Effective population size and durability of plant resistances in the potato cyst nematode Globodera pallida

Josselin MONTARRY ${ }^{1,{ }^{*}}$, Eric J. PETIT ${ }^{2}$, Sylvie BARDOU-VALETTE ${ }^{1,3}$, Romain MABON ${ }^{1}$, Pierre-Loup JAN ${ }^{2}$, Sylvain FOURNET ${ }^{1}$ and Eric GRENIER ${ }^{1}$
${ }^{1}$ INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, F35653 Le Rheu, France.
${ }^{2}$ INRA, Agrocampus-Ouest, UMR985 ESE, Ecology and Ecosystem Health, F35042 Rennes, France.
${ }^{3}$ present address: Université Clermont Auvergne, INRA, VetAgro, UMR1213 Herbivores, F63122 Saint-Genès-Champanelle, France.
* Corresponding author: josselin.montarry@inra.fr

Summary

- The effective size of a population is the size of an ideal population which would drift at the same rate as the real population. The balance between selection and genetic drift depends on the population size expressed as the genetically effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$, rather than the real numbers of individuals in the population (N).
- The objectives of the present study were to estimate N_{e} in the potato cyst nematode Globodera pallida using artificial populations and to explore the link between N_{e} and the durability of plant resistances.
- Using a temporal method on 24 independent pairs of initial and final populations, the median N_{e} was 58 individuals.
- N_{e} is commonly lower than N but in our case the $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio was extremely low because G. pallida populations deviate in structure from the assumptions of the ideal population by having unequal sex-ratios, high levels of inbreeding and a high variance in family sizes. The consequences of a low N_{e} could be important for the control of phytoparasitic nematodes because G. pallida populations will have a low capacity to adapt to changing environments unless selection intensity is very strong, which could be greatly beneficial for long-term use of plant resistances.

Keywords

Census size, Durability, Effective population size, Genetic drift, Globodera pallida, Nematode, Plant resistance, Selection

Introduction

Mutation, migration, selection and genetic drift determine the evolution of populations, but genetic drift has a much greater impact and selection is less effective in small than in large populations (Frankham et al., 2002). When both factors are operating, selection (deterministic) predominates in large populations, while genetic drift (stochastic) predominates in small populations (Kimura et al., 1963; Nei et al., 1975; Gherman et al., 2007). Indeed, within small populations, the random sampling of gametes due to genetic drift leads to i) random changes in allele frequencies from one generation to the next, ii) loss of genetic diversity and fixation of alleles within populations, and consequently to iii) rapid diversification among fragmented populations from the same original source. The balance between selection and genetic drift depends on the population size expressed as the genetically effective population size $\left(N_{e}\right)$, rather than the real numbers of individuals in the population (N , the census size). The effective size of a population is the size of an ideal population which would drift at the same rate as the observed population (Wright, 1931). Thus, the N_{e} of a population is a measure of its genetic behaviour, relative to that of an ideal population, characterized by no migration, no mutation, no selection, no overlapping generations, equal sex-ratios, constant size in successive generations (i.e. on average one offspring per adult), random union of gametes, and a Poisson distribution of family sizes (Frankham et al., 2002). Any characteristic of the real population that deviates from those characteristics of the ideal population will cause the effective size $\left(\mathrm{N}_{\mathrm{e}}\right)$ to differ from the number of individuals in the population (N).

Plant pathogens impose a major constraint on food production worldwide. They are often combated with pesticides, but the need to develop more sustainable production systems fuels a trend towards a limitation of pesticide applications. Among possible alternatives to chemical control, plant resistances look promising, but can only be used in the long term and accepted in the short term if their durability is ascertained. Durability of host resistance was defined as the persistence of resistance efficiency when resistant cultivars are used over long periods, on large surfaces and in the presence of the target pathogen (Johnson, 1981, 1984): it therefore depends primarily on the rhythm of adaptive changes affecting pathogen populations in response to selection by host resistance. The speed of fixation of an advantageous allele depends on the difference in its selection coefficient from that of the other alleles ($\Delta \mathrm{S}$) but also on the action of genetic drift, which is influenced by the effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$. The value of the product $\mathrm{N}_{\mathrm{e}} * \Delta \mathrm{~S}$ determines whether the population will be mainly under the
influence of selection or of genetic drift (Crow \& Kimura, 1970; Fraser, 1972; Charlesworth, 2009). Consequently, the selection of virulent alleles (the virulence being defined as the ability to infect a resistant host - Vanderplank, 1963; Gandon \& Michalakis, 2002; Tellier \& Brown, 2007,2009) by resistant plants could be partly compromised by a low effective population size.

The effective size has been widely investigated both theoretically (Crow \& Kimura, 1972; Nei \& Tajima, 1981; Tajima \& Nei, 1984; Criscione \& Blouin, 2005) and experimentally (Johnson et al., 2004; Wang, 2005; Araki et al., 2007) in a broad variety of organisms. For plant pathogens, the effective size is a very important point to take into account in order to manage plant resistances (e.g. Fabre et al., 2012). N_{e}, and thus the importance of genetic drift, has been explored for several plant viruses (e.g. Betancourt et al., 2008; Monsion et al., 2008; Zwart et al., 2011; Gutiérrez et al., 2012; Fabre et al., 2012, 2014) and fungi (e.g. Damgaard \& Giese, 1996; Zhan et al., 2001; Duan et al., 2010; Stukenbrock et al., 2011). Regarding plant parasitic nematodes there is only one recent study exploring the N_{e} of the beet cyst nematode Heterodera schachtii from wild populations, sampled on Beta maritima (Jan et al., 2016). The objectives of the present study were to estimate the N_{e} of the potato cyst nematode Globodera pallida, and to explore the link between N_{e} and the durability of plant resistances.

Several methods are dedicated to estimate effective population sizes (Wang, 2005; Palstra \& Ruzzante, 2008; Luikart et al., 2010). Methods using a single-sample estimate N_{e} from the linkage disequilibrium and/or the heterozygote excess (Pudovkin et al., 1996; Tallmon et al., 2008; Waples \& Do, 2008), whereas temporal methods estimate N_{e} from the variation of allelic frequencies between two temporally spaced samples. Deviations from Hardy-Weinberg equilibrium due to heterozygote deficits have been recorded for three plant parasitic nematode species (Globodera pallida - Picard et al., 2004, Heterodera schachtii - Plantard \& Porte, 2004, and Globodera tabacum - Alenda et al., 2014) and recently attributed to both consanguinity and sub-structure at the plant scale (Montarry et al., 2015). Those biological characteristics, inbreeding and sub-structure (Wahlund effect), are known to bias single-sample estimators of N_{e} (Zdhanova \& Pudovkin, 2008; Waples \& Do, 2010; Holleley et al., 2014). Therefore, we estimated N_{e} of G. pallida populations by using a temporal method developed by Wang (2001).

Rather than working with natural populations, which could sometimes harbor very low genetic diversity leading to infinite estimated N_{e}, we decided here to work with artificial
populations in order to maximize the allelic diversity in the initial populations and thus to better follow the variation of allelic frequencies between initial and final G. pallida populations.

Materials and Methods

Biology of Globodera pallida

Nematodes are a group of worms that include free-living species such as Caenorhabditis elegans as well as many parasitic species of animals and plants. Plant-parasitic nematodes are major parasites that cause considerable economic losses in agriculture: worldwide crop losses caused by nematodes have been estimated around $\$ 100$ billion per year (Sasser \& Freckman, 1987). Globodera pallida is a gonochoristic diploid organism with obligatory sexual reproduction, which achieves one generation per year (Adams et al., 1982). G. pallida is probably native to the Andean Cordillera (Grenier et al., 2010), the origin of its unique host genus Solanum (Hijmans \& Spooner, 2001). This obligate, sedentary endoparasite enters the plant roots as second-stage juveniles (J2) and establishes a specialized feeding structure, the syncytium (Jones \& Northcote, 1972), which is a severe nutrient sink for the plant. Sex is environmentally determined through the size of the syncytium that is induced (Sobczak \& Golinowski, 2011). Adult males leave the root in order to mate females. The females continue to feed and when egg development is completed, they die and form a cyst, enclosing hundreds of eggs, which constitute a survival stage that can stay viable for several years in soils.

Initial nematode populations

Twenty-four initial G. pallida populations, each composed of 100 cysts, were artificially made by mixing four Peruvian populations genetically differentiated and showing high allelic richness (Otuzco, Peru_252, Peru_286 and Peru_298; Picard et al., 2004). Before mixing those populations, the number of larvae was scored for 12 randomly chosen cysts, and a one-way ANOVA showed no significant difference for the number of larvae per cyst between those four populations ($F_{3,44}=1.59 ; P=0.21$; Fig. 1). The initial census size was thus estimated by multiplying the number of cysts (i.e. 100) by the mean number of larvae per cyst (i.e. 132, Fig. $1)$.

We mixed different numbers of cysts from the different Peruvian populations to start with allelic frequencies that differ between initial populations. Each of seven different cyst proportions was replicated three times, apart from the equal mix, which was replicated six times, for a total of 24 initial populations (Table 1). Seven initial populations ($\mathrm{Pi} _A$ to $\mathrm{Pi} _$G), composed of 50 cysts, were also prepared in the same proportions for the estimation of initial allelic frequencies.
[Table 1 about here.]

Final nematode populations

The 24 initial G. pallida populations were inoculated to 24 potato plants of the susceptible potato cultivar Désirée. Because Désirée is a susceptible cultivar, there is no a priori reason to expect directional selection in favour of an allele. Moreover, there is also no a priori reason to assume that any selection affecting the allelic frequencies is acting across plants (e.g. favouring an allele in a plant and selecting against it in another plant). We have thus assumed that selection is negligible.

For each initial population, the 100 cysts were locked in a tulle bag and placed in a 13cm pot filled with a soil mixture free of cysts ($2 / 3$ sand and $1 / 3$ natural field soil). Tubers were then planted and covered with the same soil mixture. Plants were grown during four months in a climatic chamber regulated at $20^{\circ} \mathrm{C}$ with a 16 h photoperiod. During that period, the monovoltine species G. pallida achieved only one generation. Newly formed cysts from the 24 final populations were then extracted from the soil using a Kort elutriator and stored at $4^{\circ} \mathrm{C}$ before genotyping. The number of newly formed cysts was counted for each final population and the number of larvae per cyst was scored for 12 randomly chosen cysts for seven final populations among the 24 (i.e. one randomly chosen population per initial proportion). The final census size was thus estimated by multiplying the mean number of cysts by the mean number of larvae per cyst.

Microsatellite genotyping

The 31 G. pallida populations (i.e. seven initial and 24 final populations) were genotyped using 12 neutral microsatellite markers (Gp106, Gp108, Gp109, Gp111, Gp112, Gp116, Gp117, Gp118, Gp122, Gp126, Gp135 and Gp145) developed by Montarry et al. (2015) directly from the G. pallida genome (Cotton et al., 2014). For each population, from 26 (for Pi_E) to 40 (for Pi_C) larvae, coming from distinct and randomly chosen cysts, were successfully genotyped. Two multiplex panels were used to reduce the time and cost required to genotype the 1,105 individuals at the 12 loci.

DNA from single larva (i.e. one second-stage juvenile J2) was extracted following a procedure using sodium hydroxide and proteinase K (Boucher et al., 2013). PCR was performed using a 384-well reaction module (BIO-RAD C1000) in a $5 \mu \mathrm{~L}$ volume containing 1X of Typeit Microsatellite PCR kit, $0.4 \mu \mathrm{M}$ of primer mix and $1 \mu \mathrm{~L}$ of template DNA. Cycling conditions included an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , followed by 30 cycles of denaturation at 95 ${ }^{\circ} \mathrm{C}$ for 30 s , annealing at $57^{\circ} \mathrm{C}$ for 90 s and extension at $72{ }^{\circ} \mathrm{C}$ for 30 s , followed by a final extension at $60^{\circ} \mathrm{C}$ for 30 min . PCR products were then diluted to $1: 25$ in sterile water and $3 \mu \mathrm{~L}$ of this dilution were mixed with $0.05 \mu \mathrm{~L}$ of GeneScan 500 LIZ Size Standard (Applied Biosystems) and $5 \mu \mathrm{~L}$ of formamide (Applied Biosystems). Analyses of PCR products were conducted on ABI Prism® 3130xl sequencer (Applied Biosystems). Allele sizes were determined by the automatic calling and binning module of GeneMapper v4.1 (Applied Biosystems) with manual examination of irregular results. To minimize the rate of genotyping errors, a second round of PCR and electrophoresis was performed for 10% of the global number of individuals.

Population genetic characteristics

Genetic diversity of each nematode population was estimated through allelic richness (A_{r}) and unbiased gene diversity $\left(\mathrm{H}_{\mathrm{nb}}\right)$ (Nei, 1978). Departure from Hardy-Weinberg equilibrium was tested through the $F_{\text {IS }}$ estimation for each population. H_{nb} and $F_{\text {IS }}$ were computed using GENETIX 4.05.2 (Belkhir et al., 1996-2004). The statistical significance of $F_{\text {IS }}$ values for each population was tested using the allelic permutation method (1,000 permutations) implemented in GENETIX. A_{r} was estimated on a reduced sample of 26 individuals using the rarefaction method implemented in Populations 1.2.32 (Langella, 2000).

Because heterozygote deficits in cyst nematodes could be due to a Wahlund effect (i.e. sub-structure) and/or to consanguinity (Montarry et al., 2015), we used the method of Overall and Nichols (2001) in order to calculate a likelihood surface for the genetic correlation due to population subdivision (θ) and the proportion of the population practicing consanguinity (C). The method, which is based on the argument that consanguinity and sub-structure generate distinctive patterns of homozygosity in multilocus data, was applied with a degree of relatedness of $1 / 4$ (see Montarry et al., 2015) to all initial and final populations showing significant heterozygote deficits. The most likely parameter combination was identified over a grid of 10,000 combinations of θ and C values, and graphs of the likelihood surface were drawn for each nematode population using the statistical software R version 3.1.1 (R Core Team, 2014).

Effective population size estimation

The temporal method developed by Wang (2001) was used to estimate N_{e} from the 24 independent pairs of initial and final populations of G. pallida. That likelihood-based method has been implemented in the MLNE 1.0 software (Wang \& Whitlock, 2003).

The effect of initial populations, differing by the proportion of cysts coming from the different Peruvian populations, on N_{e} was tested using an ANOVA. Normality and homogeneity of variances were checked with the Shapiro-Wilk and the Levene tests, respectively, and mean values were compared with a Tukey test ($\alpha=0.05$). The correlation between the N_{e} estimates and the number of newly formed cysts in each final population was tested using the Pearson's correlation test. All statistical analyses were performed using R.

Exploring the link between N_{e} and resistance durability

The effective population size could be important for the control of plant pathogens because the effectiveness of selection is directly linked to the effective population size: selection is less effective in small than in large populations. Indeed, the probability of fixation of an allele in a population depends on its initial frequency, its selective advantage (or disadvantage) and the effective population size. Kimura (1962) showed that the probability of fixation of allele A is given by:

$$
\mathrm{P}(\mathrm{~A})=\left(1-\mathrm{e}^{-4 . \mathrm{Ne.s.q}}\right) /\left(1-\mathrm{e}^{-4 . \mathrm{Ne.s}}\right)
$$

where q is the initial frequency of allele A, s the selection coefficient and N_{e} the effective population size. For a neutral allele, the fixation probability equals its frequency in the population (because genetic drift favours neither allele) but for advantageous alleles, the relationship between the fixation probability and the selection coefficient depends on the effective population size.

Fixing the initial frequency of allele A at $1 \%(q=0.01)$, the relationship between the fixation probability and the selection coefficient was explored for five N_{e} values, i.e. for the estimated N_{e} and for N_{e} two-, five-, 10 - or 50 -times higher.

Moreover, the selection coefficients exerted by four resistant potato genotypes were estimated using data from Fournet et al. (2013), who used these genotypes (96F.376.16, 94T.146.52, 360.96 .21 and 60.96 .1) to perform an experimental evolution during eight G. pallida generations. The selection coefficient S was calculated using the univariate breeder's equation (Lush, 1937): $R=h^{2} * S$, where R is the change in mean phenotype between two generations, h^{2} is the heritability, i.e. the proportion of phenotypic variance in the trait that is attributable to genetic effects. Making the assumption that the heritability of the measured trait (the number of produced females), which strongly covaries with fitness, is high, i.e. $0.8<h^{2}<$ 1 , resulted in a range of values for S for each potato genotype.

Results

Genetic characteristics of initial and final populations

As expected, genetic diversity was high for all initial populations $\left(0.64<\mathrm{H}_{\mathrm{nb}}<0.69\right.$ and 6.25 $<\mathrm{A}_{\mathrm{r}}<7.34$; Table 2) and that diversity was conserved from one generation to the next, i.e. for the final populations ($0.59<\mathrm{H}_{\mathrm{nb}}<0.70$ and $5.54<\mathrm{A}_{\mathrm{r}}<7.14$; Table 2). All populations, except one (Pf_05), showed a significant heterozygote deficit, with $F_{\text {IS }}$ ranging from 0.32 to 0.43 for initial populations and from 0.05 to 0.22 for final populations (Table 2). Those heterozygote deficits were due to consanguinity and substructure for the seven initial populations (Table 2 and Fig S1-A, Supporting Information) and only to consanguinity for the 23 final populations showing significant heterozygote deficits (Table 2 and Fig S1-B, Supporting Information).
[Table 2 about here.]

Estimation of effective and census population sizes

N_{e} ranged from 25 to 228 individuals, the mean N_{e} being 86 individuals and the median N_{e} being 58 individuals (Fig. 2).
[Figure 2 about here.]
There was a marginally significant effect of initial populations, differing by the proportion of cysts coming from the different Peruvian populations ($F_{6,16}=2.9 ; P=0.041$), but the comparison of means, performed with the Tukey test, was not able to identify distinct homogenous groups. Moreover, there was no significant correlation between mean N_{e} (calculated for each pair of initial and final populations) and the number of cysts coming from each of the four Peruvian populations (data not shown).

The number of newly formed cysts ranged from 1,060 to 3,407 with a mean (\pm sem) of $2,189(\pm 116)$. There was no correlation between N_{e} estimates and the number of newly formed cysts (Pearson's coefficient cor $=-0.18 ; P=0.41$). The number of larvae per cyst, scored for seven final populations, ranged from 196 to 288 with a mean (\pm sem) of $235(\pm 12)$, and a oneway ANOVA showed no significant difference for the number of larvae per cyst between those seven final populations ($F_{6,77}=0.74 ; P=0.62$; Fig. 3). Consequently, our estimation of the final census size (N) was 514,415 larvae (2,189 newly formed cysts * 235 larvae per cyst).
[Figure 3 about here.]

Exploring the link between N_{e} and resistance durability

Fixing the initial frequency of an allele at 1%, results showed that for $\mathrm{N}_{\mathrm{e}}=58$, the fixation probability was higher than 50% only for selection coefficients above 0.3 , whereas for N_{e} two, five-, 10- or 50 -times higher, this threshold of 50% was crossed for lower selection coefficients (Fig. 4).

Using the breeder's equation, the estimation of the selection coefficients S exerted by the four resistant potato genotypes used by Fournet et al. (2013) showed that, for $\mathrm{N}_{\mathrm{e}}=58$, the
fixation probability was small for the genotype 96 F .376 .16 ($0.08<S<0.10$), medium for 94T.146.52 ($0.25<S<0.31$) and $360.96 .21(0.34<S<0.43)$ and very high for 60.96 .1 (0.78 $<S<0.97$) (Fig. 4).

Discussion

This report evaluates the effective size of populations of Globodera pallida, the potato cyst nematode. Rather than working with natural populations, which could sometimes harbor very low genetic diversity leading to infinite estimated Ne , we decided here to work with artificial G. pallida populations. As expected, and because we have mixed four Peruvian populations that are genetically differentiated, heterozygote deficits observed for initial populations were very high (mean $F_{\text {IS }}=0.39$) and due to both consanguinity and sub-structure, whereas after one generation of mating, heterozygote deficits observed for final populations were lower (mean $F_{\text {IS }}=0.13$) and only due to consanguinity, as in natural G. pallida populations (Montarry et al., 2015). Moreover, temporal methods assume neither migration nor selection and that the variation in allele frequencies between the samples is only due to genetic drift. Working with artificial population is thus a way to ensure the absence of migration, and allows to reduce the action of selection by using a susceptible potato cultivar. The requirement of an estimation of the generation number leads to difficulties in the evaluation of N_{e} for several species. For example, estimation of N_{e} during infection cycle of plant virus populations is quite complicated because of the lack of estimates of generation times for viruses (Fabre et al., 2014). Regarding the beet cyst nematode H. schachtii, which is a plurivoltine species, Jan et al. (2016) have used two extreme estimations of the generation number. We have not that problem using the monovoltine species G. pallida because it performed only one generation over the experiment.

Using the likelihood-based method developed by Wang (2001), the median of the $24 \mathrm{~N}_{\mathrm{e}}$ estimates was 58 individuals. The census size N of the initial populations was 13,200 individuals (100 cysts * 132 larvae per cyst) and our estimation of the census size of the final populations was 514,415 larvae (2,189 newly formed cysts * 235 larvae per cyst). To obtain the Ne / N ratio, we computed the harmonic mean of these two values for N as recommended by Waples (2005), yielding $\overline{\mathrm{N}}=25,740$, and thus $\mathrm{Ne} / \mathrm{N} \approx 2 \cdot 10^{-3}$. Based on a meta-analysis, values
of $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ average only 10-15\% (Frankham, 1995; Palstra \& Ruzzante, 2008). Thus, effective population sizes are substantially lower than census sizes. For example, the threatened winter run of chinook salmon in the Sacramento River of California has about 2,000 adults, but its effective size was estimated to be only $85\left(\mathrm{Ne} / \mathrm{N}=0.04\right.$ - Bartley et al. 1992). N_{e} is thus commonly lower than N but in our case the $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio is extremely low, close to values recorded in marine fishes (Hoarau et al., 2005).

The effective size of a population is the size of an ideal population which would drift at the same rate as the observed population (Wright, 1931) and all characteristics that deviate between an ideal population and the real populations will cause the effective size $\left(\mathrm{N}_{\mathrm{e}}\right)$ to differ from the number of individuals in the population (N). As mentioned above, some of those characteristics are similar between an ideal population and our nematode populations (i.e. no migration, no selection, no possibility for variation of N over generations and no overlapping generations) but others differ. Particularly, our real populations deviate in structure from the assumptions of the ideal population by having unequal sex-ratios and showing non random union of gametes. When larvae of different G. pallida populations were inoculated to susceptible potato roots in Petri dishes, the percentage of female produced was on average 60% (Fournet et al., 2013). A meta-analysis showed that unequal sex-ratios have modest effects in reducing effective population sizes below actual sizes, resulting in an average reduction of 36% (Frankham, 1995). G. pallida populations are characterized by high levels of inbreeding, highlighted here for artificial populations (i.e. $F_{\text {Is }}$ significantly higher than zero due to consanguinity) and previously highlighted for natural populations (Montarry et al., 2015), which could also reduce effective population sizes (Charlesworth, 2009). While random mating generally sustains effective population sizes of pathogens (Barrett et al., 2008), inbreeding increases the extent of genetic drift in pathogen populations, resulting in reduced N_{e} (Nunney \& Luck, 1988). This factor on its own is however not able to explain the extremely low $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio we observe as inbreeding can reduce effective population size by 50% at most (Charlesworth, 2009). The census size of our initial and final nematode populations has increased from 13,200 to 514,415 individuals (i.e. multiplied by 39), indicating clearly that there were several offspring produced per adult. Whether all adults of the initial populations contributed equally to the final populations is however unlikely. It has been documented in cyst nematode species of the genus Heterodera that both males and females mate several times, with males contributing differently to the pool of larvae (Green et al., 1970; Triantaphyllou \&

Esbenshade, 1990). Patterns of mitochondrial gene diversity between larvae from the same cyst in a species in which mitochondrial DNA is biparentally transmitted (Hoolahan et al., 2011) support the same mating pattern for G. pallida (J. Ferreira de Carvalho, S. Fournet \& E. J. Petit, unpublished). Using our experimental data, we estimated the variance in family sizes to range between 130 and 2,100 (see Supplementary Table S1), suggesting indeed that some individuals do not contribute at all to the next generation (Hedrick, 2005). Because we estimated N_{e} and N from one generation of J2 larvae to the next, these extreme figures combine both a low probability for each larvae to reach the adult stage, and a high variance in reproductive success for adults. The probability to reach adulthood can here be estimated from the ratio of twice the number of formed cysts (assuming a balanced sex-ratio) to the number of inoculated larvae, that is $2 * 2,189 / 13,200=0.33$, meaning than at least $1 / 3$ of all individuals have zero breeding success. Taking into account this proportion of non-breeders is however far from being able to explain the low Ne / N on its own (see Eq. 5c in Hedrick, 2005). Ultimately, it is the combined impact of all these factors (i.e. extreme variance in family sizes, unequal sex-ratios, and inbreeding) which could explain that the $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio is extremely low in Globodera pallida populations.

The low effective population size highlighted here for the potato cyst nematode G. pallida is consistent with estimations performed for wild populations of the beet cyst nematode H. schachtii: N_{e} around 85 individuals with a $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio less than 1% (Jan et al., 2016). Note that because the genetic of G. pallida populations deviates from that of an ideal population, the effective population size well describes the genetic drift intensity but estimates poorly the number of individuals that pass on their genes through generations. That explains why we obtained more females (2,189 newly formed cysts) than the estimated N_{e} (58 individuals). It however appears that the effective population size of phytoparasitic cyst nematodes is lower than N_{e} estimates of the free living nematode Caenorhabditis elegans (Barrière \& Felix, 2005; Sivasundar \& Hey, 2005; Cutter, 2006) and of animal parasitic nematodes (e.g. for Trichostrongylus axei-Archie \& Ezenwa, 2011).

The consequences of a low N_{e} could be important for the control of phytoparasitic cyst nematodes. When N_{e} is large, competition between individuals is fully acting, with no or little interference of random processes, and selection shapes the genetic composition of populations. Conversely, in populations with a small N_{e}, genetic drift, resulting in stochastic sampling of individuals that will engender the next generation, is prevalent and counters the effect of
selection. Consequently, G. pallida populations will have a low capacity to adapt to changing environments unless selection intensity is very strong and that could be greatly beneficial for long-term use of plant resistances (McDonald \& Linde, 2002). In this paper, for the first time, we were able to determine a selection pressure threshold that allows a better risk assessment and to demonstrate that durable resistance to cyst nematodes is a truly achievable goal. Indeed, for $\mathrm{N}_{\mathrm{e}}=58$, our results showed that the fixation probability was small for the resistant potato genotype 96F.376.16, medium for 94T.146.52 and 360.96 .21 and very high for 60.96.1, showing that resistance durability could be anticipated, and that the resistance of cultivars exerting a low selection pressure on pathogen population would be durable only for pathogens showing a low N_{e}. It is however important to consider that in natural field populations of G. pallida, genotype flow have been reported (Picard et al., 2004), and those genotype flow could partly compensate the impact of genetic drift (Palstra \& Ruzzante, 2008). In cyst nematode, genotype flow has mainly been attributed to the passive transport of cyst through agricultural practices (Alenda et al., 2014). Therefore, all agricultural management strategies that reduce genotype flow and thus promote small effective population sizes would be beneficial for the durability of plant resistances.

Acknowledgments

We gratefully acknowledge Christophe Piriou for his technical help to count the number of cysts and the number of larvae per cyst. Drs. ML Pilet-Nayel and C Lavaud are acknowledged for useful discussions about the breeder's equation.

References

Adams HH, Osborne WW, Webber AJ. 1982. Effect of temperature on development and reproduction of Globodera solanacearum. Nematropica 12: 305-311.

Alenda, C, Montarry J, Grenier E. 2014. Human influence on the dispersal and genetic structure of French Globodera tabacum populations. Infection. Genetics and Evolution 27: 309-317.

Araki H., Waples RS, Blouin MS. 2007. A potential bias in the temporal method for estimating Ne in admixed populations under natural selection. Molecular Ecology 16: 22612271.

Archie EA, Ezenwa VO. 2011. Population genetic structure and history of a generalist parasite infecting multiple sympatric host species. International Journal of Parasitology 41: 89-98.

Barrett LG, Thrall PH, Burdon JJ, Linde CC. 2008. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends in Ecology and Evolution 23: 678-685.

Barrière A. Félix MA. 2005. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Current Biology 15: 1176-1184.

Bartley D, Bagley M, Gall G, Bentley B. 1992. Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conservation Biology 6: 365-375.

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 1996-2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).

Betancourt M, Fereres A, Fraile A, García-Arenal F. 2008. Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. Journal of Virology 82: 12416-12421.

Boucher AC, Mimee B, Montarry J, Bardou-Valette S, Bélair G, Moffett P, Grenier E. 2013. Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec, Canada. Molecular Phylogenetics and Evolution 69: 75-82.

Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10: 195-205.

Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, Tsai IJ, Beasley H, Blok V, Cock PJA et al. 2014. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology 15: R43.

Criscione CD, Blouin MS. 2005. Effective sizes of macroparasite populations: a conceptual model. Trends in Parasitology 21: 212-217.
Crow JF, Kimura M. 1970. An introduction to population genetics theory. New York, USA: Harper and Row.

Crow JF, Kimura M. 1972. The effective number of a population with overlapping generations: a correction and further discussion. The American Journal of Human Genetics 24: 1-10.

Cutter AD. 2006. Nucleotide polymorphism and linkage disequilibrium in wild populations of the partial selfer Caenorhabditis elegans. Genetics 172: 171-184.

Damgaard C, Giese H. 1996. Genetic variation in Danish populations of Erysiphe graminis f.sp. hordei: Estimation of gene diversity and effective population size using RFLP data. Plant Pathology 45: 691-696.
Duan X, Tellier A, Wan A, Leconte M, de Vallavielle-Pope C, Enjalbert J. 2010. Puccinia striiformis f.sp tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia 102: 44-53.

Fabre F, Montarry J, Coville J, Senoussi R, Simon V, Moury B. 2012. Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing. PLoS Pathogens 8: e1002654.

Fabre F, Moury B, Johansen EI, Simon V, Jacquemond M, Senoussi R. 2014. Narrow bottlenecks affect Pea seedborne mosaic virus populations during vertical transmission but not during leaf colonization. PLoS Pathogens. 10: e1003833.
Fournet S, Kerlan MC, Renault L, Dantec JP, Rouaux C, Montarry J. 2013. Selection of nematodes by resistant plants has implications for local adaptation and cross-virulence: local adaptation and cross-virulence in Globodera pallida. Plant Pathology 62: 184-193.

Frankham R. 1995. Effective population size / adult population size ratios in wildlife: a review. Genetics Research 66: 95-107.

Frankham R, Ballou JD, Briscoe DA. 2002. Introduction to conservation genetics. Cambridge, UK: Cambridge University Press.

Fraser AS. 1972. An introduction to population genetic theory. In: Crow JF, Kimura M, eds. Teratology, Vol. 5. New York, USA: Harper and Row, 386-387.
Gandon S, Michalakis Y. 2002. Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology 15: 451-462.
Gherman A, Chen PE, Teslovich TM, Stankiewicz P, Withers M, Kashuk CS, Chakravarti A, Lupski JR, Cutler DJ, Katsanis N. 2007. Population bottlenecks as a potential major shaping force of human genome architecture. PLoS Genetics 3: 1223-1231.

Green CD, Greet DN, Jones FGW. 1970. The influence of multiple mating on the reproduction and genetics of Heterodera rostochiensis and H. schachtii. Nematologica 16: 309-326.

Grenier E, Fournet S, Petit E, Anthoine G. 2010. A cyst nematode 'species factory' called the Andes. Nematology 12: 163-169.
Gutiérrez S, Michalakis Y, Blanc S. 2012. Virus population bottlenecks during within-host progression and host-to-host transmission. Current Opinion in Virology 2: 1-10.
Hedrick P. 2005. Large variance in reproductive success and the $N e / N$ ratio. Evolution 59: 1596-1599.

Hijmans RJ, Spooner DM. 2001. Geographic distribution of wild potato species. American Journal of Botany 88: 2101-2112.

Hoarau G, Boon E, Jongma DN, Ferber S, Palsson J, der Veer HWV, Rijnsdorp AD, Stam WT, Olsen JL. 2005. Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proceedings of the Royal Society of London B: Biological Sciences 272: 497-503.
Holleley CE, Nichols RA, Whitehead MR, Adamack AT, Gunn MR, Sherwin WB. 2014. Testing single-sample estimators of effective population size in genetically structured populations. Conservation Genetics 15: 23-35.
Hoolahan AH, Blok VC, Gibson T, Dowton M. 2011. Paternal leakage of mitochondrial DNA in experimental crosses of populations of the potato cyst nematode Globodera pallida. Genetica 139: 1509-1519.

Jan PL, Gracianne C, Fournet S, Olivier E, Arnaud JF, Porte C, Bardou-Valette S, Denis MC, Petit EJ. 2016. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1 Insights from the estimation of effective population sizes. Evolutionary Applications 9: 489-501.

Johnson JA, Bellinger MR, Toepfer JE, Dunn P. 2004. Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Molecular Ecology 13: 2617-2630.

Johnson R. 1981. Durable resistance: definition of genetic control and attainment in plant breeding. Phytopathology 71: 567-568.
Johnson R. 1984. A critical analysis of durable resistance. Annual Review of Phytopathology 22: 309-330.

Jones MGK, Northcote DH. 1972. Nematode-induced syncytium - A multinucleate transfer cell. Journal of Cell Science 10: 789-809.

Kimura M. 1962. On the probability of fixation of mutant genes in a population. Genetics 47: 713-719.

Kimura M, Maruyama T, Crow JF. 1963. The mutation load in small populations. Genetics 48: 1303-1312.

Langella O.2000. POPULATIONS 1-2: population genetic software, individuals or population distance, phylogenetic trees. http://bioinformatics.org/~tryphon/populations.

Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW. 2010. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics 11: 355-373.

Lush JL. 1937. Animal breeding plans. Ames, IA, USA: Iowa State College Press.
McDonald BA, Linde C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40: 349-379.

Monsion B, Froissart R, Michalakis Y, Blanc S. 2008. Large bottleneck size in Cauliflower mosaic virus populations during host plant colonization. PLoS Pathogens 4: e1000174.
Montarry J, Jan PL, Gracianne C, Overall ADJ, Bardou-Valette S, Olivier E, Fournet S, Grenier E, Petit EJ. 2015. Heterozygote deficits in cyst plant-parasitic nematodes: possible causes and consequences. Molecular Ecology 24: 1654-1667.
Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.

Nei M, Tajima F. 1981. Genetic drift and estimation of effective population size. Genetics 98 : 625-640.

Nei M, Maruyama T, Chakaraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1-10.

Nunney L, Luck RF. 1988. Factors influencing the optimum sex ratio in a structured population. Theoretical Population Biology 33: 1-30.
Overall ADJ, Nichols RA. 2001. A method for distinguishing consanguinity and population substructure using multilocus genotype data. Molecular Biology and Evolution 18: 20482056.

Palstra FP, Ruzzante DE. 2008. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology 17: 3428-3447.

Picard D, Plantard O, Scurrah M, Mugniéry D. 2004. Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru). Molecular Ecology 13: 2899-2908.

Plantard O, Porte C. 2004. Population genetic structure of the sugar beet cyst nematode Heterodera schachtii: a gonochoristic and amphimictic species with highly inbred but weakly differentiated populations. Molecular Ecology 13: 33-41.

Pudovkin AI, Zaykin DV, Hedgecock D. 1996. On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics 144: 383-387.

R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.R-project.org.
Sasser JN, Freckman DW. 1987. A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW, eds. Vistas on nematology. Hyatssville, Maryland, USA: Society of Nematologists, 7-14.

Sivasundar A, Hey J. 2005. Sampling from natural populations with RNAi reveals high outcrossing and population structure in Caenorhabditis elegans. Current Biology 15: 15981602.

Sobczak M, Golinowski W. 2011. Cyst nematodes and syncytia. In: Jones JT, Gheysen G, Fenoil C, eds. Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands: Springer, 61-82.

Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R, Zala M, McDonald BA, Wang J, Schierup MH. 2011. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Research 21: 2157-2166.
Tajima F, Nei M. 1984. Note on genetic drift and estimation of effective population size. Genetics 106: 569-574.

Tallmon DA, Koyuk A, Luikart G, Beaumont MA. 2008. Onesamp: a program to estimate effective population size using approximate bayesian computation. Molecular Ecology Resources 8: 299-301.

Tellier A, Brown JKM. 2007. Stability of genetic polymorphism in host-parasite interactions. Proceedings of the Royal Society of London B: Biological Sciences 274: 809-817.
Tellier A, Brown JKM. 2009. The influence of perenniality and seed banks on polymorphism in plant-parasite interactions. American Naturalist 174: 769-779.

Triantaphyllou AC, Esbenshade PR. 1990. Demonstration of multiple mating in Heterodera glycines with biochemical markers. Journal of Nematology 22: 452-456.
Vanderplank JE. 1963. Disease resistance in plants. New York, USA: Academic Press.
Wang J. 2001. A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genetics Research 78: 243-257.

Wang J. 2005. Estimation of effective population sizes from data on genetic markers. Philosophical Transactions of the Royal Society of London B - Biological Sciences 360: 1395-1409.

Wang J, Whitlock MC. 2003. Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163: 429-446.
Waples RS. 2005. Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology 14: 3335-3352.
Waples RS, Do CHI. 2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8: 753-756.

Waples RS, Do CHI. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: an untapped resource for applied conservation and evolution. Evolutionary Applications 3: 244-262.
Wright S. 1931. Evolution in Mendelian populations. Genetics 16: 97-159.
Zhan J, Mundt CC, McDonald BA. 2001. Using restriction fragment length polymorphisms to assess temporal variation and estimate the number of ascospores that initiate epidemics in field populations of Mycosphaerella graminicola. Phytopathology 91: 1011-1017.

Zhdanova OL, Pudovkin AI. 2008. Nb_HetEx: a program to estimate the effective number of breeders. Journal of Heredity 99: 694-695.

Zwart MP, Daròs JA, Elena SF. 2011. One is enough: In vivo effective population size is dose-dependent for a plant RNA virus. PLoS Pathogens 7: e1002122.

Author contributions

SBV, RM, and JM performed the experiments according to a protocol elaborated jointly by SF, EG and JM. PLJ, EJP and JM analyzed the data. SF, EJP, EG and JM wrote the text and prepared the figures. All authors edited the paper and have approved the current version.

Data archival location

All data used in this article are available at datadryad.org (doi: to be completed).

Figure Legends

Fig. 1 Number of larvae per cyst for the four G. pallida Peruvian populations (Otuzco, Peru_252, Peru_286 and Peru_298). No significant difference was observed between those populations ($F_{3,44}=1.59 ; P=0.21$).

Fig. 2 Histogram showing the distribution of the independent effective population sizes estimated using the Wang's method. The median N_{e} is indicated directly onto the box plot below the histogram.

Fig. 3 Number of larvae per cyst for the seven final G. pallida populations. No significant difference was observed between those populations ($F_{6,77}=0.74 ; P=0.62$).

Fig. 4 Probability of fixation of an allele (P(A)), with an initial frequency of 1%, according to its selection coefficient (s) for a diploid population showing an effective population size (N_{e}) of 58 individuals and for populations showing $2 \mathrm{~N}_{\mathrm{e}}$ (116 individuals), $5 \mathrm{~N}_{\mathrm{e}}$ (290 individuals), $10 \mathrm{~N}_{\mathrm{e}}$ (580 individuals) and $50 \mathrm{~N}_{\mathrm{e}}$ (1,160 individuals). The dotted line indicates the probability of fixation of 50%. Credible intervals for selection coefficients are given as grey backgrounds for four different potato cultivars studied by Fournet et al. (2013). See text for more details.

Supporting Information

Additional supporting information may be found on the online version of this article.

Fig. S1 Likelihood surfaces showing estimated θ and C values with 95 and 99% confidence envelopes (internal and external envelopes of the highest likelihoods, visualized as grey shades, respectively) for (A) the seven initial G. pallida populations, (B) the 23 final G. pallida populations showing significant heterozygote deficits. θ and C are represented on the x -axis and y-axis, respectively.

Table S1 Estimation of the variance in family size $\left(\mathrm{S}_{\mathbf{k}}\right)$ from the effective population sizes $\left(\mathrm{N}_{\mathrm{e}}\right)$ and proportions of inbred matings (C) estimated for each final population. The computation was not possible for Pf_15 (no N_{e} estimate). The estimation was based on Caballero and Hill (1992, Eq. 10), with α computed from C after Ghai (1969, Eq. 17), and $N=13,200$, the census size of initial populations (see Text).

Table 1 Number of cysts from each of the four Peruvian G. pallida populations (Otuzco, Peru_252, Peru_286 and Peru_298) used to construct the 24 initial populations (Pi_01 to Pi_24). The estimation of the initial allelic frequencies was performed through the genotyping of the seven initial populations (Pi_A to Pi_G) composed of 50 cysts mixed using the same proportions.

| GenotypedInitial
 population
 population | Otuzco | Peru_252 Peru_286 Peru_298 |
| :--- | :---: | :--- | :--- | :--- |

	Pi_01	20	30	20	30
Pi_A	Pi_02	20	30	20	30
	Pi_03	20	30	20	30
	Pi_04	30	30	20	20
Pi_B	Pi_05	30	30	20	20
	Pi_06	30	30	20	20
	Pi_07	20	30	30	20
Pi_C	Pi_08	20	30	30	20
	Pi_09	20	30	30	20
	Pi_10	30	20	20	30
Pi_D	Pi_11	30	20	20	30
	Pi_12	30	20	20	30
	Pi_13	20	20	30	30
Pi_E	Pi_14	20	20	30	30
	Pi_15	20	20	30	30
	Pi_16	30	20	30	20
Pi_F	Pi_17	30	20	30	20
	Pi_18	30	20	30	20
	Pi_19	25	25	25	25
	Pi_20	25	25	25	25
Pi_G	Pi_21	25	25	25	25
	Pi_22	25	25	25	25
	Pi_23	25	25	25	25
	Pi_24	25	25	25	25

Table 2 Number of cysts (cysts), number of genotyped individuals (n), genetic diversity $\left(\mathrm{H}_{\mathrm{nb}}\right.$ and A_{r}) and departure from Hardy-Weinberg equilibrium $\left(F_{\mathrm{IS}}\right)$ for each G. pallida population (i.e. seven artificial initial populations and 24 final populations). $F_{\text {IS }}$ values significantly different to zero are indicated in bold. For each population showing a significant heterozygote deficit, θ and C values corresponding to the maximum-likelihood were indicated.

| Population | cysts | n | $\mathbf{H}_{\text {nb }}$ | $\mathbf{A}_{\text {r }}$ | $\boldsymbol{F}_{\text {IS }}$ | $\boldsymbol{\theta}$ | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Initial populations

Pi_A	100	39	0.68	7.23	$\mathbf{0 . 3 7}$	0.31	0.13
Pi_B	100	38	0.68	7.23	$\mathbf{0 . 4 1}$	0.35	0.23
Pi_C	100	40	0.65	7.34	$\mathbf{0 . 3 2}$	0.25	0.24
Pi_D	100	39	0.64	6.25	$\mathbf{0 . 4 3}$	0.38	0.28
Pi_E	100	26	0.65	6.57	$\mathbf{0 . 3 7}$	0.23	0.60
Pi_F	100	38	0.69	7.30	$\mathbf{0 . 3 9}$	0.25	0.60
Pi_G	100	36	0.68	6.90	$\mathbf{0 . 4 3}$	0.26	0.85

Final populations

Pf_01	2704	28	0.65	7.00	$\mathbf{0 . 1 4}$	0.00	0.52
Pf_02	3407	33	0.66	6.51	$\mathbf{0 . 1 4}$	0.00	0.45
Pf_03	3136	38	0.68	6.31	$\mathbf{0 . 1 6}$	0.00	0.54
Pf_04	2227	36	0.59	6.35	$\mathbf{0 . 1 1}$	0.03	0.35
Pf_05	2541	34	0.60	5.54	-0.01	.	.
Pf_06	2082	36	0.62	6.24	$\mathbf{0 . 1 3}$	0.00	0.48
Pf_07	2053	37	0.67	7.14	$\mathbf{0 . 1 0}$	0.02	0.38
Pf_08	2511	38	0.70	6.87	$\mathbf{0 . 1 7}$	0.00	0.56
Pf_09	1459	32	0.65	6.59	$\mathbf{0 . 1 2}$	0.00	0.46
Pf_10	2193	34	0.66	6.78	$\mathbf{0 . 1 8}$	0.02	0.59
Pf_11	2425	37	0.63	6.27	$\mathbf{0 . 0 5}$	0.00	0.25
Pf_12	1749	39	0.64	6.40	$\mathbf{0 . 2 2}$	0.05	0.57
Pf_13	2893	33	0.63	6.29	$\mathbf{0 . 0 5}$	0.00	0.18
Pf_14	1391	36	0.61	6.45	$\mathbf{0 . 1 3}$	0.00	0.49
Pf_15	1060	35	0.68	6.77	$\mathbf{0 . 0 7}$	0.00	0.26
Pf_16	2613	36	0.60	6.00	$\mathbf{0 . 1 8}$	0.00	0.56

Pf_17	2161	36	0.60	5.93	$\mathbf{0 . 1 6}$	0.00	0.50
Pf_18	1641	39	0.63	6.82	$\mathbf{0 . 2 2}$	0.07	0.63
Pf_19	2776	34	0.60	6.37	$\mathbf{0 . 1 7}$	0.06	0.46
Pf_20	2117	37	0.65	6.73	$\mathbf{0 . 1 3}$	0.00	0.46
Pf_21	1753	35	0.61	6.19	$\mathbf{0 . 0 8}$	0.00	0.31
Pf_22	1815	34	0.62	6.53	$\mathbf{0 . 2 1}$	0.02	0.75
Pf_23	2056	36	0.61	6.69	$\mathbf{0 . 1 8}$	0.01	0.61
Pf_24	1779	36	0.64	6.81	$\mathbf{0 . 1 1}$	0.03	0.33

Figure 1 - Montarry et al.

Population

Figure 2 - Montarry et al.

Figure 3 - Montarry et al.

Figure 4 - Montarry et al.

Selection coefficient showing significant heterozygote deficits. ϑ and C are represented on the x-axis and y-axis, respectively.

Supporting information _ Montarry et al.

Fig. S1: Likelihood surfaces showing estimated ϑ and C values with 95 and 99% confidence envelopes (internal and external envelopes of the highest likelihoods, visualized as grey shades, respectively) for (A) the seven initial G. pallida populations, (B) the 23 final G. pallida populations

Fig. S1 (continued)

Table S1: Estimation of the variance in family size $\left(S^{2}{ }_{k}\right)$ from the effective population sizes (N_{e}) and proportions of inbred matings (C) estimated for each final population. The computation was not possible for Pf_15 (no N_{e} estimate). The estimation was based on Caballero and Hill (1992,

Eq. 10), with α computed from C after Ghai (1969, Eq. 17), and $N=13,200$, the census size of initial populations (see Text).

Final populations	\mathbf{C}	$\boldsymbol{\alpha}$	$\mathbf{N}_{\mathbf{e}}$	$\mathbf{S}^{\mathbf{2}} \mathbf{k}$
Pf_01	0.52	0.213	44.59	$\mathbf{7 2 1}$
Pf_02	0.45	0.170	59.90	$\mathbf{5 8 3}$
Pf_03	0.54	0.227	41.79	$\mathbf{7 5 1}$
Pf_04	0.35	0.119	30.95	$\mathbf{1 2 5 7}$
Pf_05	0.00	0.000	24.86	$\mathbf{2 1 2 2}$
Pf_06	0.48	0.188	40.34	$\mathbf{8 3 7}$
Pf_07	0.38	0.133	112.09	$\mathbf{3 3 6}$
Pf_08	0.56	0.241	136.54	$\mathbf{2 2 3}$
Pf_09	0.46	0.176	94.34	$\mathbf{3 6 6}$
Pf_10	0.59	0.265	193.49	$\mathbf{1 5 1}$
Pf_11	0.25	0.077	86.50	$\mathbf{4 9 4}$
Pf_12	0.57	0.249	227.76	$\mathbf{1 3 2}$
Pf_13	0.18	0.052	136.63	$\mathbf{3 3 3}$
Pf_14	0.49	0.194	34.48	$\mathbf{9 6 8}$
Pf_15	0.26	0.081	$/$	
Pf_16	0.56	0.241	27.06	$\mathbf{1 1 3 1}$
Pf_17	0.50	0.200	28.36	$\mathbf{1 1 6 3}$
Pf_18	0.63	0.299	47.05	$\mathbf{5 9 1}$
Pf_19	0.46	0.176	58.41	$\mathbf{5 9 1}$
Pf_20	0.46	0.176	187.01	$\mathbf{1 8 4}$
Pf_21	0.31	0.101	48.26	$\mathbf{8 3 8}$
Pf_22	0.75	0.429	56.58	$\mathbf{4 0 8}$
Pf_23	0.61	0.281	63.56	$\mathbf{4 5 0}$
Pf_24	0.33	0.110	195.37	$\mathbf{2 0 2}$

References

Caballero A, Hill WG. 1992. Effective size of nonrandom mating populations. Genetics 130: 909-916.
Ghai GL. 1969. Structure of populations under mixed random and sib mating. Theoretical and Applied Genetics 39: 179-182.

