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Abstract  

 

Transcription is the dominant point of control of gene expression. Biochemical studies have 

revealed key molecular components of transcription and their interactions, but the dynamics of 

transcription initiation in cells is still poorly understood. This state of affairs is being remedied 

with experiments that observe transcriptional dynamics in single cells using fluorescent 

reporters. Quantitative information about transcription initiation dynamics can also be 

extracted from experiments that use electron micrographs of RNA polymerases caught in the 

act of transcribing a gene (Miller spreads). Inspired by these data we analyze a general 

stochastic model of transcription initiation and elongation, and compute the distribution of 

transcription initiation times. We show that different mechanisms of initiation leave distinct 

signatures in the distribution of initiation times that can be compared to experiments. We 

analyze published micrographs of RNA polymerases transcribing ribosomal RNA genes in E.coli 

and compare the observed distributions of inter-polymerase distances with the predictions 

from previously hypothesized mechanisms for the regulation of these genes. Our analysis 

demonstrates the potential of measuring the distribution of time intervals between initiation 

events as a probe for dissecting mechanisms of transcription initiation in live cells. 

 

 

Introduction 

One of the key findings of the genomic era is the unexpectedly high similarity between the 

genomes of different organisms(1). As the number of genomes being sequenced is increasing, it 

is becoming clear that the biggest difference among organisms is not to be found in their 

protein-coding sequences, but in the ways in which their genes are regulated(2–5). This is 

putting the spotlight on the parts of the genome that are responsible for gene regulation, and 

prompting the question of how changes in these sequences alter the way in which cells respond 

to intra and extracellular signals(6).  

A large amount of genetic regulation occurs at the level of transcription, where cells control the 

amount of messenger RNA of each gene they express(7). Regulation of transcription is 

commonly achieved by the integration of multiple intracellular signals at the regions of DNA 

upstream from and in proximity to the gene’s coding region. This “promoter region” consists of 
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a collection of transcription factor binding sites and, in eukaryotes, nucleosome positioning 

sites. Together, these binding sites dictate the binding and unbinding of specific transcription 

factors, co-factors and chromatin remodeling factors, which in turn either promote or inhibit 

the assembly of the transcriptional machinery at the gene.  

The collection of transcription factor binding sites (that includes enhancer regions in 

eukaryotes), their position, and affinity for transcription factor proteins, constitutes the 

promoter architecture. Considerable effort has been directed to elucidating how promoter 

architecture determines measurable quantities like the average transcriptional response(8–11) 

of cells to a given stimulus, as well as the population-wide fluctuations of that response (12–

15). While we have witnessed considerable progress on this front in recent years, many 

mysteries remain even in simple organisms such as bacteria. In particular, how promoter 

architecture affects the dynamics of transcription initiation in single cells remains poorly 

understood. To answer this question, experiments are being done where the number of RNA 

molecules from a gene of interest is measured at a single cell level in a population of isogenic 

cells (12, 16–18). The measured distribution of mRNA numbers in the cell population can then 

be used to test the predictions of different models of transcription initiation in the hope that 

some of these are supported by the data(19–30). This approach has led to the discovery of  

bursty mechanisms of transcription initiation (12, 16). However, this method of inferring the 

kinetics of transcription is limited by the fact that the mRNA copy number reflects additional 

processes downstream of transcription, such as the non-linear degradation of mRNA and 

proteins (31), maturation time of fluorescent reporters (32), mRNA transport (33), mRNA 

splicing (34) and small RNA regulation (35). The stochastic nature of these processes may 

introduce fluctuations in the number of mRNAs that masks the contribution of the 

transcriptional dynamics (36, 37).  

In contrast, experiments that catch RNAP molecules in the process of transcribing a gene 

provide a more direct readout of transcription initiation dynamics. Techniques developed by O. 

Miller and his group in a series of landmark papers over several decades rely on imaging 

actively transcribed genes in recently lysed cells by electron microscopy (38–43). In these 

images, the positions of transcribing polymerases along a gene can be determined (Fig. 1A). 

Inter-polymerase distance distributions can be extracted from these positions and, with a few 

reasonable assumptions (36), these provide information about the distribution of times 

between successive initiation events (Fig. 1C). The information contained in these distributions 

of inter-polymerase distances is akin to that obtained in live cells by fluorescently labeling 

nascent RNAs to observe transcription initiation events in real time at the single cell level (19, 

20, 44–48), as shown in Fig. 1B.  

Here we calculate the distribution of times between successive initiation events to 

quantitatively test mechanistic models of transcription initiation in cells. To accomplish this, we 

introduce a stochastic model of transcription that incorporates both initiation and elongation 

kinetics. Using the derived analytical results in conjunction with simulations, we show that the 

kinetics of initiation leave a signature in the distribution of transcription initiation times that 

can be used to discern between different models of transcription initiation. To showcase the 

power of this approach, we have re-analyzed a set of micrographs of E.coli genomic DNA, that, 
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to our knowledge, provided the first reported evidence of transcriptional bursting, a 

phenomenon that was later found to be widespread across all organisms (49). We show that by 

filtering the information contained on these micrographs through our theoretical framework, 

we can test various proposed models of regulation of ribosomal promoters in E. coli in response 

to an increase in rrn operon copy number. We find that some of the previously proposed 

models produce distributions of inter-polymerase distances that are inconsistent with the 

Miller spread data, whereas others are in excellent agreement. 

 

Distribution of initiation times for an arbitrary mechanism of transcription initiation can be 

computed from a master equation 

Transcription initiation is typically regulated by transcription factors and co-factors that bind to 

the regulatory DNA sequences and either inhibit or aid the binding of RNAP molecules to the 

promoter. To connect mechanisms of transcription initiation with measured times between 

successive initiation events, we consider a stochastic model of transcription with a general 

initiation mechanism, where the promoter can be in an arbitrary number of states defined by 

different constellations of bound transcription factors and co-factors. Using a chemical master 

equation approach (22, 50, 51), we show that the distribution of the distribution of times 

between two initiation events and its moments can be computed analytically for any 

mechanism of transcription initiation. These equations allow us to discriminate between 

different mechanisms of initiation by comparing the predicted distributions to experimental 

distributions of transcription initiation times.   

In order to compute the distribution of times between successive initiation events, we assume 

that the promoter can be in N different discrete biochemical states and that transitions 

between different states occur as different transcription factors bind and fall off their 

respective binding sites. The rate of transition from the m-th to the n-th promoter state is km,n, 

and the rate at which an RNAP molecule initiates transcription from the m-th promoter state is 

km,esc. The assumption that the transitions between these states are random Poisson processes 

characterized by rate constants leads to a chemical master equation that describes the time 

evolution of Pm(t), the probability that the promoter is in the m-th state (m = 1, 2,.., N) at time t:   

 

                                                  n,m m,n ,

1

.

N

m

n m m esc m

n

dP
k P k P k P

dt =
= ⎡ − ⎤ −⎣ ⎦∑                                                            

(1) 

Solving this chemical master equation for all the states m from which the promoter initiates 

transcription with rate km,esc, leads to a general formula for the probability distribution q1(t) of 

the time intervals between successive transcription initiation events: (details of the calculation 

can be found in the SI)  
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Assuming a uniform elongation rate (37, 52) along the gene v, the distribution q1(t), of time 

intervals between successive initiation events directly translates into a distribution of distances 

q1(x) between RNAPs along the gene. In other words, the inter-polymerase distance distribution 

along a gene is given by, 

                                                           

                                                                     
1 1

1
(x) ( )q q t

v
=                                                                                    

(3) 

In the ensuing investigation of regulation of ribosomal genes, Equation 3 forms the basis of our 

analysis of positions of RNAP molecules along a gene at a given moment in time, which provides 

a quantitative test for different models of transcription initiation. Although transcription 

elongation of ribosomal genes is typically more complicated and involves pausing and 

backtracking of polymerases along the gene (53), here we assume that transcriptional pausing 

happens on time scales that are negligible compared to the times between transcription 

initiation events(54). For a detailed discussion of this model assumption, see the SI.  

 

 

The distribution of transcription initiation times can be used to discern between different 

models of initiation  

To illustrate how the distribution of times between successive initiation events can be used to 

extract mechanistic insights into the process of transcription initiation, we consider three 

different models of initiation as case studies (see Fig. 2).  

Poisson (single rate limiting step) model: The Poisson model is the null model of initiation, 

which is usually associated with constitutive promoters (12). In this model initiation happens 

with a constant probability of kLOAD per unit time, as shown in Fig. 2A. In bacteria, this step 

could, at the molecular scale, represent the rate of loading of RNAP molecules to the promoter 

DNA, while for eukaryotes this step could correspond to the formation of the pre-initiation 

complex. As obtained from Eqn. 2, the one-state model is characterized by exponentially 

distributed times between successive initiation events. One of the key properties of an 

exponential distribution is that its mean and standard deviation are equal. Therefore, the CV
2
 

(defined as the ratio of the variance to the square of the mean) is always equal to one, 

independent of the rate kLOAD, as shown in Fig. 2A.  

Two limiting steps model: Next, we consider a model in which initiation happens in two 

sequential rate limiting steps. This is the situation when two steps in the sequence of events 

leading to initiation are of comparable duration. For example, in bacteria the first step could 

correspond to an RNAP molecule binding to the promoter with a rate kLOAD. In Eukaryotes this 

step could represent the loading of the transcriptional machinery at the promoter (23, 47). In 
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the second step, the promoter bound RNAP molecule escapes the promoter at a rate kESC, and 

starts transcribing the gene. For several promoters in yeast(36) and E.coli (55), it has been 

reported that initiation proceeds through two-sequential steps.  

For this case, using Eqn.2, we find that the waiting time distribution between successive 

initiation events is gamma distributed. This result agrees with previous theoretical studies(25) 

and it leads to the following relationships between the kinetic rates of the mechanism (kLOAD 

and kESC) and the mean and the coefficient of variation of the waiting time distribution:
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                (4)   

As shown in Fig. 2B, when we tune either one of the two rates of the model while keeping the 

other one constant, the coefficient of variation initially decreases as a function of the mean, 

develops a minimum when the two rates become equal, and then asymptotically goes to one. 

In the limit of one rate being much slower than the other one, the waiting time distribution 

becomes exponential, leading to a coefficient of variation of one.   

ON-OFF promoter:  The third scenario we consider is the ON-OFF model of initiation. This 

model of initiation has been established as the canonical model of transcriptional regulation for 

both bacteria (19) and eukaryotes (17, 56–60). In this model, the promoter switches between 

two states: an active state, from which transcription initiation can occur, and an inactive state 

from which initiation does not occur. The two states might correspond to a free promoter and 

one bound by a repressor protein, or a promoter occluded by nucleosomes. The rate of 

switching from the active to the inactive state is kOFF and from inactive to the active state is kON. 

The rate of initiation from the active state is kESC.  

In this case we find that the waiting time distribution between successive initiation events is 

given by a sum of two exponentials, as shown in Fig. 2C. Thus, it can be distinguished from a 

single exponential expected from the one-state promoter, on the condition that the decay 

constants of the two exponentials are well separated in magnitude. The mean and the 

coefficient of variation as functions of the different biochemical rates are given by, 
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When we tune the rate kON, the CV
2
 increases as a function of the mean and eventually 

saturates, as shown in Fig. 2C.  
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We compare our analytical results for the three models described above against Gillespie 

simulations(61). This allows us to numerically generate multiple time-traces of initiation events. 

From these different time traces, we obtain the distribution of initiation times as well as the 

corresponding values of the mean and variance. The histograms for the times between 

initiation events for all the three models are shown in Fig. 2A-C. We also show the coefficient of 

variation as a function of the mean for these models, as we tune the relevant rates in Fig. 2A-C. 

These results imply that we can discern these three different models of initiation based on the 

predictions they make for the waiting time distribution of consecutive initiation events as a 

function of the different experimentally tunable parameters.  

 

The dynamics of transcription initiation of ribosomal genes in E.coli can be extracted from 

images of transcribing polymerases in fixed cells. 

To demonstrate how the distribution of inter-polymerase distances along a gene can be used to 

extract dynamical information about the process of transcription initiation in vivo, we have re-

analyzed images of elongating RNAP molecules on ribosomal RNA (rRNA) genes in E. coli, which 

were obtained using the Miller spread technique by Voulgaris et al. (38). In Fig. 3C, we show the 

inter-polymerase distance distribution for the seven ribosomal genes in wild type E. coli cells 

(strain pBR322 (38)). A remarkable feature of this distribution is the presence of a peak in the 

inter-polymerase distance distribution at small distances. This is inconsistent with a 

“Poissonian” initiation mechanism (19). Indeed, the presence of a maximum in the probability 

at intermediate distances suggests the existence of a two limiting steps model of initiation (Fig. 

3B), where, for example, the polymerase first binds to the promoter, and then escapes the 

promoter leading to elongation, where the two steps occur with comparable rates. Recent in 

vivo studies in yeast have shown that initiation can proceed in multiple-sequential steps, where 

the rates involving these steps have comparable magnitude (36). In addition, when analyzing 

this data, we consider the time it takes for the polymerase to clear the promoter by elongating 

through it. To test the hypothesis of two sequential steps leading to initiation, we fit Eqn.3 to 

the experimental distribution obtained from the images, while assuming as a parameter an 

elongation speed of 78 bp/second (as measured elsewhere (38)). We find that the two limiting 

steps model is in good agreement with the data. Furthermore, the fit provides estimates for the 

rates of promoter escape, rate of RNAP loading on to the promoter, and time to clear the 

promoter (kLOAD ≈ 3/second, kESC ≈ 3/second and �CLEAR ≈ 0. 3 seconds), all of which are in good 

agreement with previous measurements (62) (See the Materials and Methods section).  

 

Transcriptional bursting accompanies the down-regulation of the expression of rrn operons in 

the presence of additional copies of the rrn genes. 

In a second set of experiments, electron micrographs images were used to shed light onto a 

previously reported effect (63), namely that the transcriptional activity of individual rrn genes is 

inversely proportional to the copy number of these genes, in such a way that the net 

transcriptional output of rrn genes in the cell is kept constant. Surprisingly, the electron 
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micrographs showed that when the copy number of ribosomal genes was altered by placing 

extra rrn genes on plasmids, a very different pattern of polymerase occupancy of the rrn genes 

emerged. Beside the mean number of RNAP molecules along each gene decreasing with 

increased gene copy number, it was also observed that RNAP molecules are now grouped in 

bunches along the gene, which is indicative of transcriptional bursting. Bremer et al.(64) 

proposed that since a significant fraction of RNAPs is engaged in transcribing the ribosomal 

genes, then changing the gene copy number will significantly alter the concentration of free 

polymerases available for transcription initiation. This will consequently decrease the rate of 

transcription initiation, which is assumed to be proportional to the RNA polymerase 

concentration. This "free RNA polymerase hypothesis" (64) along with the two-step model of 

transcription initiation (Fig. 1B) predicts that the mean number of RNAPs per gene will decrease 

in response to an increase in the number of genes, as observed experimentally, but it cannot 

reproduce the observed bunching of polymerases, as was shown in a previous theoretical study 

(25). Therefore, in order to account for the bunching of RNAPs seen in experiments by Voulgaris 

et al. (38), it is necessary to consider models of initiation with promoter states that are off-

pathway to elongation. Indeed, several such models have been proposed to explain the down-

regulation of individual rrn genes in response of an increase in the gene copy number(38). 

These models can be broadly classified into three different classes. Two of these three classes 

of models are extensions of the two-step model to include off-pathway promoter states that 

may lead to bursting of transcription initiation which would then lead to gaps between bunches 

of RNAP molecules along the gene. Below we test the predictions of these three classes of 

models for the distribution of initiation times against the experimental data.  

 

The first class of models, considers the formation of long-lived non-productive initiation 

complexes at the promoter (65–67). For example, non-productive complexes that cannot exit 

the abortive initiation state into productive elongation have been observed in vitro (25). The 

formation of such dead-end complexes can block the promoter for long periods of time. This 

promoter blockade leads to transcriptional bursting which could in turn produce the gaps 

between bunches of RNAPs transcribing the gene, shown in Fig. 3A.  

The second class of models, assume cooperative recruitment of RNAP molecules to the 

promoter by a RNAP molecule already present on the promoter (68–70). For example, when a 

RNAP molecule initiates transcription it can leave the promoter DNA in a supercoiled state as 

illustrated in Fig. 3B. In the supercoiled state, the energy barrier for melting a strand of DNA to 

make a transcriptional bubble is lowered leading to an increased rate of RNAP loading on to the 

promoter (25). If the rate at which promoter DNA relaxes from the supercoiled state is not 

much larger than the RNAP loading rate, then several polymerases can initiate in a burst of 

activity leading to the formation of a bunch of RNAPs along the gene. When the promoter DNA 

relaxes from the supercoiled state, the rate of loading of polymerase molecules, which leads to 

the creation of a gap between successive RNAP bunches. The kinetic steps of this model are 

shown in Fig. 3B. It has been proposed by several authors that negative supercoils introduced 

by RNAP initiating transcription may induce such cooperative recruitment (25). In fact Voulgaris 

et al. (38) in their paper speculated that a possible reason for the observed gaps in the 

distribution of RNAPs along the gene could be supercoiling-mediated recruitment of RNAPs.  
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A common feature of both classes of models is that they incorporate the “free RNAP” 

hypothesis, in that an increase in the number of rrn genes in the cells leads to a reduction in the 

rate of loading of RNAP molecules to the promoter. In contrast, a third alternative class of 

regulatory models for the transcription of ribosomal genes have been proposed, whereby a 

secondary molecular messenger whose abundance in the cell is regulated in response to the 

changing number of ribosomal genes either inhibits or activates the transcription of these 

genes (Fig. 3C) (71). One such model is based on the alarmone nucleotide molecule ppGpp, 

which is capable of inactivating the promoter-RNAP complex upon binding to the polymerase 

(71, 72). The inactivated polymerase effectively blocks further transcription and leads to the 

appearance of gaps between bunches of transcribing polymerases, as observed in the 

micrographs of Voulgaris et al. (38). The key assumption of this model that distinguishes it from 

the first two is that an increase in the number of rrn genes does not significantly change the 

number of free RNAPs in the cell (71, 72).  

Using our mathematical framework, we put to test these different classes of models, with the 

goal of gaining insight into the unresolved question of how ribosomal genes are regulated when 

the number of gene copies is increased. To do so, we compute the distribution of distances 

between transcribing polymerases based on these models of initiation using Eqn. 3, and then 

compare the results directly with the distribution obtained from electron-microscopy images. In 

order to analyze the inter-polymerase distance data, Voulgaris et al. (38) treated the 

polymerase distances within a bunch and between bunches separately. Hence to compare our 

theory with the experiments, we compute the mean and the variance of the distances between 

polymerases within a bunch and between bunches for all three models. It is important to note 

that despite the ribosomal genes being highly transcribed their inter-polymerase distance 

distributions are not significantly affected by the elongation dynamics (for a detailed discussion 

of this point see the SI). 

We find that these different classes of models, as shown in Fig. 4, make starkly different 

predictions for the inter-polymerase distributions along the gene. When the computed 

distributions are compared to those measured in experiments, we find that the third class of 

models, where a secondary molecular messenger inhibits the transcription of the gene is 

favored over the two models that are based on the “free RNAP” hypothesis. Although the two 

“free RNAP” classes of models may produce bursts of transcription initiation, the theoretical 

predictions these models make for the intra-bunch mean and variance are inconsistent with the 

data obtained by Voulgaris et al. (38), (Fig. 4A,B). A common feature of the “free RNAP” models 

is that they predict an increase in the mean and the variance in the distribution of RNA 

polymerase distances within a “bunch” when the number of ribosomal genes is increased. This 

stems from the assumption that changing the gene copy number leads to a lower concentration 

of free RNAP, and thus to a reduction in the rate of RNAP loading on to the promoter (red 

arrow in Fig. 4A,B). However, when the experimental distribution of initiation times we found 

that increasing the number of genes from seven to ten has no significant effect on the 

distribution of distances between RNAPs within a bunch. This is inconsistent with the 

theoretical prediction from these two mechanisms. 
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In contrast, here we propose a third class of model based on the action of the alarmone 

nucleotide ppGpp. Recent experiments have shown that ppGpp molecules interact with active 

RNAP-promoter complexes and turn them into inactive ones(71). Formation of such inactive 

complexes can lead to bursty transcription initiation dynamics, caused by the resident 

polymerase blocking the promoter. Another set of experiments has shown that the number of 

ppGpp molecules increases with increasing ribosomal gene numbers (73). Consistent with these 

observations, we propose a kinetic model of transcriptional regulation of ribosomal genes 

where RNAP-promoter complexes are inactivated by ppGpp molecules that increases in 

concentration as the gene copy number is increased (shown in Fig. 4C). We computed the mean 

and variance of the inter-polymerase distance distributions within a bunch for this mechanism, 

and find that they are consistent with the experimental results. Since the key assumption of this 

model is that an increase in the number of genes does not significantly change the number of 

free RNAPs in the cell (71, 72), the rate of RNAP loading on to the promoter remains 

unchanged. This has the effect of keeping the distribution of distances between RNAPs within 

the bunch unchanged (Fig. 4C). Thus, the proposed mechanism generates the same bursting 

kinetics that has been found in electron micrographs for this promoter, suggesting that it may 

be a candidate explanation for the observed bursting pattern. We note that any mechanism 

based on stochastically and transiently preventing promoter escape by a bound polymerase 

would have the same outcome. While ppGpp is a plausible candidate as this mode of action has 

been documented before, whether it is acting through that mechanism here is still an open 

question.  

 

 

Discussion 

The dynamics of transcription in live cells is poorly understood. Due to the difficulties in directly 

imaging the process of transcription (19, 46, 47, 49, 74), experimental methods for counting the 

products of transcription (such as RNA and protein molecules) in single cells have been 

developed over the past years. The protein and mRNA distributions carry the signature of the 

dynamics of transcription and hence can be exploited to decipher the underlying mechanisms 

of transcriptional regulation (12, 16, 46, 75). However both mRNA and protein counts are 

affected by noisy processes other than transcription such as mRNA processing, binomial 

partitioning, nonlinear degradation of mRNA molecules etc. (31, 33, 34, 76–79), which can 

potentially mask the signature of transcription on protein and mRNA distributions.   

         

Recent experimental advancements make it possible to extract the positions of RNAP molecules 

that are engaged in the process of transcribing a gene at a given instant in time (38, 41–43, 80). 

Similar information can be extracted by observing transcription initiation events in real time 

using fluorescent reporters (19, 20, 44–48). These measurements are not affected by post-

transcriptional processes and are therefore more direct readouts of transcription compared to 

mRNA and protein counting (81). In this paper, we have derived mathematical equations that 

allow us to interpret and analyze the inter-polymerase distance distribution, or equivalently, 

the waiting time distribution between successive initiation events across a population of 

isogenic cells. To demonstrate the potential utility of our analytical results, we fit the inter-
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polymerase distance distribution for ribosomal genes in E.coli (acquired from electron 

micrographs) to a theoretical distribution computed for a two-step model of initiation. The 

model fits the data well, allowing us to extract the rates that characterize transcription 

initiation dynamics. We also reanalyze images of RNA polymerases transcribing ribosomal 

genes in wild type and mutant strains of E.coli. We show that previously proposed mechanisms, 

based on the effect of extra rrn gene copies have on the concentration of free RNAPs in the cell, 

are inconsistent with the observed inter-polymerase distance distributions. In contrast, we find 

that an alternative possibility(71), where the alarmone nucleotide ppGpp may interact with 

promoter bound RNAP and prevent promoter escape, produces bursting kinetics that are 

consistent with experimental observations. We believe that the approach and ideas presented 

here will be helpful to uncovering detailed, kinetic information about the process of 

transcription initiation in live cells. 

 

 

 

Methods section on 

Data analysis and parameter estimation 

We evaluate the utility of our theoretical framework by employing it to gain mechanistic 

insights into the regulation of ribosomal genes in E. coli. To this end, we have re-analyzed a set 

of images of elongating RNAP molecules on ribosomal RNA (rRNA) genes in E. coli, which were 

obtained from electron micrographs of fixed cells using the Miller spread technique by 

Voulgaris et al.  (38). To extract the digitized data from the plots (38), we use a software called, 

DigitizeIt which is easily available online. The authors increased the number of rrn operons in E. 

coli cells by inserting an rrn operon on a multicopy plasmid. It was observed that the rate of 

rRNA expression per operon is reduced to maintain a constant number of rRNA in the cell. In 

fact, EM images showed that fewer RNAP molecules were engaged in transcribing the rrn 

genes, consistent with previous studies(63). Moreover, RNAP molecules formed bunches 

separated by gaps along the genes. While the authors ruled out transcription elongation or 

termination as origins of these bunches, they suggested that the bunches are caused by 

stochastic interruptions of initiation or promoter-proximal elongation events. The authors 

analyzed the EM images by defining a “transcriptional bunch” as a group of RNAPs separated by 

less than 240bp from each other (38). The distribution of distances greater than 240bp is 

referred to as inter-bunch distribution. Using our theory, we analyze the intra-bunch 

distributions.  

 

To extract the model parameters for the dynamics of transcription initiation of ribosomal 

genes, we first consider the inter-polymerase distance distribution data for wild type E. coli 

cells. In Fig. 3C, we show the inter-polymerase distribution for the seven rrn promoters for the 

ribosomal genes in wild type E. coli cells (strain pBR322). We model the RNAP distance 

distribution within a bunch by taking the two-step model, shown in Fig. 3B. Using Eqn. 3 we find 

the probability distribution of inter-polymerase distances is given by 
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Here 30bps is roughly the size of a RNAP molecule (82). By comparing the data from the 

experiments for inter-polymerase distances within a bunch and the prediction from the model 

we extract kLOAD, kESC and �CLEAR. By fitting the model (see Fig. 3C), we extract the rates kESC ≈ 

3/second, kLOAD ≈ 3/second and �clear ≈ 0. 3 seconds (�clear= ), v is the rate of transcription 

elongation for every RNAP molecule, which we take to be 78 bps/sec (38).  

 

Next, we seek to decipher the dynamics of transcriptional regulation of ribosomal genes by 

considered three models, as shown in Fig 4, as proposed by Voulgaris et al. (38). Each of these 

three models is defined by five parameters (see Fig. 4A,B and C). For the dead-end complex 

model, after the loading of polymerase molecules to the promoter at a rate kLOAD, each RNAP 

molecule either escapes the promoter at a rate kESC and starts transcribing the gene, or forms a 

dead-end complex at the promoter at a rate kDEAD. These dead-end complexes are unproductive 

and are removed at a rate kOFF. For the Cooperative recruitment of RNAP by DNA supercoiling, 

RNAP molecules are loaded on to the promoter at the promoter at a rate kLOAD
LOW

. After RNAP 

initiates transcription, at a rate kESC, it leaves the promoter DNA in a supercoiled state and 

subsequent loading of polymerases occurs at the promoter at a faster rate kLOAD
HIGH

. The rate of 

relaxation of the supercoiled state is kRELAX. For the third model, the production of `control 

molecules' (e.g. ppGpp) reduce the initiation rate by regulating the initiation process by 

converting the active promoter-RNAP complexes into inactive ones. It is described by the same 

kinetic scheme as the dead-end complex model. However, the rate of inactivation of RNAP-DNA 

complex is given by kON, every other rate remaining the same. To test these proposed models 

based on the experimentally observed transcriptional bunching data for rrn genes, we first 

extract the different parameters involving these models by fitting the inter-RNAP distance 

distributions these models produce with the data for wild-type E. coli cells with seven rrn 

operons. As demonstrated earlier, the intra-bunch distance distribution allows us to obtain 

three of the parameters, which are common to these models of initiation i.e. kLOAD (kLOAD
HIGH 

 for 

supercoiling mediated recruitment), kESC and �CLEAR. In order to obtain the remaining sets of 

parameters, we use the intra-bunch distances  (38). The mean intra-bunch distance allows us to 

extract the average time of transcriptional inactivity at the promoter which is equivalent to the 

time the promoter spends in the inactive state which does not lead to initiation. From Fig. 3A of 

reference  (38) we extract the mean gap between RNAP bunches to be approximately 5 

seconds. For the dead-end complex and ppGpp model, this implies that the average residence 

time of the promoter in 3
rd

 state is ~ 1/5=0.2/second. Hence for the three bursting models we 

take kOFF (dead-end complex model) = kOFF (ppGpp model) = kLOAD
LOW 

(supercoiling mediated 

recruitment) ≈ 0.2/second. To obtain the fifth parameter of these models, we assume that
 
the 

addition of ribosomal genes to the E. coli cell adjusts the overall transcription rate of the 

30

v
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ribosomal genes
 
by reducing the average transcription rate per gene, to keep the level of 

ribosomal RNA in
 
the cell constant. In other words, for the models considered above the total 

initiation rate remains constant, or
 
nI = Constant, where n is the number of ribosomal genes 

and I is the initiation rate on one of the genes. The initiation rate for a wild type pBR322 strain 

with n = 7 genes is I = 1 initiation/second(38). Using the formulas, we obtain for the rate of 

average initiation for each of the models of transcription initiation (see the SI), we find for the 

supercoiling mediated recruitment model kRELAX ≈ 0.055/second and for the kDEAD (dead-end 

complex) = kON (ppGpp model) ≈ 0.047/second. 

 

 

Moments of intra-bunch distance distributions 

To test the first and second class of models (along with the “free RNAP hypothesis”), we use the 

condition nI = Constant (i.e. the total number of ribosomal RNAs remain constant when the 

total gene number is increased) and change the rate of loading of RNAP molecules on to the 

promoter  with the increasing number of genes, to keep the total initiation rate fixed. For each 

of these gene numbers we calculate the distribution of inter-polymerase distances along the 

gene. From this distribution, we construct the distributions of distances between RNAPs within 

a bunch and between bunches and compute their means and variances. In Fig. 4 we show the 

statistics of intra-bunch distances. For the third class of models, we change kON as the amount 

of ppGpp molecules have been observed to increase with increasing gene numbers (73), and 

repeat the same exercise as before (also shown in Fig. 4 and Fig. S3 respectively) 
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Fig. 1 Positions of transcribing RNA polymerases carry the signature of transcription initiation 

dynamics. Schematic of the key idea of this paper. (A) Times between successive transcription 

initiation events can be extracted at the single cell level using fluorescent reporters for nascent 

RNA molecules (19, 20, 44–48), or from electron microscopy (EM) images of RNA polymerases 

caught in the process of transcribing a gene  (38–43). Native elongating transcript sequencing 

(NET-seq) (80) can also obtain the same quantitative information as EM images. (B) The 

distribution of times between individual transcription initiation events can be extracted from 

experiments and compared to theoretical predictions based on stochastic models of 

transcription initiation.  
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Fig. 2 Different models of transcriptional regulation leads to distinct signatures in the 

initiation times: (A) One-step model of transcription initiation. Initiation happens at a constant 

rate kLOAD. The times between successive initiation events are exponentially distributed. The 

square of the coefficient of variation is plotted as a function of the mean, where we change the 

mean by changing the rate of initiation, kLOAD. We confirm the analytical results using Gillespie 

simulations(61). The histogram and closed circles represent simulation results. (B) Two-step 

model of transcription initiation. Initiation happens in two sequential steps: the rate of RNAP 

loading on to the promoter occurs with rate kLOAD, followed by RNA polymerase escaping the 

promoter leading to initiation event at a rate, kESC. The distribution of times between successive 

initiation events and the square of the coefficient of variation of the distribution, as a function 

of the mean are shown. To change the mean, we change the rate of loading of RNAP 

polymerase molecules on the promoter, kLOAD. As before, simulation results are compared to 
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the analytical results. (C) ON-OFF model: The promoter switches between two states: an active 

and an inactive one. The rate of switching from the active state to the inactive state is kOFF, and 

from the inactive to the active state is kON. From the active state transcription initiation 

proceeds with a probability per unit time, kESC. The distribution of times between initiation 

events, and the square of the coefficient of variation as a function of the mean are shown. 

Results from Gillespie simulations(61) are shown for comparison. To change the mean, we tune 

the rate kON of switching from the inactive to the active state. To illustrate the distinctive 

impact of the different initiation models on the distribution and moments of the times between 

successive initiation events, we use the following parameters: kOFF=5/min, kON=0.435/min , 

kLOAD= 0.14/min and kESC=0.14/min, which are characteristic of yeast promoters(36).  
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Fig. 3: Initiation of transcription of ribosomal genes in E.coli: (A) Positions of RNA polymerase 

molecules transcribing a gene at a given instant in time can be obtained from electron 

microscopy images or native elongating transcript sequencing (80). (B) Two-step model of 

transcription initiation, as shown in Fig. 2B. (C) Fit (line) of the two-step model to the inter-

polymerase distance distribution data (points) obtained by Voulgaris et al. (38) for ribosomal 

genes in E.coli. The different biochemical rates we extract are kESC (rate of promoter escape)≈ 

3/second, kLOAD (rate of RNAP loading on to the promoter)≈ 3/second and �clear (time for a RNAP 

to clear the promoter) ≈ 0.3 seconds, taking the elongation speed v= 78 bps/sec, as reported in 

experiments(38).  
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Fig. 4: Different models of transcriptional regulation of ribosomal genes can be tested by 

tuning the gene copy number. (A) and (B) Models of transcription initiation that rely solely on 

the interaction of RNA polymerases with promoter DNA. (A) This class of model considers the 

formation of long-lived non-productive initiation complexes at the promoter  by RNAP 

molecules (25, 67). After binding the promoter at a rate kLOAD, each RNAP can initiate 

transcription at a rate kESC or make a dead-end complex at the promoter at a rate kDEAD. These 

dead-end complexes are unproductive and are removed at a rate kOFF. The change in gene copy 
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number affects the binding rate of RNAP molecules to the promoter due to a change in the free 

RNAP concentration, as indicated by the red arrow. Theory predicts that the mean and variance 

of distances between RNAPs within a bunch increase with the gene number, contrary to 

experiments on ribosomal genes in E.coli. (B) Cooperative recruitment of RNAP by DNA 

supercoiling. RNAP molecules are loaded on to the promoter at a rate kLOAD
LOW

. After RNAP 

initiates transcription, at a rate kESC, it leaves the promoter DNA in a supercoiled state and 

subsequent loading of RNAP polymerases at the promoter at a faster rate kLOAD
HIGH

. The rate of 

relaxation of the supercoiled state is kRELAX. The change in gene copy number affects both the 

polymerase loading rates (red arrows) due to the change in free RNAP concentration. The 

model predicts that the mean and variance of the intra-bunch RNAP distances increase with the 

gene copy number, contrary to measurements in E.coli. (C) As the number of genes increases 

the rate of ribosomal RNA production increases. This triggers the production of `control 

molecules' (e.g. ppGpp) which then reduce the initiation rate by modulating the promoter-

RNAP interactions. ppGpp regulates the initiation process by converting the active promoter-

RNAP complexes into inactive ones. It is described by the same kinetic scheme as the dead-end 

complex model (A) with a critical difference, namely in this case it is the rate of ppGpp binding 

to the RNAP-promoter complex (red arrow) and not the rate of RNAP loading on to the 

promoter is tuned as the copy number of ribosomal genes is changed. Here we call the rate of 

inactivation of RNAP-DNA complex kON. The mean and variance of distances between RNAPs 

within a bunch is predicted to remain constant as observed in experiments. In all the plots, the 

two data points shown are taken from (38). 
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