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Abstract 9 

In his theoretical work of the 70’s, Robert May introduced a Random Matrix Theory 10 

(RMT) approach for studying the stability of large complex biological systems.  Unlike the 11 

established paradigm, May demonstrated that complexity leads to instability in generic models of 12 

biological networks. The RMT approach has since similarly been applied in many disciplines. 13 

Central to the approach is the famous “circular law” that describes the eigenvalue distribution of 14 

an important class of random matrices.  However the “circular law” generally does not apply for 15 

ecological and biological systems in which density-dependence (DD) operates. Here we directly 16 

determine the far more complicated eigenvalue distributions of complex DD systems. A simple 17 

mathematical solution falls out, that allows us to explore the connection between feasible 18 

systems (i.e., having all equilibrium populations positive) and stability. In particular, for these 19 

RMT systems, almost all feasible systems are stable.  The degree of stability, or resilience, is 20 

shown to depend on the minimum equilibrium population, and not directly on factors such as 21 

network topology.   22 
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Introduction 31 

Network models have become indispensable tools for helping understand the biological 32 

processes responsible for the stability and sustainability of biological systems
1-18

. Intuitively, rich 33 

highly interconnected biological networks are expected to be the most stable, and are thus likely 34 

to better withstand the loss of a link, or to cope in the presence of external environmental 35 

perturbations. In the 70’s, May
1,2

 exploited random matrix theory (RMT), and the “circular law” 36 

for matrix eigenvalue distributions, to challenge this paradigm. He demonstrated that more 37 

complex and connected biological systems are in fact more fragile, and less likely to be stable, in 38 

terms of their ability to recover after some small external perturbation. Since then, the RMT 39 

framework has proved extremely useful for identifying those factors that beget stability in large 40 

ecological communities of randomly interacting species
5-15

. Moreover, in recent years, the 41 

modeling approach has successfully spread to other disciplines, ranging from systems biology, 42 

neurosciences, through to atomic physics, wireless, finance and banking, making this an exciting 43 

and vibrant contemporary research discipline
16-18

. 44 

 Here I re-examine similar issues of stability versus complexity, while using a better 45 

suited formulation of a biological system’s “community matrix” --  one that explicitly allows for 46 

the standard textbook assumption of density-dependent (DD) growth
2,19,20

. Such growth proves 47 

to be the rule rather than the exception for many biological processes, yet surprisingly, very little 48 

is known about their stability properties. In principal, May’s conclusions are not automatically 49 

translatable to DD systems. As we shall see, the “circular law” which sits at the foundation of 50 

May’s analysis, and governs the eigenvalue distribution of random matrices, generally does not 51 

hold for DD systems. The problem has resurfaced in recent prominent studies of ecological 52 

networks
6
. 53 

In this paper we develop new methods to predict eigenvalue distributions of large 54 

complex DD systems. In the process, the analysis leads to and justifies new conclusions about 55 

the currently topical constraint of feasibility
6,7,10,15

. Feasibility requires that all equilibrium 56 

populations of a system are positive, a characteristic feature that is generally to be expected for 57 

any persistent system. There have been numerous reports in the literature of a strong association 58 

between feasibility of DD systems and stability, similar to Roberts (1974) who found that almost 59 

all feasible model systems are stable (see also Refs.10-12).  60 

 61 

Robert May’s model of large complex systems: It is helpful to first recall the original 62 

argument of May
1
. For an n-species community, let us suppose that the i’th species has 63 

abundance at time t given by   ( )    
    ( )   Here    

  is the abundance at equilibrium (the 64 

symbol * indicating equilibrium), and   ( ) its perturbation from the equilibrium value. The 65 

dynamics of the populations are assumed to follow some complex nonlinear differential 66 

equation, which when linearized around equilibrium is of the form: 67 
  

  
             .      (1) 68 

The vector   (  ) contains the population disturbances      in terms of their perturbation from 69 

equilibrium, while the element     of the “community matrix” A represents the effect species-j 70 

has on the growth of species-i when close to equilibrium. A cooperative effect implies      , 71 

while a negative effect is just the opposite with      .  The self-interactions between species 72 

are all scaled such that       . 73 

 74 
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May
1
 studied communities under the limited “neutral interaction” assumption where 75 

interspecific interactions are equally positive as negative, and their expected or average value is 76 

zero i.e., E(   )=0. Environmental fluctuations are assumed to perturb the interaction strengths, 77 

so that for the basic “neutral interaction” model,        , where I is the identity matrix and 78 

B is a random matrix with coefficients having mean zero and variance Var(   )=  
. Finally, to 79 

model connectance of the interaction network, a proportion (   )  of randomly chosen 80 

interactions     are set to zero, leaving a proportion C nonzero. 81 

More formally, we are interested in the “local stability” of biological models, which 82 

guarantees that a system will return to equilibrium after a “small” population perturbation. 83 

Unless otherwise stated, the paper will be concerned exclusively with local stability. A major 84 

achievement of May
1
 was to demonstrate that eqn.1 is locally stable for the neutral interaction 85 

model,  if the interaction disturbances are “not too large,” namely if: 86 

        ,   where    √            (2) 87 

and unstable otherwise. The larger the number of species n, the sharper the transition from 88 

stability to instability at    .  This is visualised in Fig.1a which plots the percentage of 89 

random matrices that are locally stable as a function of disturbance    In terms of model 90 

parameters, the threshold criterion means that if either n,   or C become too large, the system 91 

will transition into an unstable regime. With this simple but powerful argument, May 92 

demonstrated the fragility of large complex and highly connected systems.  93 

94 
Fig 1.  a) Percentage of locally stable interaction matrices A  as a function of disturbance    in an 95 

ensemble of 500 matrices for different community-sizes n=10,20,50,100.  May’s stability threshold sits at 96 

     b). The probability of feasibility, P(Feasible), as a function of disturbance  , for n-species 97 

competition with different community sizes n=1,8,14,20,100. Each probability marked by a square, circle, 98 

etc is the proportion of feasible systems in 500 runs of eqn.9. Analytical predictions from eqn.12.   Figure 99 

from Stone (1988, 2016).   100 

 101 

Results 102 
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The eigenvalue distribution of the community matrix     : Theoretical ecologists study 103 

the eigenvalues (  )  of the community matrix A to determine local stability
2
. The theory 104 

underpinning the above elegant stability criterion relies on the “circular law” which is a central 105 

result in RMT.  In simple terms, it states that the n eigenvalues    of the random matrix A are 106 

distributed uniformly in a circle with radius   in the complex plane, and centred at (-1,0) on the 107 

real axis as shown in Fig.2a (see Ref.1).  In this paper, it is often of interest to study the 108 

properties of each new matrix A  as   is increased incrementally from zero. If the radius is 109 

increased to the point where it exceeds  =1, the eigenvalues of A populate the right-hand-side 110 

(RHS) of the complex plane indicating that at least one eigenvalue has a real part that is positive. 111 

The latter is the well known condition for triggering instability, and explains stability criterion 112 

eqn.2.  In mathematical terminology, stability depends on the critical eigenvalue of the 113 

community matrix that has the largest real part, i.e.,  114 

    =       ( 
 
)         (3) 115 

The system is locally stable iff   < 0, as in Fig.2a, since no eigenvalue has a positive real part. 116 

 117 

Fig 2.  a) The distribution of eigenvalues of the matrix A in the complex plane for n=400,   118 

γ=0.2.   Eigenvalues are distributed according to the “circular law” and fall in a circle centred at 119 

(-1,0) having radius γ (SI1).   b) The eigenvalue distribution for the community matrix S=DA, 120 

where D=diag(  
 ) is a positive diagonal matrix with the same matrix A as in (a). The circular 121 

distribution disappears and is replaced by a “guitar-shaped” distribution in which the imaginary 122 

components of the eigenvalues appear flattened out compared with (a). The extreme left-hand 123 

and right-hand eigenvalues are predicted well by –    
  and –      

  (blue +).  (c)  Same as (b) 124 

but with γ=0.01.   Now nearly all eigenvalues are real and sit close to the real axis wedged 125 

between        
 , -    

    126 

 127 

More plausible biological models that include the operation of density-dependence (DD), 128 

may be framed in the form 129 
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      (           )                       i=1,2,…,n                 (4) 130 

which provides a general characterization of many biological systems
19-21

. In these models, the 131 

net per-capita growth rate of an individual of species-i, depends on its interactions with other 132 

species as defined by some (often complicated) function   (           ). In the simplest DD 133 

model,      ⁄      , and each species has the same constant per-capita growth rate r, giving 134 

rise to exponential growth for each species.  The well known Lotka-Volterra equations are a 135 

paradigmatic example of a more complex DD model, as discussed below. 136 

We will be interested in determining whether or not a feasible equilibrium solution of 137 

eqn.(4),    (  
    

        
 ),  is stable. But stability of this equilibrium is no longer solely 138 

determined by matrices of the form A, as defined earlier. Instead, stability is determined by the 139 

critical eigenvalue of the community matrix      , where the diagonal matrix D=diag(  
 ) 140 

2,19,20
. The matrix A is the usual ecological species interaction matrix, whereby aij represents the 141 

per capita effect species-j has on the growth of an individual of species-i (see Ref.21). Again, 142 

local stability of a feasible equilibrium is guaranteed iff the critical eigenvalue of S satisfies   < 143 

0. It is important to emphasise, that even though the matrix A might be stable, this doesn’t 144 

automatically imply the matrix S=DA is stable  (D>0), and this can potentially create problems
6-

145 
10

. 146 

To see this in practice, a useful although hypothetical starting point is to assume that all n 147 

population equilibria   
  are randomly distributed in the interval (0,1), and then examine the 148 

community matrix S=DA, taking A as a random matrix. While A has eigenvalues distributed in a 149 

circle in the complex plane as shown in Fig.2a, this is no longer the case for the community 150 

matrix S=DA which now has a “guitar-shaped” distribution as seen in Fig.2b.  The circular law 151 

for A becomes stretched and distorted as an outcome of the multiplication with the matrix of 152 

population densities D=diag(  
 ).  153 

Here we show how to extract the eigenvalue distribution for S=DA.  In a recent important 154 

paper in the context of neuronal networks, Ahmadian et al. (2015; Ref. 22) studied the 155 

eigenvalue distribution of matrices having forms similar to the nxn stability matrix       . If 156 

we set         where B is a mean zero random matrix, their results imply that for large n, 157 

the eigenvalue density of S is nonzero in the region of the complex plane, satisfying: 158 

        (     
 )  ]    /   where         (     ) .     159 

The complex variable        , and trace(A)=∑    is defined as the usual sum of the matrix 160 

A’s diagonal elements.   Applying the above inequality to the community matrix S=DA, it is not 161 

hard to show that the region corresponds to those values of         for which: 162 

        ∑
(  

 ) 

(    
 )( ̅   

 )
    

    /         .     (5) 163 

The inequality specifies a well-defined region in the complex plane where the eigenvalues of S 164 

lie.  The region is referred to as the “support” of the eigenvalue distribution, and unlike the RMT 165 

circular law, the eigenvalue density is generally not uniform in this region.  166 
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 The above inequality (5) shows that the support region of the eigenvalues is determined 167 

exclusively by the equilibrium populations   
     σ, and connectance C. Furthermore, one 168 

immediately notes that T has singularities at those points where       
 , indicating that the 169 

region containing the eigenvalues of S must necessarily envelope the population equilibria    
 .   170 

This gives an important hint of the strong relationship between the eigenvalues and the 171 

population equilibria.   172 

 It is possible to capture the complicated eigenvalue boundary that arises by evaluating 173 

eqn.5 at equality. Fig.3a plots the eigenvalue distribution for a typical community matrix S with 174 

n=400,  =0.01, and C=1 (           0.2), while the   
  are chosen from a uniform distribution 175 

in the interval [0.05,1].  The boundary indicated in red is the curve deduced from eqn.5 176 

evaluated at equality. Remarkably, eqn.5 accurately predicts the borders of the eigenvalue 177 

distribution, and that the red border envelopes all equilibrium populations:     
            .   178 

 Fig.3b plots the eigenvalues of S for both   0.2 (yellow dots) and    0.9 (blue dots) 179 

superimposed on the same graph. Note that as   is increased to   0.9, the red boundary 180 

expands considerably.  When    , the boundary moves into the RHS of the complex plane 181 

where eigenvalues have positive real parts  (  ( 
 
)   ), and the system is unstable. 182 

    183 

Fig 3. a) Eigenvalues (blue dots) of community matrix S=DA distributed in the complex plane, 184 

where           0.2, D=diag(  
 ), and   

  are uniformly drawn from interval [0.05,1].  185 

Eigenvalue boundary appears as red dots, as obtained from eqn.5 evaluated at equality.   b)   186 

Similar but with eigenvalues as yellow dots for    0.2, and blue dots for   0.9. The    
  are 187 

uniformly drawn from interval  [0.1,1].   188 

 Finally, it is not hard to see from eqn.5 that if we set all   
     the May model is 189 

retrieved, and all eigenvalues lie in a circle in the complex plane centred at the point     , 190 

having radius   √   . This of course retrieves the result indicated by eqn. 2, that stability is 191 

ensured if      . 192 

 For a given system, the eigenvalue distribution changes as   √    is increased, 193 

similar to that shown in Fig.3b for two different values of  . For small  , the eigenvalues all sit 194 

in the LHS of the complex plane, and the system is stable (the critical eigenvalue is    = 195 

a b
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      ( 
 
)   ).  As   is increased beyond a threshold point, the eigenvalues start to populate 196 

the RHS and the system becomes unstable is (   >0). For our situation, and based on eqn.5, as   197 

is increased from zero, the threshold between stability and instability occurs when the right-most 198 

point of the elliptical-like eigenvalue boundary (red line) first touches the point    , or origin, 199 

in the complex plane.  That is, where    =       ( 
 
)      The threshold value of  , can be 200 

found by evaluating eqn.5 at equality with z=0. This gives:   201 

       ∑
 (  

  ) 

(    
 )(    

 )

 
    ∑

 (  
  ) 

(  
 ) 

 
             .    202 

And thus the feasible equilibrium     is locally stable if: 203 

   √     ,       (6) 204 

which surprisingly is independent of the positive equilibrium populations. The system is unstable 205 

if     √     . We thus find that May’s stability criterion is unusually general and holds for 206 

DD systems having community matrices of the form S=DA,  even though the eigenvalue 207 

distributions of the latter are far from “circular.” 208 

Note that the identical stability criteria (2) and (6) for A and S=DA are statistical criteria, 209 

and do not necessarily imply that the stability of the individual matrix  A guarantees the stability 210 

of the matrix S=DA.  However, based on the above results, it is demonstrated in SI2 that for 211 

these feasible RMT systems the matrices  A and S=DA become unstable at exactly the same 212 

parameter values (approximately    ).  That is, for a large feasible system (D>0),   213 

stability of the interaction matrix A implies  214 

stability of the community matrix S=DA.        (7) 215 

where A is a random matrix as defined by May
1
. 216 

 217 

Relationship between  eigenvalues of S and the equilibrium abundances: Based on an “off-218 

diagonal” matrix perturbation analysis it is possible to show that the eigenvalues     of the 219 

community matrix S=DA of RMT systems and the equilibrium abundances   
 , are simply 220 

related, namely:             
   (see Methods and SI1).  The approximation holds in the range 221 

   . Thus the critical eigenvalue component   =       ( 
 
),  can be well approximated by 222 

the minimum equilibrium population      
 : 223 

        
      .      (8) 224 

The critical eigenvalue component   =       ( 
 
), is often used as a stability or 225 

resiliency index
5,23,24

.  When   is negative, the system is technically locally stable. However, the 226 

smaller or more negative is      the more resilient is the community in terms of the time taken to 227 
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return to equilibrium after a small perturbation.  Arnoldi et al (2017) write that this form of 228 

“resilience is the most commonly used stability measure in theoretical ecology.”  eqn.8 implies 229 

that the larger is the biomass of the rarest species (    
 ), the stronger is the stability or resilience 230 

of the system since it will ensure a more negative  , and faster return-time to equilibrium after 231 

perturbation
5,24

. 232 

Since feasibility requires that the smallest equilibrium population      
  is 233 

positive (         
 >0), then eqn.8 makes transparent that in the regime      feasibility is 234 

linked to both local stability (which requires    ) and resilience.  Note that this result does not 235 

depend on any assumptions about randomness of the perturbation matrix B. To give an 236 

indication of the performance of eqn.8 as an estimator for  , results for DD community matrices 237 

S=DA are given in Figs.4b and SI4. Some caveats and limitations concerning this approach are 238 

discussed in SI4&5. 239 

Implications and Biological Examples 240 

Example 1. Stability and eigenvalues of Lotka-Volterra  competition communities:  We now 241 

proceed to explore a fully defined density-dependent biological model, rather than just an 242 

abstract analysis of an arbitrary community matrix with random equilibria populations. The 243 

classical Lotka-Volterra (LV) equations serve this purpose well, being one of the most successful 244 

models for studying large complex systems
2-7,19

. For an n-species system, the equation for the 245 

abundance of  species-i is: 246 

                                               
   

  
   (    ∑       

 
   )         i=1,2,…,n .     (9) 247 

As before, the community matrix for this system may be written as the matrix S=DA, 248 

where now the populations in        (  
 ) are actual equilibrium solutions of model eqn.9, 249 

found by setting all rates to zero.  Following conventional practice, the intrinsic growth rates    250 

are all scaled to unity
7,10,12,14

 (see SI1),  with positive intrinsic growth rates ri  reflecting the 251 

implicit presence of resources. While some generality is lost with this scaling, it nevertheless 252 

opens the door to the advantageous possibility of analytical calculations. 253 

The simplest competition community is the “uniform model,” where all coefficients are 254 

fixed to the same constant       ,         and the system is fully connected (C=1). In this 255 

parameter range, the equilibrium is always feasible and stable
11

. Hence the deterministic uniform 256 

model predicts that large competitive communities will satisfy two potentially advantageous 257 

features of viable ecosystems, namely feasibility and stability.  We will see nevertheless that 258 

these seemingly stable and well-organized systems may be highly fragile in the presence of 259 

environmental fluctuations. 260 

In the spirit of May (1972) and Roberts (1974), a large ensemble of competitive 261 

communities may be specified all of which, on the average, resemble the uniform model with 262 

mean interaction strength  (   )       The interaction matrix A is given coefficients of the 263 

form        [      ]  where the     are mean zero random perturbations with variance 264 

Var(bij)=  .  265 
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Stability of the competition system depends in the usual way, on the eigenvalues of the 266 

community matrix S=DA. Fig.4a plots the eigenvalue distribution of the community matrix for a 267 

typical n=400 species competition community (   =0.3, c=0.1) and we see that the red boundary 268 

for the support of the eigenvalues predicted by eqn.5 at equality, is an excellent fit. Note that the 269 

eigenvalues in Fig.4a are all in close vicinity, and are referred to as the “bulk” eigenvalues.   The 270 

support region would appear to be even more contiguous if n were increased substantially.  There 271 

is also an outlying real eigenvalue λ= -21.41 not shown in the figure as it is completely out of 272 

scale.  For competition communities, the outlying eigenvalue which would sit at the extreme left 273 

of the complex plane, has no direct effect on stability. (It is in fact an outcome of having added a 274 

constant  term -c to all interaction coefficients      [      ].) 275 

Because S has the properties of the “Google matrix,” it is shown in Refs.10&11 that for a 276 

competition system, all but one of the eigenvalues of the community matrix S=DA are identical 277 

(up to a scale factor of (   )) to those for a system in which     (see Ref.25).  But we have 278 

already worked out the stability properties when    , via eqn.6&7.  Hence, as shown in 
10-11

,  279 

it may be deduced by eqn.6 that:  280 

 All feasible competition systems are locally stable if    
√  

   
  ,    (10) 281 

apart from rare statistical exceptions.  282 

In Figure 4b, the real parts of the eigenvalues of S are plotted against the equilibrium 283 

populations (1-c)   
               

 
  (   )  

 , and the points sit close to the 45 degree line 284 

as predicted by the theory (eqn.8).    285 

 286 

Fig 4. Competition community with n=400,    =0.3, c=0.1.  a) Boundary of the eigenvalue 287 

distribution (red) is plotted as predicted by eqn.5 and the actual numerically calculated 288 

eigenvalues are given (blue dots).  b) The real parts of the eigenvalues of S are plotted against 289 

the equilibrium populations (1-c)   
               

 
    

 , and the points sit close to the 45 290 

degree line as predicted by eqn.8. For ease of visualisation the single outlying eigenvalue 291 

 λ= -21.41 has been removed from the plots.   292 

a b
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Example 2. Feasibility implies stability in the ensemble LV model We have just seen that 293 

when     all feasible systems of the structure examined here are locally stable (apart from rare 294 

statistical exceptions).  Without having gained an understanding of the eigenvalue relationship 295 

between the interaction matrix A and S=DA (see eqn.7), this result would not be available to us. 296 

An important question to ask now, is whether feasible RMT systems are always locally stable?   297 

This would be the case, if it could be shown that feasible systems only occur when      298 

To address this question, we determine the parameter regime where feasible systems can 299 

be found.  The mathematical techniques required to accomplish this were presented in (Ref.10 300 

and in Supplementary Information of Ref.11). The probability that a particular system is feasible 301 

Pr(Feasible) requires first the determination that a typical single species has positive population 302 

i.e.,   p=  (  
   ).  303 

Competition communities:  Based on the equilibrium condition AN
*
=1 from eqn.9, when  304 

    a first-order approximation of the equilibrium populations of the competition equations is  305 

   
   (   ∑    

  
    )        (11)                             306 

where     is a positive constant  and the symbol    represents a division by (1-c).  This and 307 

higher order approximations, are discussed in Stone (1988, 2016-Supplementary Information).    308 

[Comment: Not for publication. The following elaboration on calculating a probability of 309 

feasibility is based on Stone (1988 PhD thesis)  and Stone (2016 in Supplementary Information). 310 

It  has been added given critical readers of earlier drafts required clear direct evidence that 311 

feasible systems only exist for    ] 312 

We let      ∑    
  

     and note that by the Central Limit Theorem,    is a normally 313 

distributed random variable with mean and variance:  314 

                                                      (  )     
            where     

√   

   
   . 315 

Thus  p=  (  
   )    (    )    (  

 

√   (  )
),     316 

where Z is the standardized normal variate, namely    (   )). Thus p=  (  
   ) is purely a 317 

function of the single aggregated parameter      i.e.,    ( ). 318 

Since the species are relatively independent, and since the n-species all have similar 319 

characteristics, a first order estimate of system feasibility is given by the probability that all n-320 

species equilibria are greater than zero, namely:   321 

  (        )   ( )   .    (12) 322 

Fig.1b provides a plot of the percentage of feasible competition models from a random ensemble 323 

of 500 systems, as a function of disturbance     The graphs were generated for communities of 324 
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different sizes from       to        . Note carefully, that because of the exponent n in 325 

eqn.12, for large communities, feasible systems are only found for  326 

            (13)   327 

The graph shows clearly that the larger the number of species n, the more difficult it becomes to 328 

generate a feasible system.  Analytical predictions based on eqn.12 are shown to be accurate in 329 

Fig.1b.  330 

Return now to our initial query:  Are all feasible systems stable? Results for competition 331 

communities indicate that feasibility is very fragile and strongly dependent on the variability in 332 

interaction strengths (i.e.,  ) being sufficiently low; we should not expect to find feasible 333 

systems unless         Yet from Example 1 above, it was found that all feasible systems are 334 

stable as long as    . This implies all feasible competition systems must be stable. It also 335 

explains both in intuitive terms and theoretical terms (details in SI3) why there are no feasible-336 

stable systems when     .   337 

 Mutualistic communities:  For the case of mutualist systems, the result can be generalized 338 

further. Consider the LV n-species mutualistic system: 339 

       
   

  
   (    ∑       

 
   )         i=1,2,…,n .       (14) 340 

in which                      and it is assumed the matrix A is strongly connected (i.e., 341 

irreducible). The birth rates       and at least one     .  A simple application of M-matrix 342 

theory establishes that all feasible systems are locally stable
11,26

. More recently, this result has 343 

been extended and it has been shown that the mutualistic system Equations (13) possess a 344 

globally asymptotically stable feasible equilibrium iff A is locally stable
26

. This leads to an 345 

interesting situation with regards to mutualist systems, in that local stability of the interaction 346 

matrix A and feasibility are tied in a manner that ensures that all feasible systems are stable. 347 

Constraints on feasibility for mutualistic systems are of a similar nature to those for 348 

competition (eqn.12), and demonstrate again that feasibility can only occur if         349 

Example 3. Resiliency of competition versus mutualist communities: A comparison of 350 

methods    The “great god of competition” concept
27

, has been a long-held principle amongst 351 

ecologists, for which competition is viewed as the main stabilizing force in ecological 352 

communities, while cooperation is viewed as essentially unstable. It is interesting to re-examine 353 

this principle by studying the stability properties of the interaction matrix A, and comparing with 354 

conclusions based on the community matrix S=DA.    355 

i) Community matrix S=A, indicates mutualists are destabilizing .    356 

Based on  the RMT system used by (8) suppose the Jacobian S is defined as  357 

               
     (     )                 and       |   |     358 
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An underlying and unstated assumption is that all equilibrium populations are scaled to unity 359 

  
   , which effectively means we need only study the stability characteristics of the 360 

interaction matrix A with        . Thus from the outset, the framework assumes that a feasible 361 

equilibrium exists, which may be a wrong assumption.  362 

The critical eigenvalue    =       ( 
 
) of  S=A,  for these mutualistic systems may be 363 

approximated (for large n) by the row sum of  S, namely      (   ) .   In short,   364 

increases with m, and the feasible equilibrium becomes less and less resilient as m increases.  A 365 

sufficient condition for instability of the equilibrium is that     (   ), when the uniform 366 

model loses stability. 367 

 368 

ii) Community matrix  S=DA indicates mutualists have no effect or a positive effect on 369 

resilience. 370 

Using the more traditional approach of directly perturbing the species-interactions, as 371 

advocated here,  the community matrix then has elements: 372 

            
       

  (     )             
  and        373 

The equilibrium   
  are solutions of the the LV model (eqns.9) whereby AN*=-1. Thus the 374 

community matrix SN*= -1 N*, has an eigenvalue of unity.   This “outlier” eigenvalue is well 375 

separated from the “bulk” as shown in Fig.5.  The critical eigenvalue of S  proves to be        376 

for  all values   for which there is a feasible equilibrium.  Thus the degree of mutualistic 377 

interaction m has no impact on the resiliency of a feasible equilibrium.  If the average eigenvalue 378 

is used as an index to gauge resiliency of a feasible equilibrium, it is possible to show that the 379 

strength of mutualistic interactions m significantly increases the resiliency of feasible systems 380 

(see eg., Ref.26  and Fig.5).   381 

 Note however, that feasible stable mutualistic systems exists only for     (   )   382 

i.e., only for relatively small communities having weak interactions.  These communities can 383 

attain high population levels ensuring the community matrix S=DA has negative large magnitude 384 

eigenvalues (signals of strong stability).  This very small parameter range for which feasibility is 385 

possible, does not indicate that mutualism is a highly unstable process.  Outside of the narrow 386 

parameter range (i.e., for     (   ))  no feasible equilibrium can even exist, so it makes no 387 

sense to discuss the stability or instability characteristics of an equilibrium that does not exist. 388 

The limited parameter range of coexistence, arises solely because of the difficult constraints in 389 

forming a feasible system, and has little relation to equilibrium stability. The mutualist model 390 

generates equilibria whose eigenvalues (real parts) become more and more negative, and thus 391 

stable, as the point of infeasibility is approached.     392 

Competition systems, on the other hand, are stable  if  393 

√                

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/223651doi: bioRxiv preprint 

https://doi.org/10.1101/223651


13 

 

according to eqn.10 and based on the community matrix S=DA. Hence, competition appears 394 

destabilizing because increasing c,  increases the critical eigenvalue    =       ( 
 
)  395 

 (   )  √     thereby decreasing resiliency.  396 

The above analysis makes clear that the two different viewpoints S=A versus S=DA can 397 

lead to very different conclusions about resiliency.  Analysis of the eigenvalues of the interaction 398 

matrix S=A supports classical competition theory, since it tends to show that ecological stability 399 

is enhanced by competition, while mutualism is highly destabilising. However, the study of the 400 

true community matrix S=DA (the method advocated here), finds mutualism should not be 401 

viewed as a destabilising process, and can often be stabilising in terms of resiliency, while 402 

competition is destabilising. 403 

 404 

 405 

Fig 5.  Eigenvalue distribution of community matrix S=DA for an n=100 species mutualistic 406 

community (m= 0.01,       .  The stability of S depends on the critical outlier eigenvalue 407 

      . 408 

 409 

Example 4. The impact of connectance C on feasible stable structured systems Fig.6 410 

examines the effect of connectance on predator-prey community matrices described in (5,8). In 411 

these communities, each pair of species can only have signs indicative of predator-prey 412 

relationships of type (+,-) or (-,+), although the magnitudes of the interactions (   ) are random 413 

and mean zero. Connectance C is included by incorporating a probability (1-C) that there is no 414 

interaction between the species whatsoever  i.e., type (0,0).  Two cases are examined:  415 

i) the equilibrium populations   
  are given random values drawn uniformly in the interval (0,1) 416 

and kept fixed as connectance C is varied. Fig.6 plots both     (green) and     
  (black), and it 417 

is clear that     -    
 , when C is varied over the full range, as predicted by eqn.8.  418 
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ii) The analysis is repeated for a Lotka-Volterra predator-prey model where the population 419 

equilibria are calculated from actual model parameters (    , in eqn.9).  Again it is clear that 420 

the relationship     -    
  (red and blue respectively) holds, although now in contrast 421 

    
  decreases as connectance C is increased.  422 

Fig.6 clearly demonstrates that the two different models, random versus Lotka-Volterra, 423 

appear to respond to changes in connectance in qualitatively different ways, yet the underlying 424 

relationship      -    
  is preserved, and holds for both models.  Thus the effects of connectance 425 

on system stability are highly model-dependent, and ultimately depends on how connectance 426 

affects the smallest equilibrium population. A related analysis of the impact of connectance  on 427 

feasible competition systems is given in SI6. 428 

 429 

Fig 6. Predator-prey model n=200, γ =0.1.     
  (red) and     (blue) are plotted as a function of 430 

connectance C, as determined from LV equations (see text).  A similar analysis, but with 431 

populations   
    randomly chosen in the interval (0,1)  (    

  green +, and     black).  The 432 

graphs demonstrate         
  as predicted by eqn.8.    433 

Discussion 434 

Many previous studies of biological networks have been unable to determine the stability 435 

properties of the community matrix S=DA for large complex random matrix systems. This is 436 

considered an unsolved and open problem
6,10

. Here a simple solution is presented based on the 437 

trace statistics of random matrices.  For feasible RMT systems, it was shown that the community 438 

matrix S=DA transitions from stability to instability, at exactly the same parameter values for 439 

which the interaction matrix A transitions. Thus for a large feasible system with D>0, stability of 440 

the interaction matrix A implies stability of the community matrix S=DA (eqn.7). 441 

Note that this is despite the fact that the matrix A has eigenvalues distributed according to 442 

the circular law while the eigenvalues of the community matrix S=DA are distributed completely 443 
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differently (according to eqn.5).  Because of the latter feature, the resilience characteristics 444 

obtained from analyses of the eigenvalues of S=DA are different to those obtained from the 445 

eigenvalues of A, as examples have demonstrated.  446 

Feasible RMT systems were shown to be nearly always stable in the regime γ<1.  447 

However, for the classical ecological RMT models examined here, feasible systems are rarely 448 

found when γ>1.  While these results may in some sense be model dependent, they should 449 

provide a good general characterization of how the addition of heterogeneity and external 450 

perturbations will affect any feasible stable system.  Namely, as heterogeneity and disturbance 451 

increases, the feasibility of the system will be particularly sensitive to the heterogeneity in 452 

interaction, and feasibility will be lost often even before the transition from stability to instability 453 

of the interaction matrix.   Future research in network science may benefit from shifting focus to 454 

study those factors which promote system feasibility
6,10,15

. 455 

Finally, if the LV systems are a good guide to real world ecological systems, they inform 456 

us that large complex systems may be far more fragile than May’s main result predicts.  The 457 

models studied here suggest that feasible stable mutualistic, competition and predator-prey 458 

systems can only be found if       Thus the models indicate the difficulty of assembling a 459 

large complex ecosystems that is feasible, and in addition indicate their fragility to perturbation 460 

in interaction strength. However, those RMT systems that can be assembled and are feasible, are 461 

nearly always found to be automatically stable. This helps explain why many large ecological 462 

networks observed in the real world (i.e., feasible systems) may be stable. It also suggests that 463 

large complex systems may be even more fragile than May’s main result predicts, and can be 464 

completely compromised when environmental perturbations exceed relatively small threshold 465 

levels. In the feasible regime, resilience of the most simple or the most complex network, is 466 

entirely dependent on the smallest equilibrium abundance, and not directly determined by 467 

network properties such as topology, modularity, clustering, and connectedness. 468 

 469 

Methods  470 

1. Boundary of eigenvalue distributions: Ahmadian et al. (2015; Ref.22) studied the 471 

eigenvalue distribution of matrices having forms similar to the        matrix           472 

(where M and D are      deterministic matrices and B  a random matrix), analysed here.  They 473 

demonstrated
23

 that for large n, the eigenvalue density of the matrix S is nonzero in the region of 474 

the complex plane, satisfying: 475 

         (     
 )  ]   /    where         (     ) ,    (11) 476 

where the complex variable        .  This is equivalent to the region where:       477 

              (      )   (      )        /    . 478 

Thus the eigenvalue distribution is exclusively determined by the deterministic matrix M, in our 479 

case the equilibrium populations         (  
 ), and the strength of random perturbations  480 

σ. 481 
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 Assume now that M=DQ, where       (  
 ) and Q is a symmetric matrix defining 482 

the topology of the deterministic component of species interactions.  For May’s model Q=I is the 483 

identity matrix. In the case of the competition model   (   )      where all components 484 

of U are set to         To find the threshold between stability and instability for the matrix S, 485 

we note that the eigenvalues of M are real, and seek the point where they change from positive to 486 

negative as a parameter (eg σ o   )    v        W   h   fo      k  h  po    wh       , and 487 

evaluate eqn.5 at equality  to obtain:   488 

                  /      .    (12) 489 

• For  May’s system Q=I, and                        then, eqn.(12) becomes    /        490 

and we conclude  the system is  locally stable if   √     .       491 

• For the case of the fully connected (   ) competition system         
  (   ) 

(   )(  (   ) )
  492 

 
 

   
 for large n.    We thus conclude  the system is  locally stable if   √   (   )   . Here 493 

it is assumed that        494 

• The criterion for more complex structured networks, can be determined by evaluating          495 

and then calculating the trace formula according to eqn.5. 496 

• For the case of the fully connected mutualist systems,                    and      497 
 

   
  so that the “uniform” model is feasible.  For feasible systems, the critical eigenvalue 498 

      is an outlier from the “bulk” of the eigenvalues. 499 

2. Relation between population equilibria   
 and eigenvalues   :  Returning to inequality 500 

eqn.5, note that the left-hand-side of the expression for T has a singularity for those values of z 501 

for which      
    This is visualised in Fig.7 where T is plotted as a function of     for an 502 

     species community with   
        

        
                

      For purposes 503 

of illustration, it is assumed that z is a real number in the interval [0,1].  The function T clearly 504 

explodes at all points where      
 .  In this cut in the complex plane, the eigenvalues are 505 

predicted to be  located on the x-axis (real-axis) at those points where           =1000 (in 506 

this example). It is clear that the eigenvalues must lie close to the population equilibria    507 

   
 .  In general, the smaller the population    

     the more exacting is the approximation as 508 

can be seen from comparing the slopes of the graphs about the equilibria (and as can be verified 509 

by examining      ). 510 
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 511 

Fig 7.  Plot of T in LHS of eqn.5 as a function of     , which is real, for an      species 512 

community with   
        

        
                

   . Singularities occur when 513 

     
 .   514 

 This indicates that the smaller is σ,  the closer the values of z are to the equilibrium 515 

solutions   
     for which the inequality is satisfied. In fact, for  σ  , we can expect        

 . 516 

But this feature can already be observed in Figure 2, where it is clear that the eigenvalues in the 517 

complex plane are wedged between the vertical lines        
  and         

    518 

3. The eigenvalue approximation:     ( )     
   (‖  ‖ ) 519 

 For the basic “neutral interaction” model,        , where I is the identity matrix and 520 

  a matrix of perturbations that are not necessarily random. In the extreme limiting case, when 521 

all off-diagonal interspecific interactions are set to zero (γ=0), then      and the community 522 

matrix is simply           (  
 ), and the eigenvalues    ( )    (  )     

     523 

 When interspecific interactions are switched on (γ>0), and for reasonable assumptions 524 

(see also SI4 and [28]), the “off-diagonal” perturbation expansion is:  525 

    (  )    ( (    ))    (  )  v 
   v   (‖  ‖ )    526 

Here v  is a normalised eigenvector of D such that  v    ( )v    (The spectral norm ‖ ‖  527 

σ   ( ) in terms of singular values may be used.) The success of the approximation eqn.8, is 528 

because the first-order perturbation term vanishes (v 
   v   ), and    529 

   (  )    (  )   (‖  ‖ )     
    530 

leaving a small quadratic error term (more details are given in SI4). 531 

The intuition behind approximation eqn.8 may be understood as follows. In the extreme 532 

limiting case, when all off-diagonal interspecific interactions are set to zero (γ=0), the 533 

eigenvalues of S=DA have precisely the same magnitude as the equilibrium population values 534 
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with       
 , and therefore eqn.8 holds exactly.  Fig.2c shows a situation very near to this 535 

case with γ=0.01, for which there are many weak off-diagonal interspecific interactions, and 536 

nearly all of the eigenvalues sit on the real axis in close proximity to the equilibrium population 537 

values       
 .  Denoting the smallest and largest equilibrium population as      

  and      
  538 

(in blue), then all eigenvalues should be wedged in the interval       
 ,     

 ] in the complex 539 

plane as seen in Fig.2c between the two demarked points in blue. But this holds to a good 540 

approximation even when the intensity of the perturbed interactions is increased, as shown for  541 

γ=0.2 in Fig.2b.  See SI4 for more examples and a discussion of caveats regarding validity of 542 

approximation. 543 
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