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ABSTRACT

The frequency of genes in interconnected populations and of species in interconnected communities are affected by similar
processes, such as birth, death and immigration. The equilibrium distribution of gene frequencies in structured populations
is known since the 1930s, under Wright’s metapopulation model known as the island model. The equivalent distribution for
the species frequency (i.e. the species proportional abundance distribution (SPAD), at the metacommunity level, however, is
unknown. In this contribution, we develop a stochastic model to analytically account for this distribution (SPAD). We show that
the same as for genes SPAD follows a beta distribution, which provides a good description of empirical data and applies across
a continuum of scales. This stochastic model, based upon a diffusion approximation, provides an alternative to neutral models
for the species abundance distribution (SAD), which focus on number of individuals instead of proportions, and demonstrate
that the relative frequency of genes in local populations and of species within communities follow the same probability law. We
hope our contribution will help stimulate the mathematical and conceptual integration of theories in genetics and ecology.

Introduction
Ever since the evolutionary synthesis, population genetics theory has been integrated, to different extents, into different
disciplines within biology including systematics and ecology. This later integration took off with the development of theoretical
formulations relating the processes that drive changes in numbers of individuals within age-structured populations, with changes
in the fitness of different genotypes1, 2. Yet further integration was achieved with the emergence of the new ecological genetics
spoused by Antonovics3, one of whose tenets was that ”Forces maintaining species diversity and genetic diversity are similar.
An understanding of community structure will come from considering how these kind of diversity interact.” More recently, the
emergence of community genetics4 has reinvigorated the search for connections between population genetics and community
ecology, along with the realization that there is a striking similarity between processes driving changes in the abundance and
diversity of species within communities and genes within populations5, 6.

The recent development of neutral approaches to the study of ecological systems7–10 have provided a renewed emphasis
upon the value of theory and stochasticity in ecology11–14 and a locus for the further integration of genetical and ecological
theories15, 16. By merging the mathematical and statistical tools developed by population geneticists with the neutrality approach,
neutral theory in ecology allows us to better understand the factors affecting the abundance and distribution of species15–19. But
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there is a major barrier to this integration, while population geneticists pioneered the use of diffusion approximations (i.e. a
continuous process) to the understanding of processes affecting gene frequencies20, ecologists have favored to work with the
distribution of the number of individuals across species (i.e. a discrete process) or SAD8, 21–23 (but see24). It is not surprising
then that the answer for the abundance of species within communities (i.e. Fisher’s Log-series,8) is different from that for gene
frequencies within populations (i.e., a Beta distribution25, 26). In this contribution, we aim at filling this gap in knowledge by
analyzing the distribution of species abundances as a continuous process (i.e. using a diffusion approach). To do so we focus on
the proportional abundance of species instead of the number of individuals. We show that if one assumes that birth and death
rates follow the functional form used in neutral theory citemckane2000,volkov2003 the stationary distribution for the species
proportional abundance distribution (SPAD), the same as for genes, is a beta distribution with parameters α and β that quantify
the relative importance of immigration and speciation, respectively, in relation to stochastic fluctuations. We show that this
distribution provides a good description of empirical data and applies across a continuum of scales.

The model
We model the community as an open system, and as such we do not distinguish two spatial scales in our system, as usually
done in neutral models, as the one proposed by Volkov et al.8, but a continuum of scales, which are defined by the observer of
the system when studying it. The system could be, for example, a 50 ha plot in a tropical forest or a 1m2 plot in the intertidal.
What is important is to realize that once the observer defines the spatial scale of the system, it defines a boundary or an inside
and an outside, where the focal system is embedded (Figure 1). We call this observer defined scale the focal community
that is embedded into a bath or environment with whcih it interacts. The focal community dynamics is driven by birth and
death processes and by immigration from the outside. We do not explicitly consider speciation as this is subsumed into the
immigration process11. Indeed the spatial scale of analysis is to some extent dictated by which is the dominant process adding
new species to a given focal community; immigrations of individuals from species not yet found in the focal community but
somewhere else in the bath, or new species arising through speciation within the focal community. If the later is the dominant
process, then the spatial scale is likely to be large, since all species in the potential pool are already present and the only way a
new species can arrive would be through speciation. Similarly, the processes that remove individuals and species from the focal
community include death and emigration towards the bath or environment. To model the dynamics of this focal community we
used the diffusion approximation of birth and death processes independent of a focal community size J. By community size we
mean the total number of individuals regardless of species identity.

Let NJ(t) denote the number of living individuals of a given species within a focal community of size J, at time t ≥ 0
(so that NJ(t) is less or equal to J for all t). This is assumed to be a birth and death process, with transition matrix P(t) =
(Pn,m(t); n,m = 0, . . . ,J) (n and m denotes the number of individuals). For a small time increment h, this matrix satisfies as
h→ 0 for n≥ 0

Pn,n+1(h) = BJ(n)h+o(h), for n≥ 0, (1)
Pn,n−1(h) = DJ(n)h+o(h), for n≥ 1, (2)

Pn,n(h) = 1− (BJ(n)+DJ(n))h, for n≥ 0, (3)
Pn,m(0) = δn,m, (4)

where BJ(n) and DJ(n) are the birth and death rates, respectively, DJ(0) = 0, BJ(0) > 0, δn,m is the customary Kronecker
delta, and o(h) denotes the Landau-symbol, which satisfies limh→0

o(h)
h = 0. Here, in addition, we assume that these rates are

decomposed as follows

BJ(n) = bJ(n)+ cJ(n) (5)
DJ(n) = dJ(n)+ cJ(n). (6)

The terms bJ and dJ represent birth and death rates in the focal community, respectively, which will be asymptotically
independent of J, while cJ takes into account the variations on the above rates due to the interaction between the focal system
and the environment wherein it is embedded, proper to an open system approach. Since we are interested in proportions n/J,
we introduce the variable x = n/J, which takes values in {0,1/J,2/J, . . . ,1}, and analyze the behavior of the system as the size
of the population grows indefinitely: J→ ∞. At this stage it is important to state meaningful hypotheses for the previous rates
for large J, as all changes of scales in the dynamics of the open system are driven by this community size.

We first assume that b j and dJ will lead, respectively, to the J-invariant (or endogenous) birth and death rates of the focal
system, that satisfy

lim
J→∞

bJ(xJ) = b(x); lim
J→∞

dJ(xJ) = d(x), (x ∈ [0,1]). (7)
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On the contrary, the rate cJ , should vary significantly with J, however, we require that it satisfies

lim
J→∞

cJ(xJ)
J

= c(x), (x ∈ [0,1]). (8)

We can now define the stochastic process ZJ = (ZJ(t) = N(tJ)/J; t ≥ 0) that we call the stochastic proportional abundance.
This family of processes has a limit Z = (Z(t); t ≥ 0) as J→∞, that corresponds to a diffusion process satisfying the stochastic
differential equation (see Supplementary Information)

dZ(t) = (b(Z(t))−d(Z(t)))dt +
√

2c(Z(t))dW (t), (9)

where W (t) denotes a Brownian motion.
It is worth noticing (see Supplementary Information also) that the process ZJ = (ZJ(t); t ≥ 0) converges in distribution

towards a diffusion process Z = (Z(t); t ≥ 0) as proven in27, and so, any continuous functional F(ZJ) of the trajectory of ZJ
converges in distribution to F(Z). In particular, it is proved (see Supplementary Information) that for any values 0 < a < b≤ 1,
it holds

lim
J→∞

P(a < ZJ(t)≤ b) = P(a < Z(t)≤ b).

where P is the probability defined on the set of all trajectories of the process.
Correspondingly, the Fokker-Planck equation associated with the probability density ρt(x) of Z(t), is given by

∂

∂ t
ρt(x) =

∂ 2

∂x2 (c(x)ρt(x))−
∂

∂x
([b(x)−d(x)]ρt(x)) , (10)

with the additional condition that
∫
R ρt(x)dx = 1. The stationary solution ρ∞ is determined as the solution to the equation

∂ 2

∂x2 (c(x)ρ∞(x))−
∂

∂x
([b(x)−d(x)]ρ∞(x)) = 0 (11)

In order to find the stationary distribution we need to make a hypothesis for each of the rates b(x), d(x) and c(x), the
simplest ones are that

b(x) = b0 +b1x (12)
d(x) = d0 +d1x (13)
c(x) = γx(1− x), (14)

where bi, di, (i = 0,1), and γ are positive constants. Under these hypotheses (see Supplementary Information) the stationary
solution takes the form of a typical Beta distribution

ρ∞(x) =
Γ(α +β )

Γ(α)Γ(β )
xα−1(1− x)β−1. (15)

Then an elementary computation shows that (15) provides a solution to (11) with

α =
b0−d0

γ
(16)

β =
d1−b1

γ
− b0−d0

γ
. (17)

In Figure 1, we provide a diagrammatic version of the main steps taken in our derivation of the stationary Beta distribution.
As an important particular case, let us use the rates proposed by McKane28 and used in the neutral theory model proposed by
Volkov8, which in our framework, this will correspond to the following rates

bJ(n) = mp
(

1− n
J

)
(18)

dJ(n) = m(1− p)
n
J

(19)

cJ(n) = λJ(1−m)
n
J

J−n
J−1

. (20)
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Figure 1. Diagrammatic description of the diffusion approach taken in this contribution. This approach assumes the existence
of a focal community (the white area delimited by a discontinuous line) of size J, and where NJ(t) denotes the number of
individual of a given species within it. The abundance of any species in this focal community follows a birth death process, with
rates bJ , dJ and cJ . However, since we are interested in the proportion of individuals instead on their numbers, we introduce the
process Z(t) or stochastic proportional abundance. It is shown that as J→ ∞, Z(t) converges to a diffusion that satisfies the
stochastic differential equation for dZ(t) with rates b(x), d(x) and c(x) (see Eq. (7-9)). At any given time the probability
density of Z(t) is given by the Fokker-Planck equation associated to ρt(x) (Eq.(10)). Further, when t→ ∞ this probability
density becomes stationary or invariant and is called ρ∞(x). We show that when b(x), d(x) and c(x) have a particular functional
form (see Eq. (12-14)) the invariant distribution is a beta distribution (Eq. (15)). The Panels on the right show the simulation of
trajectories for the diffusion process Z(t), the associated density at a given time ρt(x) and the invariant distribution ρ∞(x).

where p is the probability with which we choose individuals of a given species, and m denote a migration probability. In
addition, we introduce the parameter λJ to keep track of fluctuations in demographic rates due to interactions between the focal
system and the environment, for instance, as a consequence of temperature variations or due to other unknown biotic or abiotic
variables. We assume that λJ/J→ λ as J→ ∞. Thus, letting J→ ∞, one obtains the convergence towards the corresponding
limits

b(x) = mp(1− x) (21)
d(x) = m(1− p)x (22)
c(x) = λ (1−m)x(1− x), (23)

where x ∈ [0,1] (that is, b0 = mp, b1 =−mp, d0 = 0, d1 = m(1− p), γ = λ (1−m)).

Thus, under the above choice of coefficients, (9) becomes

Z(t) = z−
∫ t

0
m(Z(s)− p)ds

+
∫ t

0

√
2λ (1−m)Z(s)(1−Z(s))dWs. (24)
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And ρ∞ has the form (15) with

α =
mp

λ (1−m)
(25)

β =
m(1− p)
λ (1−m)

. (26)

We interpret α , as quantifying the relative contribution of immigration of known species to the abundance of species already
present in a focal community, while β quantifies the relative contribution of immigration of species not yet known in the focal
community, that is, speciation. Notice that, both α and β are expressed in relation to the magnitude of the fluctuations induced
by the interaction with the environment (i.e. λ (1−m)).

When the probability with which we choose individuals of a given species is p = 1/S, where S denote the total number of
species, β = α(S−1) and thus (15) becomes

ρ∞(x) =
1

B(α,α(S−1))
xα−1(1− x)α(S−1)−1, (27)

where B(α,α(S−1)) =
∫ 1

0
xα−1(1− x)α(S−1)−1 (normalization constant) and α = m

S(1−m)λ (see derivation of the Beta

distribution in the Supplementary Information).
In Figure 2 we show the fit of (27) to several datasets including the Malayan butterflies and the Rothamsted Lepidoptera data

originally used by Fisher29, tropical birds in Manu Park (Perú)30, tropical forests31, Fynbos shrublands32 and coral reefs33. In
all cases the correlations between observed and fitted frequencies (expressed as proportional abundance) was highly significant
(Table 1).

In Figure 3 we show the relationship between α and β . As expected, both are positively correlated, but more interestingly
it is apparent that birds, butterflies and marine communities are characterized by large α , a measure of the importance of
migration, as expected for open and highly connected systems where immigration in the form of dispersal could be the dominant
processes accounting for the appearance of new individual each generation. Similarly, the Fynbos shrub dominated communities
(7-9 in Table 1) are characterized by low β , which may be associated to low rates of speciation (but see32, 34). Indeed, β is
correlated to the biodiversity number θ of classical neutral theory (Pearson’s r=0.97,n=6, P<0.01, see inset in Figure 3), which
is a function of speciation rate7, 8.

Finally, in Figure 4a, we show simulations of the stochastic proportional abundance of species or trajectories of Z(t) in
(24). Figure 4b is the plot of the confidence intervals around the mean E(Z(t)), notice that the process rapidly converges to the
long term average value. As we mentioned before, the density distribution ρt of the stochastic proportional abundance, which
corresponds to a neutral abundance at the rescaled time t, tends to a stationary distribution ρ∞ as t→ ∞. We can estimate ρ∞ by
sampling the trajectories of Z(t) after a large number of generations (e.g. t = 1000) represented by the histogram in Figure 4c,
which is in good agreement with the limit beta distribution density ρ∞.

Discussion
A key component of the evolutionary synthesis was the mathematical formalization of the processes driving changes in gene
frequencies within Mendelian populations. Wright’s island model25, 35 demonstrated that the frequency of neutral alleles in
a local open population affected by mutation, migration and drift, will converge to a Beta steady-state distribution of allele
frequencies. In light of our results, the equilibrium distribution of gene frequencies in a local population is equivalent to the
frequency of different species in a local community or the Species Proportional Abundance Distribution (SPAD). Although this
equivalence was expected, as both genes and species are affected by similar stochastic processes, it is a novel result since the
equilibrium distribution of the SPAD was unknown, and previous results have either relied upon additional assumptions, such as
density dependence36 or on approximations to the continuous limit37, 38. Our results complement the efforts to understand the
distribution of species abundances that have focused on changes in the numbers of individuals in different species (e.g.7, 8, 29)
instead of the proportional abundance of species within communities. As far as we know, however, ours is the only continuous,
neutral, and exact mathematical formulation derived from first principles. That is, based upon a birth death processes on the
appropriately rescaled relative abundance process that, in the limit as J→ ∞, is shown to satisfy the stochastic differential
equation (9) in agreement with Rebolledo’s central limit theorems27 (see also Supplementary Information).

The general model for SPAD that we propose is based on a diffusion approach, as it has been used in population genetics to
study the distribution of gene frequencies. Indeed Kolmogorov39, showed that the steady state distribution for allele frequencies
(i.e. a Beta distribution) in Wright’s island model was the stationary distribution of the diffusion approximation. In this vein,

5/13

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/223529doi: bioRxiv preprint 

https://doi.org/10.1101/223529
http://creativecommons.org/licenses/by-nc/4.0/


we show that the stationary distribution for the species proportional abundance is a Beta distribution, but only if birth and death
rates are of the form (12), which accommodates, as a particular case, the ones traditionally used in neutral models8, 28, 31.

Since the gamma distribution is the invariant distribution of a single species population following stochastic logistic
growth40, 41, it has been suggested as the most appropriate to describe SADs42. Interestingly, Fisher’s logarithmic series model
is a Gamma type distribution. It is derived from Poisson sampling a population of S species (i.e. when the number of individuals
sampled from any species is Poisson distributed) whose abundance follows a gamma distribution with shape parameter k = 0.
As shown by Kempton43 if the sampled population consists of independent subpopulations each following a generalization of
the Gamma model (i.e. k 6= 0) then the resulting distribution will be a Beta distribution, as it is well know in statistics, and the
resulting sampling distribution would be the generalized log series. Similarly, Engen and Lande42 show that under a stochastic
logistic model with positive mean growth rate, the relative abundances of species would be Dirichlet distributed, which is the
multivariate version of the beta distribution. Thus, the beta distribution has been around for a long time in ecology, here we
show it is the invariant distribution associated to a diffusion process representing an open dynamical system under neutrality.

It is important to realize that the stochastic process described by Z(t) is of the Markov type since future changes depend on
the present state, but not on the past history which led to this present state. Although this is a common assumption in ecological
and evolutionary models, a large body of experimental data and analyses shows the importance of history (or memory) in
affecting current states at the level of individuals, populations and lineages44–46. In this context it will be desirable to develop
non-markovian models for neutral macroecology; after all, life is a historical process and the explicit consideration of history
may be the simplest way of breaking the symmetry of neutrality.

If the variable Z(t) were discontinuous (i.e. if it were a measure of number of individuals instead of proportions) it will
change in jumps due to birth, death, immigration and speciation processes and in this case the probability of a change during
a small time interval (t, t +h) is small (of the order of magnitude h), but if a change occurs, it is of finite magnitude. In the
diffusion approximation, during any time interval, however small, Z(t) undergoes some change, such that the probability that
Z(t +h)−Z(t)> ε is of smaller order of magnitude than h. Continuity in this case, is possible only for large J as the number
of event per time interval become continuous in rescaled time (i.e. tJ).

In genetics, where diffusion methods where first applied in the context of biology, the diffusion approximation was used
to derive the distribution of allele frequencies under the process of migration, mutation, selection and drift (by themselves
and in combination)47. Interestingly, in this area of inquiry, diffusion methods provided good approximations to model the
evolution of finite populations48, even though its derivations requires J→ ∞. In our case, the derivation of the beta distribution
is based on two limits one for the number of individuals, and secondly, one in time. The order in which these limits are taken
cannot be changed. Once the diffusion limit is obtained via J→ ∞, the beta distribution is indeed obtained as a consequence
of t→ ∞. Since what we are analyzing is the evolution of individual abundance, a process that started with the origin of life,
it is correct to assume that we are at the large t limit (even if we consider the time since the last major extinction event 66
million years ago) and thus the finding of a beta distribution should be common. In our case, the fits to finite focal communities
seems remarkable, however we do not know how J affects the fit to our stationary solution and if there is a minimum J below
which our approximation would seem inadequate. The issue get even more complex since the Beta distribution does not have
a close form Maximum Likelihood estimator, which hinders the usability of the model in terms of estimating parameters of
the distribution given the data, and testing hypotheses about them. An alternative solution is to use an approximation to the
maximum likelihood, several of which are implemented in available packages such as R, Matlab and Scipy, and which provide
accurate estimations of parameters (less that 3 percent bias) with sample size above 10049, or to estimate the coefficients of the
diffusion process itself using the methods suggested by50 and simulate the stochastic process (9) to obtain the expected form of
ρt as shown in Figure (3) and then compare it to empirical ones. Although in strict terms Z(t) and its invariant ρ∞ apply to
one species, the neutrality assumption allow us to use ρ∞ as a good hypothesis for multispecies assemblages. In this context
we show in the Supporting Information (Figs. S1-3) that the parameters of the Beta distribution β ,α can be estimated with
little error when simulating 200 trajectories of Z(t) (see also Figure 4c), which as a first approximation we consider as a proxy
for 200 species under neutrality. Finally, if the steady state assumption in (11) does not hold, due to perturbations or in the
case of a newly colonized habitat, then we will be observing ρt and its functional form can be explored through simulations
(codes provided upon request). These are important issues that require further investigation to increase the applicability of the
diffusion approximation herein provided.

Our diffusion approximation is based upon the paradigm of open dynamical systems, whereby we try to understand the
behavior of a focal system, or focal community, in the context of an environment or bath with which it interacts; an approach
that has been mostly developed for open quantum systems51. Since we are only able to specify the dynamics of our focal
system, which is th one we study and develop theories an hypothesis about, everything we do not know about it is specified in
the fluctuations represented by the noise term in the stochastic differential equation (9), whose intensity is dependent upon the
the value of c(x). In this respect, our model can accommodate both neutral and non-neutral processes, with the latter being
included in the noise term. In the particular case we explored, using transition rates as in28, the core of the dynamics is neutral
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at the level of the focal system but everything else that could potentially impact upon the dynamics of the local systems, either
neutral or not, will be capture in the fluctuations induced by the interaction with the reservoir and included in the Brownian
noise term. It is important to notice that we assume that these fluctuations act at comparable time scales, if this were not the
case (as it is likely since immigration is faster than speciation) the addition of a different time scale in the form of fluctuations
following a Poisson distribution may be in order. In this case we would arrive to a Lévy type diffusion process.

One of the problems of our derivation is that there are no comparable models against which to contrast its performance, as
our model is defined using proportional abundances instead of the usual number of individuals. To solve this problem we show
(see Supplementary Information) that an approximation for the abundance function, defined as the average number of species
containing n individuals, n ∈ {1, . . . ,J}, or SAD is:

〈φn〉 ∼
S

JB(α,α(S−1))

(n
J

)α−1(
1−
(n

J

))α(S−1)−1
(28)

As shown in Table S1 (Supplementary Information) the approximation to the SAD derived from our model is as good as
previous ones.

Finally, it is worth reiterating that the form of the stationary distribution ρ∞ is dependent upon the transitions probabilities
characterizing the birth and death process and that the Beta distribution is valid only for the transitions specified by28 but
other are possible23, 31. It remains to be seen what other stationary distributions can be found and if these are compatible
with observed SADs. This will certainly improve our understanding of the causes underlying the distribution of abundance in
ecological systems.
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Table 1. Fit of the Beta distribution (Eq. (27)) to fifteen plant and animal communities. Data for communities 1-6 comes
from31, 7-9 from32 10 from30, 11-12 from29 and 13-15 from33. The estimation of α and β was done by optimization based on
the Nelder-Mead method implemented in the maximum likelihood function mle2, included in library bbmle for R. Comparison
between observed and predicted frequency distribution were done using Pearson’ s correlationdone by optimization based on
the Nelder-Mead method implemented in the maximum likelihood function mle2, included in library bbmle for R. Comparison
between observed and predicted frequency distribution were done using Pearson’ s correlation

Community S J α β Pearson’s r
1 Sinharaja 167 16936 0.2498 41.4668 0.915
2 Pasoh 678 26554 0.3868 261.8370 0.978
3 Korup 308 24591 0.2783 85.4514 0.945
4 Yasuni 821 17546 0.4872 399.4604 0.967
5 Lambir 1004 33175 0.4291 430.3599 0.987
6 Barro Colorado Island 225 21457 0.2773 62.1201 0.897
7 Hangklip 247 23756 0.2538 62.4323 0.927
8 Cederberg 247 11561 0.3025 74.4140 0.849
9 Zuurberg 114 8806 0.3709 41.9143 0.415

10 Terborgh 245 1663 0.8796 214.6275 0.854
11 Fisher Butterflies 501 3306 0.9877 493.8308 0.891
12 Fisher Lepidoptera 180 2020 0.6976 124.8712 0.905
13 Dornelas Indo Pacific 450 3779 0.6427 288.5661 0.840
14 Dornelas Papua New Guinea 403 2520 0.8557 344.0007 0.864
15 Dornelas Solomon Islands 268 1201 1.1268 300.8603 0.834
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Figure 2. Fit of the Beta distribution to different animal and plant communities. From left to right, first row, Amazon birds,
Lepidoptera, butterflies, second row Tropical trees and Coral reefs (communities 10, 12, 11, 6, 2 and 14 in Table 1 respectively).
Third row Tropical trees. Fourth row Tropical trees, and Fynbos shrublands. Fifth row Fynbos shrubland and coral reefs
(communities 1, 3, 4, 5, 7, 8, 9, 13 and 15 in Table 1 respectively)
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Figure 3. Relationship between parameters α and β for the communities shown in Table 1 (in blue Marine, in green Tropical
Forest, in red shrublands, in light yellow butterflies and in strong yellow bird communities). In the inset the relationship
between β (y axis) for forest communities 1-6 in Table 1, and the θ (x axis) parameter estimated in31 for the same forest
communities.
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Figure 4. a) Simulation of 225 trajectories (only 50 are shown) using Eq.(24) with λ = 0.001585, p = 0.0044, m = 0.09 and
an initial proportional abundance Z(0) equal to 0.2. b) Mean value of the observed trajectories and 95% confidence intervals. c)
Histogram of the trajectories Z(t) for t = 1000 in (a), estimated Beta distribution (27) (continuous blue line) and the theoretical
density ρ∞ (27) (red dashed line).
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