of 
complex traits. 
 
MATERIALS AND METHODS 
 
Data access. RRBS sequencing data and all EWAS association results can be obtained from GEO: 
GSE87893.  
 
Clinical phenotypes on human subjects. Ethics Committee of the Northern Savo Hospital District 
approved the study. All participants gave written informed consent. Clinical trait phenotypes for the 
EWAS study were collected on 201 individuals from the METSIM cohort (19, 20, 35). The population-
based METSIM study included 10,197 men, aged 45 to 73 years, from Kuopio, Finland. After 12 hours of 
fasting, a 2 hour oral 75 g glucose tolerance test was performed and the blood samples were drawn at 0, 
30, and 120 min. Plasma glucose was measured by enzymatic hexokinase photometric assay (Konelab 
Systems reagents; Thermo Fischer Scientific, Vantaa, Finland), and insulin and pro-insulin were 
determined by immunoassay (ADVIA Centaur Insulin IRI no. 02230141; Siemens Medical Solutions 
Diagnostics, Tarrytown, NY, USA). Plasma levels of lipids were determined using enzymatic 
colorimetric methods (Konelab System reagents, Thermo Fisher Scientific, Vantaa, Finland). Plasma 
adiponectin was measured with Human Adiponectin Elisa Kit (Linco Research, St Charles, USA), C-
reactive protein (CRP) with high sensitive assay (Roche Diagnostics GmbH, Mannheim, Germany), and 
interleukin 1 receptor agonist (IL1RA) with immunoassay (ELISA, Quantikine DRA00 Human IL-1RA, 
R&D Systems Inc., Minneapolis, USA). Serum creatinine was measured by the Jaffe kinetic method 
(Konelab System reagents, Thermo Fisher Scientific, Vantaa, Finland) and was used to calculate the 
glomerular filtration rate (GFR). Height and weight were measured to the nearest 0.5 cm and 0.1 kg, 
respectively. Waist circumference (at the midpoint between the lateral iliac crest and lowest rib) and hip 
circumference (at the level of the trochanter major) were measured to the nearest 0.5 cm. Body 
composition was determined by bioelectrical impedance (RJL Systems) in participants in the supine 
position. Summary statistics for each phenotype are shown in Table S1. We then transformed the 
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residuals using rank-based inverse-normal transformation for downstream analyses. This transformation 
involves ranking a given phenotype’s values, transforming these ranks into quantiles and, converting the 
resulting quantiles into normal deviates. The goal of this transformation is to minimize spurious 
associations due deviations from the underlying assumption that data are normally distributed, it is 
common practice for GWAS of quantitative traits (32). 
 
Evaluation of insulin sensitivity.  We evaluated insulin sensitivity by the Matsuda index and insulin 
resistance by the HOMA-IR as previously described (20). 
 
RRBS libraries. We prepared genomic DNA from adipose tissue biopsies with the DNeasy extraction kit 
(Qiagen, Valencia, CA, USA). We prepared RRBS libraries as previously described (17, 52), with minor 
modifications. Briefly, we isolated genomic DNA from flash frozen adipose biopsies using a phenol-
chloroform extraction, digested 500ng of DNA with MspI restriction enzyme (NEB, Ipswich, MA, USA), 
carried out end-repair/adenylation (NEB) and ligation with TruSeq barcoded adapters (Illumina, San 
Diego, CA, USA). We selected DNA fragments of size range 200-300bp with AMPure magnetic beads 
(Beckman Coulter, Brea, CA, USA), followed by bisulfite treatment on the DNA (Millipore, Billerica, 
MA, USA), and PCR amplification (Bioline, Taunton, MA, USA). We sequenced the libraries by 
multiplexing 4 libraries per lane on the Illumina HiSeq2500 sequencer, with 100bp reads.  
 
Sequence alignment. We aligned the reads with BSMAP to the hg19 human reference genome(27). We 
trimmed adapters with the Trim Galore! Tool  
(www.bioinformatics.babraham.ac.uk/projects/trim_galore/), allowed for up to 4 mismatches and selected 
uniquely aligned reads. We have previously shown that BSMAP performance is comparable to the BS-
Seq aligners BS-Seeker2, and Bsmark in terms of accuracy and mappability (53).  
 
Methylation regions. We filtered aligned data to keep only CpG cytosines with 10x coverage or more 
across all samples, and with data coverage in at least 75% of the samples. This resulted in 2,320,297 
CpGs. From these cytosines, we defined methylation regions grouping nearby cytosines together in 
expanding windows using the following rules: 1) We treated each cytosine as a seed cytosine for a 
potential methylation region and in order to expand the region methylation levels were required to be 
correlated across the cohort at an R2>=0.9 for directly adjacent cytosines, 2) Extension of the methylation 
region from the seed cytosine was allowed to continue up to 500bp in either direction from the seed 
cytosine, 3) After region extension, only regions with greater than 2 cytosines were retained, 4) 
Overlapping or adjacent regions remaining from (3) were then merged, 5) A methylation region was 
limited to 3kb maximum. We chose these parameters since the majority of CpG islands are less than 3kb 
in size (54). Methylation for resulting regions was calculated as the average methylation of all included 
cytosines. The distribution of region size we observed was a minimum of 3bp, maximum of 3kb, and 
median 143bp. 
 
EWAS. We used the linear mixed model package pyLMM (https://github.com/nickFurlotte/pylmm) to 
test for association and to account for potential population structure and relatedness among individuals. 
This method was previously described as EMMA (33), and we implemented the model in python to allow 
for continuous predictors, such as CpG methylation levels that vary between 0 and 1, as previously 
described (17). We applied the model: y=µ+xβ+u+e, where µ=mean, x=CpG, β=CpG effect, and 
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u=random effects due to relatedness, with Var(u) = σg
2K and Var(e) = σe

2, where K=IBS (identity-by-
state) matrix across all CpG methylation regions. We computed a restricted maximum likelihood estimate 
for σg

2K and σe
2, and we performed association based on the estimated variance component with an F-test 

to test that β does not equal 0. Associations were considered significant if the p-value for the association 
was below 1x10-7, based on the Bonferroni correction for the number of CpG regions tested.  
 
Inflation. We calculated the inflation factor lambda by taking the chi-squared inverse cumulative 
distribution function for the median of the association p-values, with one degree of freedom, and divided 
this by the chi-squared probability distribution function of 0.5 (the median expected p-value by chance) 
with one degree of freedom. We plotted qqplots for representative phenotypes using the qqplot function in 
Matlab, with a theoretical uniform distribution with parameters 0,1. 
 
Adipose expression from human subjects. Expression levels from adipose tissue biopsies were 
collected on 770 individuals of the METSIM cohort as previously described (19, 35), and 151 of these 
subjects were also represented in the current methylation dataset. Total RNA from METSIM participants 
was isolated from adipose tissue using the Qiagen miRNeasy kit, according to the manufacturer's 
instructions. RNA integrity number (RIN) values were assessed with the Agilent Bioanalyzer 2100 
instrument and 770 samples with RIN >7.0 were used for transcriptional profiling. Expression profiling 
using Affymetrix U219 microarray was performed at the Department of Applied Genomics at Bristol-
Myers Squibb according to manufacturer’s protocols. The probe sequences were re-annotated to remove 
probes that mapped to multiple locations, contained variants with MAF > 0.01 in the 1,000 Genomes 
Project European samples, or did not map to known transcripts based on the RefSeq (version 59) and 
Ensembl (version 72) databases; 6,199 probesets were removed in this filtering step. For subsequent 
analyses, we used 43,145 probesets that represent 18,155 unique genes. The microarray image data were 
processed using the Affymetrix GCOS algorithm using the robust multiarray (RMA) method to determine 
the specific hybridizing signal for each gene.  
 
PEER factor analysis. We corrected RMA-normalized expression levels for each gene using 
probabilistic estimation of expression residuals (PEER) factors (55). PEER factor correction is designed 
to detect the maximum number of cis-eQTL. We then transformed the residuals using rank-based inverse-
normal transformation. We used the inverse normal-transformed PEER-processed residuals after 
accounting for 35 factors for downstream eQTL mapping. 
 
cis-eQTL in adipose expression. eQTL studies from the adipose biopsies of the METSIM cohort have 
been previously described (19). Briefly, gene expression in 770 adipose biopsy samples from the 
METSIM cohort was measured with Affymetrix U219 microarray. SNP genotyping was performed with 
Illumina OmniExpress genotyping chip and imputed based on the Haplotype Reference Consortium 
reference panel. Association of gene expression and SNPs were calculated with FaST-LMM. eQTL were 
defined as cis if the peak association had a p-value of p < 2.46 × 10-4 corresponding to 1% FDR, and if it 
was found within 1 Mb on either side of the exon boundaries of the gene, as previously described (32).  
 
GWAS for methylation loci. We performed GWAS on the same 32 clinical traits, transformed using 
inverse normal transformation as described above, and 681,803 genotyped SNPs for 152 METSIM 
individuals where we had both genotypes and methylation data. We used a linear model and the R 
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package MatrixEQTL to perform the association, and selected associations where the p-value was below 
1x10-7.  
 
Published histone marks. We used the Roadmap ChIP-seq datasets to look for any histone marks in 
human adipocyte and adipose tissue samples. We used the RegulomeDB database to look for evidence of 
transcription factor footprinting, positional weight matrices (PWM), and active transcription. We accessed 
the public datasets at (http://www.roadmapepigenomics.org/data/) and (http://www.regulomedb.org/). 
 
Published GWAS hits. Literature evidence for GWAS hits in candidate genes was obtained from the 
NHGRI GWA Catalog, using the PheGenI tool in NCBI.  
 
DNA methylation deconvolution. To estimate the methylation contribution of different leukocytes to the 
adipose tissue, we used cell-specific methylation markers from DNA methylation signatures across 
different cell types. Cell-specific CpG methylation loci were identified from purified leukocyte 
(macrophages, neutrophils, B cells, CD4+ T cells, CD8+ T cells, NK cells) methylation profiles from the 
Blueprint epigenome project (56). Since there was only one purified adipocyte primary cell line reference 
available, we also included the average methylation profile across all adipose samples using in this study, 
which ostensibly consists primarily of adipocytes. The purified adipocyte cell reference was used as a 
filter to select cell type-specific CpG loci that are hypomethylated in both the adipocyte cell reference, 
and in the mean of the methylation levels for the 201 adipose samples. We filtered all cell methylomes to 
CpG loci that are common between the reference methylation profiles and the METSIM adipose tissues 
samples. To determine cell-specific methylation across all references, we first used a sliding window to 
aggregate the methylation profiles into regions of CpG loci with similar methylation (within 40% 
methylation difference across neighboring CpG within 500bp). Regions were selected that were uniquely 
hypomethylated for each cell types to provide 279 cell-specific hypomethylated regions. To estimate the 
proportion of each cell type within samples, we performed a non-negative least squares regression (57) on 
methylation at the cell-specific regions. 
 
Aggregate measure of metabolic health.  The METSIM cohort metabolic phenotype data included 
10,197 individuals, and 484 traits. Individuals with a type 1 diabetes (n=25) diagnosis were dropped from 
further analysis, leaving 10,172 individuals. Numeric data was processed for downstream analysis by 
dropping traits with greater than 10% of data points missing. Missing values were then imputed using a k 
nearest neighbors (kNN) approach. KNN imputation of phenotype data occurred as follows; (1) 
Neighbors were ranked on Euclidean distance, (2) missing values were assigned the average value of the 
nearest neighbors (k=5). Following imputation, phenotype data were scored for normality 
(scipy.stats.normaltest)(58, 59) The threshold for a normally distributed trait was designated by randomly 
simulating normally distributed data of equal length as the METSIM phenotype data 1000 times, scoring 
the random distribution, and setting the threshold at the 90th percentile score of the simulated 
distributions. Traits following a normal distribution were normalized (mean=0, STD=1) while traits from 
a non-normal distribution were rank based inverse normalized (mean=0, STD=1). 

Traits directly predictive of type 2 diabetes status, such as family history or metformin 
consumption, were manually removed before feature selection. Features were initially screened for 
incorporation into the meta-trait using randomized logistic regression model (60). Selected features where 
then evaluated on their ability to distinguish between individuals with and without type 2 diabetes at 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/223495doi: bioRxiv preprint 

https://doi.org/10.1101/223495
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

baseline using Welch’s t-test. Starting with the feature that had the highest Welch’s test statistic, 
combinations of traits were considered by iterating through all traits that passed the initial screen, 
incorporating the trait with the starting trait, performing PCA on the combined traits, scoring the 1st 
principal component using Welch’s t-test, and returning the set of traits that produced the largest Welch’s 
test statistic. The process was repeated until Welch’s test statistic no longer increased.  Six features were 
selected for incorporation into the meta-trait (Table 2). The combined trait matrix was decomposed using 
PCA. 

Trait analysis pipelines were implemented in Python3.6.1, utilizing scikit-learn-0.18.1(61), 
numpy-1.13.1 (62), scipy-0.19.1 (63), pandas-0.20.3(64), seaborn-0.8.1(65), and matplotlib-2.0.1 (66) 
packages.  

 
Metabolic syndrome biomarker model. The methylation matrix for model fitting was preprocessed by 
dropping all CpG sites with greater than 10% of data points missing. Imputing missing values using a 
kNN sliding window approach. Individual CpG sites with missing data were assigned the average value 
of the 5 nearest neighbors by Euclidean distance within a 6mb window. The resulting matrix contained 
1,633,360 CpG sites. CpG sites selected using randomized lasso regression implemented in scikit-learn-
0.18.1, 1456 CpG sites were selected. A leave on out cross validation strategy was utilized for model 
fitting, where independent models are fit for every test samples (n=228), to ensure robust model training. 
CpG sites were annotated with GREAT-3.0.0  (67) to generate a list of index genes. See supplemental file 
1 for a list of CpG sites, average regression coefficients across the cross validated models, and index 
genes. 
 
Code Repository. Custom code used in data processing and analysis can be found at 
https://github.com/NuttyLogic/METSIM_HMG_Code. 
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EWAS	
locus

Chr Bp	start Bp	end Candidate	Genes(s) cis-eQTL Intra/inter-genic EWAS	clinical	trait EWAS	Pval
EWAS	beta	
(effect	size)

EWAS	
Inflation	
factor	

Methylation	
range

Met1 10 34545726 34545903 LINC01317,	LINC01320 Intergenic,	23kb,	356kb MATSUDA	insulin	sensitivity	index 7.53E-19 39.3 0.99 16.10%

Met2 10 47979865 47980000 MSH2,	MSH6

MSH2 cis -eQTL (p=3.3e-94, 
rs2303425 ), and MSH6 cis - 

eQTL (p=1.1e-13, rs2134056) Intergenic,	350kb,	30kb Waist	circumference 3.26E-08 -4.74 0.99 68.52%

Met2 Fat	mass	(%) 6.08E-10 -5.27 1

Met2 Fat	free	mass	(%) 6.11E-10 5.27 0.99

Met2 Body	mass	index 7.75E-09 -5.04 1.01

Met3 11 65064793 65064867 AFTPH,	SLC1A4
SLC1A4 cis- eQTL (p=1.6e-10, 

chr2:65252385) Intergenic,	244kb,	150kb Waist	circumference 4.92E-08 -4.44 0.99 58.28%

Met3 Fat	mass	(%) 3.89E-09 -4.82 1

Met3 Fat	free	mass	(%) 3.57E-09 4.83 0.99

Met3 OGTT	fasting	plasma	insulin 2.25E-09 -4.85 0.97

Met3 Body	mass	index 5.71E-10 -5.05 1.01

Met3 MATSUDA	insulin	sensitivity	index 8.30E-09 4.76 0.99

Met3
HOMAIR	Insulin	resistance	index	based	on	

HOMA 2.19E-09 -4.85 0.97

Met4 12 7774215 7774379 AFAP1
AFAP1 cis - eQTL (p=1.16e-16, 

rs34072960) Intragenic Fat	mass	(%) 4.43E-08 6.59 1 78.69%

Met4 Fat	free	mass	(%) 4.42E-08 -6.59 0.99

Met4 Body	mass	index 5.57E-08 6.65 1.01

Met5 12 173132627 173132883 BOD1,	CPEB4

BOD cis -eQTL (p=1.3e-6,rs607 
48211). CPEB4 cis-eQTL 
(p=2.4e-174, rs72812818) Intergenic,	88kb,	182kb OGTT	fasting	plasma	insulin 1.97E-08 5.95 0.97 77.70%

Met5 OGTT	120	min	plasma	insulin 2.45E-09 6.07 0.98

Met5 MATSUDA	insulin	sensitivity	index 4.42E-10 -6.81 0.99

Met5
HOMAIR	Insulin	resistance	index	based	on	

HOMA 1.04E-08 6.1 0.97

Met6 17 3132000 3132119 BPHL
BPHL cis -eQTL (p=5.0e-81, 

rs7765391) Intragenic Weight 9.22E-08 11.16 0.99 19.17%

Met7 17 137263485 137263573 RXRA
RXRA cis -eQTL (p=1.0e-09, 

rs62576325) Intragenic Waist	circumference 6.08E-08 3.41 0.99 85%

Met8 17 75600604 75600822 CAMK2G
AMK2G cis - eQTL (p=3.9e-28, 

rs2675671) Intragenic OGTT	120	min	plasma	proinsulin 9.54E-08 18.43 0.96 10.40%

Met9 17 100183346 100183441 HPS1
HPS1 cis -eQTL (p=1.1e-53, 

rs701801) Intragenic Waist	circumference 1.55E-11 10.02 0.99 30%

Met10 17 65248602 65248737 FRMD8,	SCYL1 Intergenic,	67kb,	43kb OGTT	fasting	plasma	insulin 6.84E-08 -16.14 0.97 30%

Met10
HOMAIR	Insulin	resistance	index	based	on	

HOMA 5.45E-08 -16.25 0.97

Met11 17 42883183 42883320 PRICKLE1 Intragenic OGTT	30	min	plasma	insulin 1.70E-19 -17.2 0.81 17.64%

Met12 19 113734359 113734579 TPCN1
TPCN1 cis- eQTL (p=1.4e-6, 

rs2004720) Intragenic Weight 7.24E-08 5.72 0.99 13.24%

Met12 Glomerular	filtration	rate	(eGFRcockrof) 6.24E-08 5.61 0.97 71.39%

Met13 21 2893657 2893829 RAP1GAP2 Intragenic OGTT	fasting	plasma	insulin 2.93E-08 -11.03 0.97 30.25%

Met13
HOMAIR	Insulin	resistance	index	based	on	

HOMA 1.96E-08 -11.16 0.97

Met14 22 40913548 40913600 RAMP2 Intragenic OGTT	insulin	area	under	the	curve 6.51E-29 12.06 0.99 32.53%

Met15 2 80041514 80042067 FASN
FASN cis -eQTL (p=9.3e-10, 

rs4239015 ) Intragenic Weight 4.07E-09 19.42 0.99 12.18%

Met15 Waist	circumference 8.54E-08 17.31 0.99

Met15 Fat	mass	(%) 1.36E-08 18.29 1

Met15 Fat	free	mass	(%) 1.40E-08 -18.27 0.99

Met15 Body	mass	index 3.05E-10 21.57 1.01

Met16 2 80046324 80047195 FASN Intragenic Body	mass	index 1.18E-08 16.61 1.01 20.05%

Met17 2 80050198 80050365 FASN Intragenic Body	mass	index 2.48E-10 8.01 1.01 50.31%

Met18 4 80051500 80053080 FASN Intragenic Weight 4.08E-09 7.95 0.99 67.62%

Met18 Waist	circumference 4.29E-10 8.33 0.99

Met18 Fat	mass	(%) 1.03E-08 7.85 1

Met18 Fat	free	mass	(%) 9.81E-09 -7.86 0.99

Met18 OGTT	fasting	plasma	insulin 1.08E-08 7.66 0.97

Met18 OGTT	120	min	plasma	insulin 5.42E-09 8.03 0.98

Met18 Body	mass	index 1.37E-11 9.44 1.01

Met18 MATSUDA	insulin	sensitivity	index 1.79E-08 -8.05 0.99

Met18
HOMAIR	Insulin	resistance	index	based	on	

HOMA 3.57E-09 7.94 0.97

Met19 5 1148096 1148232 SBNO2 Intragenic Weight 3.20E-08 8.54 0.99 40.68%

Met19 Body	mass	index 7.58E-08 8.49 1.01

Met20 6 16661536 16661714 NRIP1,	USP25
NRIP1 cis -eQTL (p=6.6e-85, 

rs2178895) Intergenic,	224kb,	440kb Body	mass	index 3.27E-08 8.14 1.01 86.15%

Met21 9 28151964 28152032 MN1 Intragenic OGTT	120	min	plasma	insulin 9.16E-08 7.64 0.98 30.95%

Table	1.	Clincial	Trait	EWAS
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Table	2.	PC1	Feature	Contribution	
Variance	Explained	=	0.293	
Feature	 Contribution	
Glucose	Baseline	 0.666	
Glucose	120min	 0.032	
Elevated	Blood	
Glucose	 0.175	

LDL	 -0.462	
Urine	Albumin	
Baseline	 0.417	

Urine	Albumin	
60min	 -0.371	
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Figure 1. Epigenome-wide association of metabolic clinical traits
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Figure 1. Epigenome-wide association of metabolic clinical traits. Association between DNA CpG methylation 
and clinical traits. (A) “PheWAS” plot showing association of each of the methylation loci (Met 1-21) and the 
clinical traits. The genomic location of the CpG is on the x-axis and the association significance is on the y-axis. 
Different colors represent different traits. (B) The effect size for each association shown in (A). (C) For each 
methylation locus on the x-axis, the range of methylation across individuals in the population is shown on the 
y-axis.
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Figure 2. FASN is associated with multiple clinical traits
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Figure 2.  FASN is associated with multiple clinical traits. (A) Manhattan plot showing EWAS results for BMI. Each dot 
represents a CpG region with the genomic location of each CpG region on the x-axis and chromosomes shown in alternating 
colors. The association significance is on the y-axis and significant hits are shown as red dots. (B) Association results for 
multiple phenotypes near the FASN locus. Each dot represents a different association to a CpG region and different colored 
points represent distinct clinical traits. The genomic location of each CpG region is on the x-axis and the association signifi-
cance is on the y-axis. Red vertical bars denote the transcription start and end of FASN. The dotted significance threshold 
line is drawn at 5x10-8. (C) cis-eQTL results for FASN expression in adipose tissue biopsies. Each dot represents a SNP. the 
genomic location of each SNP is on the x-axis and the association significance is on the y-axis. Significant SNPs are shown 
as red dots. Red vertical bars denote the transcription start and end of FASN. The dotted significance threshold line is drawn 
at 5x10-8. (D)-(F) Each point represents an individual in the cohort, showing correlation between (D) methylation levels for 
the peak associated CpG region and BMI, (E) methylation levels for the peak CpG region and expression of FASN, and (F) 
expression of FASN and BMI. 
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Figure 3. SLC1A4 is associated with multiple clinical traits
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Figure 3. SLC1A4 is associated with multiple clinical traits. (A) Manhattan plot showing EWAS results for insulin resistance index 
HOMAIR. Each dot is a CpG region, the genomic location of each CpG region is on the x-axis with chromosomes shown in alternat-
ing colors, the association significance is on the y-axis, significant hits are shown as red dots. (B) Association results for multiple 
phenotypes near the SLC1A4 locus. Each dot represents a different association to a CpG region, different colored points represent 
distinct clinical traits, the genomic location of each CpG region is on the x-axis, the association significance is on the y-axis. Red 
vertical bars denote the transcription start and end of SLC1A4. The dotted significance threshold line is drawn at 5x10-8. (C) 
cis-eQTL results for SLC1A4 expression in adipose tissue biopsies. Each dot represents a SNP, the genomic location of each SNP is 
on the x-axis, the association significance is on the y-axis, significant SNPs are shown as red dots. Red vertical bars denote the 
transcription start and end of SLC1A4. The dotted significance threshold line is drawn at 5x10-8. (D)-(F) Each point represents an 
individual in the cohort, showing correlation between (D) methylation levels for the peak associated CpG region and HOMAIR, (E) 
methylation levels for the peak CpG region and expression of SLC1A4, and (F) expression of SLC1A4 and HOMAIR.
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Figure 4. Cell-type deconvolution
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Figure 4. Cell-type deconvolution. (A) Sample composition by cell-type is shown for different cell types (columns), across all 
METSIM samples (rows). The color in the heatmap represents the relative fraction that each cell-type contributes to the total in each 
sample. (B) For each methylation locus (rows), the methylation levels in METSIM samples or for different cell-types  (columns) are 
shown in the heatmap, the color represents the methylation levels. (C) Correlation between cell-type composition and clinical trait. 
Traits are plotted in rows, and cell-types are plotted in columns. The color in the heatmap represents spearman correlation between 
the fraction derived from each cell-type and a clinical trait for and an individual, across all individuals in the METSIM samples. 
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Figure 5. Methylation Biomarker to Assess Type II Diabetes.(A) Kernel density estimates of principal component 1 by Type II diabetes status at baseline and
follow-up examination. Healthy individuals had not been diagnosed with type II diabetes at baseline or follow-up examination, Type II Diabetes Follow-up individuals
had not received a type II diabetes diagnosis at baseline but were diagnosed by follow-up examination, and Type II Diabetes Baseline individuals received a type II
diabetes diagnosis before or at baseline examination. (B) A combined type II diabetes feature, PC1, outperforms individual features for classification of diabetes at
baseline or follow-up examination among all METSIM samples (n= 10,172). (C) Measured and predicted PC1 values for cross-validated regression models fit to 1456
CpG sites (n=228). (D) ROC curves for the measured and predicated PC1 values for classification of type II diabetes status at baseline or follow-up examination
(n=228).
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