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Abstract	36 
	37 
Visual	 object	 representations	 are	 commonly	 thought	 to	 emerge	 rapidly,	 yet	 it	 has	 remained	38 
unclear	 to	what	 extent	 early	 brain	 responses	 reflect	 purely	 low-level	 visual	 features	of	 these	39 
objects	 and	 how	 strongly	 those	 features	 contribute	 to	 later	 categorical	 or	 conceptual	40 
representations.	 Here,	we	 aimed	 to	 estimate	 a	 lower	 temporal	 bound	 for	 the	 emergence	 of	41 
conceptual	 representations	by	defining	two	criteria	 that	characterize	such	representations:	1)	42 
conceptual	 object	 representations	 should	 generalize	 across	 different	 exemplars	 of	 the	 same	43 
object,	and	2)	these	representations	should	reflect	high-level	behavioral	judgments.	To	test	these	44 
criteria,	 we	 compared	 magnetoencephalography	 (MEG)	 recordings	 between	 two	 groups	 of	45 
participants	 (n	 =	 16	 per	 group)	 exposed	 to	 different	 exemplar	 images	 of	 the	 same	 object	46 
concepts.	Further,	we	disentangled	low-level	from	high-level	MEG	responses	by	estimating	the	47 
unique	 and	 shared	 contribution	of	models	 of	 behavioral	 judgments,	 semantics,	 and	different	48 
layers	of	deep	neural	networks	of	visual	object	processing.	We	find	that	1)	both	generalization	49 
across	exemplars	as	well	as	generalization	of	object-related	signals	across	time	increase	after	150	50 
ms,	peaking	around	230	ms;	2)	behavioral	 judgments	explain	the	most	unique	variance	in	the	51 
response	after	150	ms.	Collectively,	these	results	suggest	a	lower	bound	for	the	emergence	of	52 
conceptual	object	representations	around	150	ms	following	stimulus	onset.		53 
	54 
Introduction	55 
	56 
There	is	enormous	variability	in	the	visual	appearance	of	objects,	yet	we	can	rapidly	recognize	57 
them	without	effort,	even	under	difficult	viewing	conditions	(DiCarlo	&	Cox,	2007;	Potter	et	al.,	58 
2013).	 Evidence	 from	 neurophysiological	 studies	 in	 human	 suggests	 the	 emergence	 of	 visual	59 
object	representations	within	the	first	150	ms	of	visual	processing	(Thorpe	et	al.,	1996;	Carlson	60 
et	al.,	2013,	Cichy	et	al.,	2014).	For	example,	the	specific	identity	of	objects	can	be	decoded	from	61 
the	magnetoencephalography	(MEG)	signal	with	high	accuracy	around	100	ms	(Cichy	et	al.,	2014).	62 
However,	knowing	when	discriminative	 information	about	visual	objects	 is	available	does	not	63 
inform	us	about	the	nature	of	those	representations,	in	particular	whether	they	primarily	reflect	64 
(low-level)	visual	features	or	(high-level)	conceptual	aspects	of	the	objects	(Clarke	et	al.,	2015).	65 
To	address	this	issue,	in	this	study	we	employed	multivariate	MEG	decoding	and	model-based	66 
representational	similarity	analysis	(RSA)	to	elucidate	the	nature	of	object	representations	over	67 
time. 	68 

Previous	studies	have	demonstrated	increasing	category	specificity	(Cichy	et	al.,	2014),	69 
tolerance	for	position	and	size	(Isik	et	al.,	2014)	and	semantic	information	(Clarke	et	al.,	2013)	70 
over	the	first	200ms	following	stimulus	onset,	suggesting	some	degree	of	abstraction	from	low-71 
level	visual	features.	However,	identifying	the	nature	of	object	representations	is	an	inherently	72 
difficult	 problem:	 low-level	 features	 may	 be	 predictive	 of	 object	 identity,	 making	 it	 hard	 to	73 
disentangle	the	relative	contribution	of	low	and	high-level	properties	to	measured	brain	signals	74 
(Groen	 et	 al.,	 2017).	 In	 this	 study,	 we	 addressed	 this	 problem	 by	 combining	 tests	 for	 the	75 
generalization	 of	 object	 representations	 with	 methods	 to	 separate	 the	 independent	76 
contributions	of	low-	and	high-level	properties.	We	focused	on	two	specific	criteria	that	would	77 
need	 to	 be	 fulfilled	 for	 a	 representation	 to	 be	 considered	 conceptual.	 First,	 a	 conceptual	78 
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representation	should	generalize	beyond	the	specific	exemplar	presented,	not	just	variations	of	79 
the	same	exemplar.	Second,	a	conceptual	representation	should	also	reflect	high-level	behavioral	80 
judgments	about	objects	(Clarke	&	Tyler,	2015).	We	consider	fulfillment	of	these	two	properties	81 
to	provide	a	lower	bound	at	which	a	representation	could	be	considered	conceptual.		82 

We	collected	MEG	and	behavioral	 data	 from	32	participants	 allowing	us	 to	probe	 the	83 
temporal	dynamics	of	conceptual	object	representations	according	to	the	two	criteria	above.	To	84 
test	 for	 generalization	 across	 specific	 exemplars,	 we	 assessed	 the	 reliability	 of	 object	85 
representations	across	 two	 independent	 sets	of	objects.	 Further,	we	assessed	 the	 relation	of	86 
those	object	representations	to	behavior	by	comparing	participants’	behavioral	judgments	with	87 
the	MEG	response	patterns	using	RSA.	Importantly,	to	isolate	the	relative	contributions	of	low-88 
level	and	conceptual	properties	 to	 those	MEG	responses,	we	 identified	 the	variance	uniquely	89 
explained	 by	 behavioral	 judgments,	 isolating	 low-level	 representations	 using	 deep	 neural	90 
networks	 that	have	been	 shown	 to	 capture	 low-	 to	mid-level	 responses	 in	 fMRI	 and	monkey	91 
ventral	visual	cortex	(Cadieu	et	al.,	2014;	Cichy	et	al.,	2016a;	Eickenberg	&	Thirion,	2017;	Güçlü	92 
&	van	Gerven,	2015;	Khaligh-Razavi	&	Kriegeskorte,	2014;	Yamins	et	al.,	2014;	Wen	et	al.,	2017).	93 
	94 
Methods	95 
	96 
Participants	97 
32	healthy	participants	(18	female,	mean	25.8,	range	19-47)	with	normal	or	corrected-to-normal	98 
vision	took	part	in	this	study.	As	a	part	of	a	pilot	experiment	used	for	purely	illustrative	purposes	99 
(see	Figure	4a),	8	participants	(5	overlap)	completed	the	same	behavioral	task	with	a	different	100 
set	of	stimuli.	All	participants	gave	written	informed	consent	prior	to	participation	in	the	study	101 
as	 a	 part	 of	 the	 study	 protocol	 (93-M-0170,	 NCT00001360).	 The	 study	was	 approved	 by	 the	102 
Institutional	Review	Board	of	the	National	Institutes	of	Health	and	was	conducted	according	to	103 
the	Declaration	of	Helsinki.	104 
	105 
Stimuli	106 
We	created	two	independent	sets	of	84	object	images	each	that	were	cropped	and	placed	on	a	107 
grey	 background.	 Each	 stimulus	 set	 contained	 a	 unique	 exemplar	 for	 each	 of	 the	 84	 object	108 
concepts,	as	shown	 in	Figure	1a.	We	selected	object	concepts	by	using	a	combination	of	 two	109 
word	 databases,	 one	 of	word	 frequency	 (Corpus	 of	 Contemporary	 American	 English,	 Davies,	110 
2008)	and	the	other	of	word	concreteness	(Brysbaert	et	al.,	2014).	First,	based	on	our	corpus	we	111 
selected	the	5000	most	 frequent	nouns	 in	American	English.	From	this	set	of	words,	we	then	112 
selected	 nouns	with	 concreteness	 ratings	 >	 4/5.	 Finally,	 for	words	 that	would	 be	 difficult	 or	113 
impossible	to	distinguish	when	presented	as	an	image	(e.g.	‘woman’,	‘mother’,	‘wife’),	we	used	114 
only	the	most	frequent	entry.	This	selection	left	us	with	a	set	of	112	objects.	115 
	 To	evaluate	whether	those	categories	would	be	labeled	consistently,	we	generated	three	116 
distinct	images	of	each	object	concept	and	asked	three	individuals	who	were	not	involved	in	the	117 
study	to	provide	a	verbal	label	for	each	of	the	three	versions	of	the	112	objects.	Images	that	were	118 
not	labeled	correctly	by	all	raters	were	discarded,	leaving	us	with	84	object	concepts.	From	the	119 
three	sets	of	object	images,	we	then	randomly	sampled	two	per	object	concept.	This	generated	120 
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two	sets	of	unique	object	exemplars	for	84	object	concepts,	divided	into	Image	Set	1	and	Image	121 
Set	2.	The	two	sets	of	object	stimuli	are	shown	in	Supplemental	Figure	S1.	122 
	123 
Procedure	124 
	125 
MEG	126 
During	MEG	recordings,	participants	were	seated	upright	in	an	electromagnetically	shielded	MEG	127 
chamber.	Stimuli	were	presented	using	the	Psychophysics	Toolbox	(Brainard,	1997)	in	MATLAB	128 
(version	2016a,	Mathworks,	Natick,	MA).	Visual	stimulation	was	controlled	by	a	Panasonic	PT-129 
D3500U	DLP	projector	with	an	ET-DLE400	lens,	 located	outside	of	the	chamber	and	projected	130 
through	 a	 waveguide	 and	 series	 of	 mirrors	 onto	 a	 back-projection	 screen	 in	 front	 of	 the	131 
participant.	Participants	were	assigned	to	one	of	two	groups	and	completed	the	experiment	with	132 
either	Image	Set	1	or	Image	Set	2.	All	stimuli	were	presented	on	a	grey	background	with	a	white	133 
fixation	 cross	 in	 the	 center	 (viewing	 distance:	 70	 cm,	 stimulus	 width:	 6°	 of	 visual	 angle).	134 
Participants	completed	an	oddball	detection	task,	pressing	a	button	in	response	to	catch	trials	135 
containing	 the	oddball	 stimulus	 (desk	stapler)	 that	appeared	pseudorandomly	every	2-6	 trials	136 
(average	 4,	 flat	 distribution).	 On	 each	 trial	 (Figure	 1b),	 an	 object	 stimulus	 was	 presented	 at	137 
fixation	for	500	ms,	followed	by	a	variable	fixation	period	(regular	trials:	pseudorandomly	500-138 
600	ms,	catch	trials:	1500	ms).	In	addition,	participants	were	instructed	to	blink	their	eyes	only	139 
as	they	pressed	the	button	of	the	MEG-compatible	button	box	during	catch	trials,	 in	order	to	140 
avoid	any	eye	blink	artifacts	at	other	points	of	the	experiment.	Participants	completed	18	runs,	141 
viewing	each	of	the	84	images	36	times	over	the	course	of	the	experiment.	142 
	143 
Behavior:	Object	arrangement	task 144 
Within	two	days	of	completing	the	MEG	session,	participants	took	part	in	a	follow-up	behavioral	145 
experiment	to	provide	us	with	behavioral	estimates	of	the	representational	similarity	between	146 
all	possible	object	pairs.	This	was	done	using	the	object	arrangement	method	(Goldstone	1994;	147 
Kriegeskorte	&	Mur,	2012).	In	this	method,	participants	arrange	objects	in	a	2D	“arena”	based	on	148 
their	subjective	similarity,	and	the	distance	between	the	items	is	used	to	generate	(n	´ n-1)/2	149 
pairwise	distance	estimates	between	object	pairs.	Participants	were	seated	in	front	of	a	monitor	150 
and	 completed	 the	object	 arrangement	 task	on	 the	 same	84	object	 images	used	 in	 the	MEG	151 
experiment.	 All	 items	 were	 presented	 at	 once	 around	 the	 circular	 arena.	 Participants	 were	152 
instructed	to	use	the	computer	mouse	and	arrange	the	items	according	to	their	similarity	at	their	153 
own	pace,	taking	~20	minutes	on	average	to	complete	the	task.	We	deliberately	did	not	provide	154 
participants	with	an	explicit	strategy	or	instructions	on	what	object	features	to	focus,	so	as	to	not	155 
bias	them	to	focus	on	any	specific	aspect	of	the	stimuli.	To	facilitate	the	task,	when	a	participant	156 
clicked	on	a	certain	image	around	the	arena,	an	enlarged	version	spanning	150	´	200	pixels	was	157 
displayed	 in	 the	 top	 right	 of	 the	 computer	 screen.	 After	 completion	 of	 the	 experiment,	 we	158 
extracted	the	pixel-wise	distance	between	each	pair	of	items,	yielding	an	84	´	84	distance	matrix	159 
for	each	participant.	160 
	161 
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	162 
Figure	1.	Stimulus	format	and	trial	progression.	a.	Two	unique	object	exemplars	were	selected	for	each	of	the	84	163 
object	concepts	used	in	the	study.	b.	Stimuli	were	presented	on	a	grey	background	for	500	ms,	followed	by	fixation	164 
for	500-600	ms	(catch	trials:	1500	ms).	All	84	stimuli	from	both	image	sets	are	shown	in	Supplemental	Figure	S1.	165 
	166 
MEG	acquisition	and	preprocessing	167 
MEG	data	were	 recorded	continuously	at	a	 sampling	 rate	of	1200	Hz	with	a	275-channel	CTF	168 
whole-head	MEG	system	(MEG	International	Services,	Ltd.,	Coquitlam,	BC,	Canada).	All	analyses	169 
were	 conducted	 in	MATLAB	 (version	 2016a,	 The	Mathworks,	Natick,	MA).	 Preprocessing	was	170 
carried	out	using	Brainstorm	3.4	(version	02/2016,	Tadel	et	al.,	2011)	and	custom-written	code,	171 
using	similar	preprocessing	steps	as	previously	published	MEG	decoding	work	(Cichy	et	al.,	2014;	172 
Grootswagers	et	al.,	2016,	Hebart	et	al.,	2017).	Recordings	were	available	 from	272	channels	173 
(dead	 channels:	MLF25,	MRF43,	MRO13).	 The	whole-head	 array	 consists	 of	 radial	 first-order	174 
gradiometer	channels	equipped	with	synthetic	third-gradient	balancing	to	remove	background	175 
noise	 online.	 At	 the	 beginning	 of	 the	 experiment	 and	 after	 every	 third	 experimental	 run,	176 
participants’	head	position	was	localized	based	on	fiducial	coil	placement	at	the	nasion,	left	and	177 
right	preauricular	points.	Data	were	bandpass	filtered	between	0.1	and	300	Hz,	and	bandstop	178 
filtered	at	60	Hz	and	harmonics.	We	segmented	the	data	 into	single	 trial	bins,	with	each	trial	179 
consisting	of	100	ms	baseline	 for	normalization	purposes	and	1000	ms	post-stimulus	activity,	180 
yielding	a	total	of	1321	time	samples	for	each	trial.	Oddball	trials	were	discarded.	181 

Three	pre-analysis	steps	allowed	us	to	increase	SNR	and	reduce	computational	demand:	182 
PCA	 dimensionality	 reduction,	 temporal	 smoothing	 on	 PCA	 components,	 and	 data	183 
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downsampling.	Principal	components	analysis	(PCA)	was	run	to	reduce	the	number	of	channels	184 
into	 the	 set	 of	most	 descriptive	 components.	All	 data	 for	 an	MEG	 channel	 across	 trials	were	185 
concatenated	for	PCA,	and	the	components	explaining	the	lowest	1	%	of	variance	after	PCA	were	186 
removed	to	speed-up	further	processing,	with	a	minimum	of	136	components	chosen	a	priori	as	187 
a	cut-off.	Data	across	all	time	points	were	normalized	according	to	the	baseline	period	of	-100	to	188 
0	ms	relative	to	stimulus	presentation.	To	do	so,	the	mean	and	standard	deviation	of	the	baseline	189 
period	for	each	component	were	computed,	and	the	mean	was	subtracted	from	the	data	before	190 
dividing	by	the	standard	deviation.	We	then	used	a	Gaussian	kernel	of ± 15	ms	half	duration	at	191 
half	maximum	(HDHM)	to	temporally	smooth	the	remaining	components,	and	downsampled	the	192 
components	to	120	Hz	(132	samples	/	trial). 193 
	194 
Multivariate	decoding	and	temporal	generalization	analysis	195 
	196 
Multivariate	MEG	decoding		197 
Our	goal	was	to	study	the	representational	dynamics	during	visual	object	recognition	and	the	198 
emergence	 of	 generalizable,	 conceptual	 object	 representations	 over	 time.	 To	 determine	 the	199 
amount	 of	 object	 information	 contained	 in	 the	MEG	 signal	 over	 time,	 we	 ran	 time-resolved	200 
multivariate	decoding	of	MEG	data	using	a	linear	support	vector	machine	classifier	(SVM;	Chang	201 
&	 Lin,	 2011).	 The	 analysis	 steps	 were	 chosen	 according	 to	 general	 recommendations	202 
(Grootswagers	et	al.,	2016)	and	a	recent	study	from	our	lab	(Hebart	et	al.,	2017).	Multivariate	203 
analyses	were	conducted	using	functions	from	The	Decoding	Toolbox	(Hebart	et	al.,	2015)	and	204 
custom-written	code.	The	following	analysis	steps	were	applied	to	all	participants,	regardless	of	205 
experimental	group.	206 

First,	 we	 created	 supertrials	 by	 averaging	 6	 trials	 of	 the	 same	 object	 concept	 drawn	207 
randomly	without	replacement	(Isik	et	al.,	2014).	For	each	time	point,	preprocessed	MEG	data	208 
within	each	supertrial	were	arranged	as	P	dimensional	measurement	vectors	(corresponding	to	209 
the	number	of	components	from	PCA	preprocessing),	yielding	K	pattern	vectors	for	each	time	210 
point	and	object	concept.	For	each	pair	of	object	concepts	and	each	time	point,	we	then	trained	211 
the	classifier	on	K-1	pattern	vectors	and	tested	it	on	the	pair	of	left-out	pattern	vectors,	yielding	212 
a	decoding	accuracy	 for	each	pair	of	object	categories	at	each	 time	point.	The	assignment	 to	213 
training	and	testing	sets	and	resulting	classification	procedure	was	repeated	100	times	for	each	214 
pair	of	object	concepts	and	each	time	point,	with	a	new	random	generation	of	supertrials	in	each	215 
iteration.	 The	 resulting	 decoding	 accuracies	 were	 averaged	 across	 the	 100	 iterations	 and	216 
presented	as	an	84	´ 84	matrix	at	every	time	point,	with	rows	and	columns	indexed	according	to	217 
object	conditions,	and	with	the	diagonal	undefined.	We	used	these	matrices	to	evaluate	average	218 
decoding	accuracy	at	each	time	point	by	computing	the	average	of	the	lower	triangular	matrix.	219 
	 Significance	for	the	decoding	analysis	was	assessed	using	a	sign	permutation	test.	A	null	220 
distribution	 of	 group	means	 was	 generated	 by	 running	 the	 decoding	 procedure	 1000	 times,	221 
randomly	assigning	a	positive	or	negative	sign	value	to	decoding	accuracies	and	averaging	those	222 
values.	P-values	were	determined	as	one	minus	the	percentile	of	the	original	group	mean	in	this	223 
null	distribution.	Those	p-values	were	corrected	according	to	the	false-discovery	rate	(FDR)	and	224 
were	deemed	significant	if	the	corrected	p-value	did	not	exceed	0.05.				225 
	226 
Temporal	generalization	of	object	representation	227 
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While	time-resolved	multivariate	decoding	can	reveal	when	specific	mental	representations	are	228 
present	in	patterns	of	neural	activity,	it	cannot	identify	how	said	patterns	at	one	time	point	relate	229 
to	 other	 time	points.	We	were	 interested	 in	 investigating	 the	 extent	 to	which	 object-related	230 
information	 is	 static	or	dynamic	over	 time,	which	 can	give	us	an	 index	of	how	 rapidly	neural	231 
signals	evolve.	To	 investigate	this,	we	conducted	a	cross-classification	analysis	over	time,	also	232 
known	as	the	temporal	generalization	method	(King	&	Dehaene,	2014;	Meyers	et	al.,	2008).	If	a	233 
classifier	 can	 successfully	 generalize	 from	 one	 time	 point	 to	 another,	 this	 shows	 that	234 
representational	 content	has	not	 changed	between	 these	 two	 time	points.	 Conversely,	 if	 the	235 
classifier	does	not	generalize,	this	shows	that	patterns	of	neural	activity	have	evolved	to	an	extent	236 
that	representational	content	is	no	longer	similar.		237 
	 To	 carry	 out	 this	 temporal	 generalization	 analysis,	 we	 used	 the	 same	 classification	238 
approach	described	above;	however,	instead	of	only	testing	the	classifier	at	the	same	time	point	239 
we	also	tested	its	performance	at	all	other	time	points.	We	repeated	the	analysis	with	all	time	240 
points	each	serving	as	training	data	once	for	the	classifier,	and	generated	a	132	x	132	time-time	241 
decoding	matrix	that	shows	the	extent	to	which	our	classifier	generalizes	across	time.		242 
	243 
Representational	similarity	analysis	(RSA)	244 
	245 
RSA	is	a	method	to	analyze	and	compare	data	patterns,	for	example	brain	activity	patterns	with	246 
behavioral	judgments	or	computational	models	(Kriegeskorte	et	al.,	2008).	Instead	of	comparing	247 
these	 patterns	 directly,	 in	 RSA	patterns	 are	 converted	 to	 representational	 similarity	matrices	248 
(RSMs),	quantifying	all	pairwise	similarities	of	all	patterns.	These	RSMs	can	then	be	compared	to	249 
other	RSMs	based	on	other	data.		250 

In	 this	 study,	 we	 used	 RSA	 for	 two	 purposes.	 First,	 across	 participants	 we	 directly	251 
compared	the	time	courses	of	MEG	RSMs	evoked	by	the	same	exemplar	with	MEG	RSMs	evoked	252 
by	different	exemplars.	This	allows	an	estimate	of	the	generalizability	of	representations	across	253 
exemplars	 and	 thus	 the	 extent	 to	which	 a	 representation	 reflects	 high-level	 versus	 low-level	254 
properties,	assuming	that	a	generalized	representation	indicates	a	more	high-level,	conceptual	255 
representation.	Second,	we	used	RSA	 to	study	 the	 relationship	between	evoked	MEG	activity	256 
patterns	 and	 computational,	 semantic,	 and	 behavioral	 models.	 In	 particular,	 we	 wanted	 to	257 
identify	 time	 periods	 at	 which	 the	 MEG	 responses	 reflected	 predominantly	 behavioral	258 
judgments,	 which	 we	 take	 as	 an	 index	 of	 high-level	 conceptual	 processing.	 To	 do	 this,	 we	259 
quantified	the	unique	and	shared	variance	of	each	model	RSM	with	RSMs	based	on	MEG	activity	260 
patterns.	261 
	262 
Construction	of	MEG	similarity	matrices	263 
MEG	RSMs	were	constructed	as	follows.	For	each	time	point,	we	averaged	the	preprocessed	MEG	264 
data	for	all	36	trials	of	each	object	concept,	yielding	84	object	concept	MEG	patterns.	Then	we	265 
computed	the	similarity	between	all	pairs	of	those	84	patterns,	yielding	an	84	´	84	MEG	RSM	for	266 
each	time	point.	We	then	analyzed	these	RSMs	further	for	the	two	purposes	described	above.		267 
	268 
Generalization	of	MEG	similarity	patterns	across	exemplars	269 
To	determine	 time	periods	 that	 generalize	 between	 representations	of	 object	 exemplars,	we	270 
compared	the	time	courses	of	similarity	of	RSMs	within	each	image	set	to	the	similarity	between	271 
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image	sets.	To	this	end,	we	split	data	between	the	groups	for	Image	Set	1	and	Image	Set	2	and	272 
conducted	within-	 and	 between-group	 split-half	 correlation	 analyses	with	 the	 RSMs	 for	 each	273 
participant.	We	chose	a	repeated	subsampling	procedure	within	group	to	allow	us	to	use	the	274 
same	analysis	within	and	between	groups.	The	following	analyses	are	described	for	one	RSM	at	275 
one	time	point,	but	were	repeated	for	all	time	points.		276 

Within	each	group	of	participants	(n	=	16),	we	randomly	assigned	participants’	RSMs	to	277 
one	of	two	arbitrary	subsets	of	8	participants	and	averaged	participants’	RSMs	within	subsets.	278 
Next,	we	calculated	the	Spearman	rank	correlation	coefficient	between	the	lower	triangular	part	279 
of	each	84	´	84	matrix,	separately	for	every	time	point.	We	repeated	this	split-half	analysis	1000	280 
times	with	novel	assignments	of	participants	and	averaged	across	 repetitions,	yielding	a	 time	281 
course	of	within-exemplar	 correlation.	 The	 same	procedure	was	 completed	 for	 the	between-282 
group	split-half	analysis,	but	here	the	two	subsets	were	each	drawn	from	eight	randomly	selected	283 
participants	in	each	group,	yielding	a	time-course	of	between-exemplar	correlations.	284 

To	assess	statistical	significance,	we	conducted	a	randomization	test.	We	repeated	the	285 
analysis	above	1000	times	(i.e.	a	total	of	106	split-half	analyses,	 for	both	within-exemplar	and	286 
between-exemplar	 comparisons).	 For	 each	 of	 those	 1000	 randomizations,	 we	 randomly	287 
permuted	 the	 rows	 and	 columns	 of	 the	matrices	 in	 one	 of	 the	 subgroups	 before	 calculating	288 
Spearman’s	r.	P-values	were	determined	as	one	minus	 the	percentile	of	 the	original	 split-half	289 
analysis,	and	FDR-corrected	to	p	<	0.05.	290 

	291 
Representational	similarity	matrices	for	computational	models	and	behavior	292 
To	 access	 the	 representational	 content	 of	 the	 MEG	 data	 across	 time,	 we	 chose	 multiple	293 
behavioral	and	computational	models	that	we	later	compared	to	MEG	data:	a	behavioral	model	294 
based	on	the	group	mean	behavioral	 similarity,	a	semantic	model	 to	capture	similarity	at	 the	295 
semantic	level,	and	two	layers	of	a	deep	neural	network	to	capture	different	visual	processing	296 
stages.	For	a	first	comparison,	we	characterized	the	pairwise	similarity	of	these	models	to	assess	297 
their	general	similarity	irrespective	of	MEG.	We	calculated	Spearman’s	r	for	each	pair	of	models.	298 
Significance	of	correlations	was	tested	using	a	randomization	test:	The	rows	and	columns	of	one	299 
model	 RSM	were	 randomly	 permuted	before	 computing	 the	 Spearman’s	 r	between	with	 the	300 
other	model	RSM.	This	procedure	was	repeated	1000	times	 to	generate	a	null	distribution	of	301 
correlation	coefficients,	and	results	were	deemed	significant	if	they	showed	a	higher	correlation	302 
coefficient	than	the	distribution	cut-off	determined	by	a	level	of	p	<	0.05.	303 
		304 

Behavior	305 
We	generated	an	RSM	for	behavioral	judgments	by	extracting	the	84	́  84	distance	matrices	from	306 
each	 participant	 within	 a	 group	 and	 averaging	 them	 together.	 Next,	 we	 converted	 this	307 
dissimilarity	matrix	 to	an	RSM	by	subtracting	 the	dissimilarities	 from	1.	This	 step	yielded	 two	308 
group-level	behavior	RSMs	corresponding	to	Image	Set	1	and	Image	Set	2.	309 

Semantic	model:	Global	Vectors	for	Word	Representation	(GloVe)	310 
Global	Vectors	for	Word	Representations	(GloVe)	is	an	unsupervised	algorithm	that	is	trained	on	311 
corpus	word	 co-occurrence	 statistics	 to	 yield	 vector	 representations	 for	words	 in	 the	 corpus,	312 
representing	semantic	relationships	between	words	(Pennington	et	al.,	2014).	As	a	distributional	313 
measure	of	the	semantic	relatedness	of	words	based	on	their	shared	linguistic	contexts,	GloVe	is	314 
similar	to	other	traditional	co-occurrence	models	of	word	meaning	but	is	particularly	well-suited	315 
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to	the	analysis	here	because	of	the	high-dimensional	similarity	structure	that	shows	semantic	316 
similarity	between	pairs	of	individual	words,	outperforming	similar	models	in	similarity	tasks.	As	317 
such,	the	structure	of	GloVe	provides	a	fine-grained	metric	to	evaluate	how	the	representational	318 
space	of	MEG	signals	reflects	semantic	relationships	as	derived	from	shared	lexical	contexts.	We	319 
chose	 50-dimensional	 word	 vectors	 pre-trained	 on	 a	 6-billion	 token	 Wikipedia	 database,	320 
extracted	them	for	each	object	concept	in	the	stimulus	set	and	calculated	Spearman’s	r	between	321 
each	pair	of	vectors,	generating	an	84	´	84	RSM.		322 

Visual	model:	Deep	neural	network	VGG-F	323 
We	used	the	MatConvNet	toolbox	(Vedaldi	&	Lenc,	2015)	to	implement	a	pre-trained	version	of	324 
the	Visual	Geometry	Group-Fast	deep	neural	network	(VGG-F	DNN)	(Chatfield	et	al.,	2014)	that	325 
was	trained	to	perform	the	ImageNet	ILSVRC	2012	object	classification	task.	This	network	was	326 
chosen	based	on	its	high	classification	performance,	ease	of	implementation,	and	suitability	for	327 
our	visual	object	concept	stimuli.	DNN	representations	for	each	image	in	both	image	sets	were	328 
extracted	from	both	convolutional	layers	(1-5)	and	fully-connected	layers	(6-8)	of	the	network.	329 
We	focused	on	representative	examples	of	the	convolutional	and	fully	connected	layers	(3	and	330 
7,	respectively)	to	reflect	low-to-midlevel	vision	and	high-level	vision,	respectively.		Within	each	331 
layer,	we	calculated	Spearman’s	r	between	each	of	the	object	conditions	that	yielded	an	84	´	84	332 
RSM	for	both	layers	within	each	participant	group.	This	yielded	four	distinct	RSMs:	DNN	Layer	3	333 
and	Layer	7	for	Image	Set	1,	and	DNN	Layer	3	and	Layer	7	for	Image	Set	2.	334 

	335 
Representational	similarity	analysis:	Model	comparisons	to	MEG	336 
To	directly	compare	each	model	to	MEG	activity	patterns,	we	calculated	Spearman’s	r	between	337 
the	lower	diagonals	of	the	model	variables	and	MEG	RSMs	at	each	time	point	within	each	group.	338 
These	group-specific	 correlations	were	averaged	 together	 to	yield	a	 time	course	 showing	 the	339 
level	of	correlation	between	the	model	and	MEG	responses.	Upper	and	lower	bounds	for	noise	340 
ceilings	were	determined	within	each	of	the	two	groups	of	participants	according	to	Nili	et	al.	341 
(2014):	The	upper	bound	was	estimated	by	calculating	the	correlation	between	each	participant’s	342 
RSM	and	the	mean	group	RSM	including	that	participant,	while	the	lower	bound	was	estimated	343 
by	 calculating	 the	 correlation	 between	 each	 participant’s	 RSM	 and	 the	 mean	 group	 RSM	344 
excluding	that	participant.	The	upper	and	lower	bounds	from	each	group	were	averaged	together	345 
to	yield	a	mean	noise	ceiling	across	all	participants.	The	statistical	significance	of	 this	suite	of	346 
representational	 similarity	 analyses	 was	 determined	 using	 randomization	 tests	 as	 described	347 
above,	permuting	the	rows	and	columns	of	a	given	model	RSM	(behavior,	GloVe,	DNN	Layer	3,	348 
DNN	Layer	7)	and	for	each	randomization	computing	correlation	time	courses	with	the	original	349 
MEG	 RSMs.	 Correlations	 were	 deemed	 significant	 if	 they	 exceeded	 a	 correlation	 cut-off	350 
determined	by	a	level	of	p	<	0.05	(FDR-corrected).	351 
	352 
Establishing	the	unique	and	shared	contributions	of	individual	models	353 
To	determine	the	unique	and	shared	variance	between	models	and	MEG	signals,	we	conducted	354 
multiple	linear	regression	analyses	using	the	behavior	RSM,	DNN	Layer	3	RSM,	and	DNN	Layer	7	355 
RSM	as	model	variables	to	predict	MEG	RSMs	from	these	variables.	Given	the	complexities	of	356 
describing	the	unique	and	shared	variance	partitions	of	more	than	three	model	variables,	we	357 
decided	 to	 exclude	 the	 GloVe	 model,	 which	 showed	 the	 weakest	 correlation	 with	 MEG.	 By	358 
conducting	 a	 series	 of	 different	 multiple	 regressions	 with	 different	 combinations	 of	 model	359 
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variables,	this	approach	allows	us	to	determine	not	only	the	unique	MEG	variance	explained	by	360 
each	 model	 individually,	 but	 also	 the	 variance	 shared	 between	 any	 combination	 of	 models.	361 
Before	conducting	variance	partitioning	analyses,	we	averaged	the	group-specific	RSMs	of	both	362 
image	 sets	 for	 behavior	 and	DNN	models,	which	 yielded	 very	 similar	 results	 as	 compared	 to	363 
calculating	them	separately	and	averaging	results	afterwards.	We	extracted	the	lower	diagonal	364 
from	the	mean	MEG	RSM	at	each	time	point	as	dependent	variables,	and	assigned	each	of	the	365 
models	 as	 independent	 variables.	 In	 sum,	 7	 variance	 partitioning	models	 were	 tested:	 1)	 all	366 
models	combined	(behavior,	DNN	Layer	3,	DNN	Layer	7),	(2-4)	all	pairwise	combinations	of	two	367 
models	(behavior	and	DNN	Layer	3,	behavior	and	DNN	Layer	7,	DNN	Layer	3	and	DNN	Layer	7),	368 
and	(5-7)	each	model	alone.	Comparing	the	explained	variance	(R2)	values	of	a	single	model	and	369 
the	R2 of	 the	 same	model	 in	 conjunction	with	 another	model	 yields	 the	 amount	 of	 variance	370 
independently	explained	by	that	model	(see	also	Groen	et	al.,	2012;	Lescroart	et	al.,	2015;	Greene	371 
et	al.,	2016;	Hebart	et	al.,	2017).	Statistical	significance	was	determined	using	a	randomization	372 
test	 as	 described	 above,	 randomizing	 columns	 and	 rows	 of	 model	 matrices	 1000	 times	 and	373 
repeating	the	original	analysis.	For	a	given	iteration,	the	same	randomization	was	used	across	all	374 
models	to	fulfill	the	assumptions	of	the	randomization	test.	Significance	cutoffs	for	R2 were set	to	375 
p	<	0.05	(FDR-corrected).	376 
		377 
	378 
Results		379 
	380 
Our	aim	in	this	study	was	to	characterize	the	emergence	of	conceptual	representations	for	visual	381 
objects.	We	applied	multivariate	decoding	and	representational	similarity	analysis	to	MEG	data	382 
to	examine	(1)	how	object	representations	generalize	across	time	and	object	exemplars,	and	(2)	383 
to	elucidate	 the	unique	and	 shared	 contributions	of	behavioral	 judgments	 to	measured	MEG	384 
responses.	The	resulting	temporal	profiles	inform	us	about	stages	of	object	processing	from	low-385 
level	visual	to	conceptual	representations.		386 
	387 
Time-resolved	representation	of	object	identity	388 
To	characterize	the	time	course	by	which	neural	signals	in	the	human	brain	convey	information	389 
about	 object	 identity,	 we	 used	 time-resolved	 multivariate	 decoding,	 conducting	 pairwise	390 
classification	between	MEG	patterns	 in	 response	 to	object	 stimuli	 (Figure	2a).	Object	 identity	391 
information	rose	rapidly	in	response	to	stimulus	presentation,	with	decoding	accuracy	peaking	392 
at	 100	ms	 (mean	 accuracy:	 91.1	%),	 followed	 by	 a	 slow	 decay	 of	 information	 that	 remained	393 
significantly	above	chance	after	stimulus	offset	and	 for	 the	duration	of	 the	 trial	 time	window	394 
(1000	ms	post	stimulus	onset).	These	results	indicate	that	we	were	able	to	detect	the	temporal	395 
unfolding	of	object-identity	information	encoded	in	MEG	signals	with	high	accuracy,	establishing	396 
a	correspondence	to	previous	research	demonstrating	that	discriminable	object	representations	397 
emerge	well	within	100	ms	of	visual	recognition	(Carlson	et	al.,	2013;	Cichy	et	al.,	2014).	Further,	398 
these	results	lay	an	important	foundation	for	the	following	analyses	in	which	we	delineate	what	399 
information	specifically	contributes	to	these	discriminable	object	representations.	400 
			401 
	402 
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Temporal	generalization	of	object	information		403 
While	 time-resolved	 multivariate	 decoding	 reveals	 the	 temporal	 evolution	 of	 discriminable	404 
object	 representations,	 it	 does	 not	 inform	 about	 the	 dynamics	 and	 stability	 of	 those	405 
representations	across	time.	To	identify	the	degree	to	which	object	representations	generalize	406 
across	time,	we	ran	a	temporal	generalization	analysis	by	training	a	classifier	on	data	at	every	407 
time	point	and	testing	it	at	all	other	time	points.	This	yielded	a	temporal	generalization	matrix	408 
(Figure	2b),	with	the	diagonal	representing	training	and	testing	at	the	same	time	points,	mirroring	409 
the	results	presented	in	Figure	2a.	In	a	temporal	generalization	matrix,	a	dynamic	representation	410 
would	be	characterized	by	high	accuracies	around	the	diagonal	and	low	accuracies	everywhere	411 
else,	indicating	little	generalization	across	time.	In	contrast,	a	stable	neural	representation	would	412 
exhibit	high	decoding	around	the	diagonal	but	also	in	the	off-diagonal	time	points,	demonstrating	413 
a	similar	representation	across	time.	414 

Our	 results	 exhibited	 significant	 generalization	 from	~70	ms	onward,	demonstrating	a	415 
shared	 representational	 format	 across	 the	 entire	 trial.	 While	 this	 result	 reveals	 a	 persistent	416 
representation	across	time,	the	strength	of	generalization	varies.	Focusing	on	the	first	half	of	the	417 
stimulus	 presentation	 period,	 the	 results	 revealed	 a	 period	 of	 increased	 temporal	 dynamics	418 
between	 ~70-250	 ms,	 indicated	 by	 the	 high	 decoding	 accuracy	 on	 the	 diagonal	 and	 lower	419 
decoding	 accuracies	 away	 from	 the	 diagonal.	 This	 result	 suggests	 a	 relatively	 dynamic	420 
representational	format	in	this	phase	of	visual	processing.	After	~250	ms,	there	was	increased	421 
generalization	 away	 from	 the	diagonal,	 indicating	 a	more	persistent,	 shared	 representational	422 
format	 during	 this	 later	 phase	 of	 visual	 processing.	 Interestingly,	 there	 was	 a	 generalization	423 
period	 between	 time	 windows	 of	 ~70-100	 ms	 and	 ~250-550	 ms,	 suggesting	 an	 overlap	 of	424 
representations	 between	 early	 visual	 and	 later	 conceptual	 processing.	 The	 markedly	 lower	425 
information	 generalization	 between	 150-250	 ms	 and	 all	 other	 time	 points	 suggests	 the	426 
information	 dynamics	 at	 these	 points	 are	 computationally	 dissimilar	 from	 other	 stages	 of	427 
processing.		428 

Taken	together,	these	results	reveal	relatively	weak	but	significant	persistence	of	stable	429 
object	 information	 throughout	 the	 entire	 trial.	 On	 top	 of	 this,	 the	 results	 reveal	 a	 general	430 
broadening	 of	 information	 generalization	 after	 an	 early	 phase	 of	 visual	 processing.	 This	431 
broadening	suggests	early	dynamic	neural	activity	 followed	by	 the	emergence	of	more	stable	432 
object	representations	around	250	ms.	433 

	434 
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	435 
	436 
Figure	2.	a.	Time-resolved	multivariate	decoding	of	object	identity	across	the	trial.	After	onset	of	the	object	stimulus	437 
(Object	Stimulus	Period),	pairwise	object	decoding	accuracy	 increased	rapidly,	 followed	by	a	slow	decay	towards	438 
chance	over	 the	duration	of	 the	 trial.	 Error	 bars	 reflect	 SEM	across	 participants	 for	 each	 time	point	 separately.	439 
Significance	is	indicated	by	colored	lines	above	the	plot	(non-parametric	cluster-correction	at	p	<	0.05).	b.	Temporal	440 
generalization	matrix	for	object	identity.	The	y-axis	depicts	the	classifier	training	time	relative	to	stimulus	onset,	and	441 
the	x-axis	classifier	generalization	time	relative	to	stimulus	onset.	Dotted	lines	indicate	stimulus	onset	and	offset.	442 
Areas	bounded	by	a	grey	line	contain	significant	temporal	cross-decoding	accuracy	values	(p	<	0.05,	FDR	corrected).		443 
	444 
Criterion	I	for	conceptual	object	representation:	Generalization	between	object	exemplars		445 
Having	established	the	time	course	of	object	identity-specific	information,	we	investigated	when	446 
those	 brain	 responses	 reflect	 conceptual	 object	 representations.	 One	 prerequisite	 of	 a	447 
conceptual	 object	 representation	 is	 a	 similar	 representational	 format	 between	 multiple	448 
exemplars	 of	 the	 same	 object,	 since	 a	 conceptual	 representation	 is	 expected	 to	 generalize	449 
beyond	 each	 individual	 exemplar.	 The	 data	 collected	 from	 Image	 Set	 1	 and	 2	 allow	 direct	450 
comparison	of	representational	similarity	across	exemplars	for	the	same	visual	object	concept	451 
(Figure	 3).	 We	 measured	 this	 generalization	 of	 object	 concept-specific	 information	 by	 (1)	452 
calculating	the	correlation	of	within-exemplar	MEG	RSMs	for	participants	who	were	shown	the	453 
same	object	exemplar	and	(2)	calculating	the	generalization	of	between-exemplar	MEG	RSMs	for	454 
participants	who	were	shown	different	object	exemplars.	Then	we	compared	the	shape	of	these	455 
MEG	correlation	time	courses.	456 

A	comparison	of	within-exemplar	and	between-exemplar	MEG	RSM	correlations	revealed	457 
a	generally	higher	correlation	within-exemplar	than	between-exemplar	(mean	difference	across	458 
time:	 Spearman’s	 r:	 0.18,	p	 <	0.001,	 randomization	 test),	 indicating	 that	differences	between	459 
exemplars	persisted	throughout	most	of	the	trial.	Reliable	structure	for	within-exemplar	MEG	460 
RSMs	emerged	rapidly,	peaking	at	93	ms	(mean	Spearman’s	r:	0.77).	This	was	followed	by	a	fast	461 
drop	in	correlation,	and	then	another	rise	beginning	around	160	ms	and	peaking	at	202	ms	(mean	462 
Spearman’s	 r:	 0.65),	 	 after	 which	 within-exemplar	 correlations	 decreased	 steadily	 for	 the	463 
duration	of	 the	 trial	while	 remaining	 significantly	 above	 chance.	 The	 correlation	of	 between-464 
exemplar	MEG	RSMs	also	initially	increased	rapidly,	but	then	reached	a	plateau	at	a	comparably	465 
low	 level	 of	 correlation	 between	~70	 and	~160	ms	 (mean	 Spearman’s	 r:	 0.21).	 Importantly,	466 
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between-exemplar	 reliability	 then	 increased	 again	 after	 ~160	ms,	 peaking	 at	 227	ms	 (mean	467 
Spearman’s	r:	0.39).	Between-exemplar	correlation	then	slowly	decayed	back	to	0,	but	remained	468 
significantly	above	chance	until	960	ms	after	stimulus	presentation.	469 

These	 results	 reveal	 an	 important	 dissociation:	 While	 within-exemplar	 correlations	470 
reached	their	maximum	around	100	ms,	between-exemplar	generalization	was	maximal	around	471 
200	ms.	Thus,	this	analysis	reveals	an	early	processing	stage	during	which	generalization	is	limited	472 
by	the	variable	visual	features	of	each	individual	exemplar,	and	a	later	processing	stage	where	473 
the	 increased	 generalization	 likely	 reflects	 the	 development	 of	 a	 more	 conceptual	 object	474 
representation	that	is	consistent	across	exemplars.	475 

	476 

	477 
Figure	3.		Within	and	between	exemplar	correlation	of	MEG	RSMs.	Within-exemplar	correlation	was	generally	higher	478 
than	between-exemplar	correlation.	Both	within	and	between-exemplar	correlations	revealed	an	early	peak	(93	ms)	479 
and	a	 late	peak	 (202	and	227	ms,	 respectively),	with	 the	early	peak	being	higher	 than	 the	 late	peak	 for	within-480 
exemplar	correlations,	and	the	late	peak	being	higher	than	the	early	peak	for	between-exemplar	correlations.	Error	481 
bars	 reflect	 SEM.	 Significance	 is	 indicated	 by	 colored	 lines	 above	 the	 accuracy	 plot	 (non-parametric	 cluster-482 
correction	at	p	<	0.05).	483 
	484 
Comparison	of	behavior	and	computational	models	of	low-level	and	high-level	processing	485 
To	quantify	how	the	RSMs	derived	from	behavior	(perceptual	judgments,	visualized	in	Figure	4b),	486 
GloVe	(lexical	semantics),	DNN	Layer	3	(low/mid-level	visual	information),	and	DNN	Layer	7	(high-487 
level	visual	information)	relate	to	one	another,	we	computed	the	correlation	between	each	pair	488 
of	 model	 RSMs	 (Figure	 4a).	 For	 visualization	 purposes,	 we	 applied	 hierarchical	 clustering	 to	489 
independent	pilot	data	of	the	behavioral	task	to	sort	objects	depicted	in	the	model	RSMs	(Figure	490 
4a).	 All	 model	 correlations	 were	 significant	 at	 a	 level	 of	 p	 <	 0.001	 (randomization	 test).	 An	491 
estimate	of	the	upper	noise	ceiling	for	possible	model	correlation	values	was	calculated	by	the	492 
correlation		between	behavior	RSMs	for	the	two	groups	of	participants	(Spearman’s	r	=	0.64).	The	493 
greatest	 similarity	 to	 behavior	 was	 shown	 by	 the	 GloVe	 model.	 There	 was	 low	 similarity	 of	494 
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convolutional	 DNN	 Layer	 3	 with	 behavior	 and	 GloVe,	 but	 much	 greater	 similarity	 for	 fully-495 
connected	 DNN	 Layer	 7.	 These	 results	 suggest	 an	 increase	 of	 semantic,	 behaviorally-related	496 
information	contained	in	the	representational	structure	of	the	DNN	Layer	7	as	compared	to	Layer	497 
3.		498 
	499 

	500 
	501 
Figure	 4:	a.	 Explicit	 comparison	 of	 computational	models	 and	 behavior	 using	 RSA.	Models	 compared	 are	 group	502 
average	behavior,	GloVe,	DNN	Layer	3	and	DNN	Layer	7.	RSAs	are	plotted	as	ranks	for	higher	visual	contrast.	Objects	503 
are	 sorted	 based	 on	 clustering	 generated	 from	 independent	 pilot	 data.	 	 b.	 Group	 average	 inverse	 MDS	 plot	504 
generated	from	behavioral	arrangement	task.		505 
	506 
	507 
Criterion	II	for	conceptual	object	representation:	Behavioral	and	computational	modeling	of	MEG	508 
data	509 
To	determine	when	there	 is	a	 relationship	between	the	MEG	signal	and	high-level	behavioral	510 
judgments,	 satisfying	 Criterion	 II,	 we	 first	 evaluated	 the	 time	 course	 of	 similarity	 between	511 
behavioral	judgments	and	the	MEG	activity	patterns	(Figure	5).	Further,	to	establish	whether	this	512 
relationship	 was	 uniquely	 explained	 by	 behavior,	 we	 additionally	 compared	 MEG	 to	 the	513 
computational	models	 described	 above.	 Every	model	 tested	 exhibited	 significant	 correlations	514 
with	MEG	activity	patterns	within	the	first	200	ms	of	visual	processing.	DNN	Layer	3	showed	peak	515 
correlation	with	MEG	at	118	ms	after	stimulus	onset	(Spearman’s	r	=	0.33),	while	DNN	Layer	7	516 
showed	peak	correlation	with	MEG	at	151	ms	(Spearman’s	r	=	0.23).	Further,	the	GloVe	model	517 
was	most	strongly	correlated	with	MEG	at	151	ms	(Spearman’s	r	=	0.13),	and	behavior	at	160	ms	518 
(Spearman’s	r	=	0.16).			519 
This	 sequence	 of	 peaks	 suggests	 an	 evolution	 from	 low-level	 visual	 to	 high-level	 conceptual	520 
representations,	with	 the	 relationship	 to	behavior	peaking	 latest	 in	 time.	However,	 given	 the	521 
significant	correlations	of	all	models	with	MEG	throughout	most	of	the	trial	and	the	presence	of	522 
significant	correlation	between	the	models	themselves	(Figure	4a),	it	is	unclear	to	what	extent	a	523 
given	correlation	was	uniquely	explained	by	one	model,	or	whether	this	correlation	could	equally	524 
well	 be	 explained	 by	 other	 models.	 For	 example,	 the	 correlation	 of	 both	 DNN	 Layer	 7	 and	525 
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behavior	with	MEG	signals	after	150	ms	raises	the	question	whether	the	behavioral	correlations	526 
can	be	fully	explained	by	the	features	represented	in	the	DNN	models.			527 

	528 

	529 
	530 
Figure	5.	Results	of	model-based	representational	similarity	analysis	with	MEG	data.	Comparison	includes	models	531 
based	on	DNN	Layer	3,	DNN	Layer	7,	GloVe	and	behavior.	The	results	exhibit	a	progression	of	peaks	from	DNN	Layer	532 
3	 to	behavior,	 suggesting	a	 temporal	evolution	of	 the	underlying	 representation	 from	more	 low-level	 to	higher-533 
level/conceptual.	Grey	shaded	area	depicts	the	noise	ceiling.	534 
	535 
Variance	Partitioning:	Shared	and	unique	model	contributions	536 
To	provide	a	deeper	understanding	of	the	unique	contributions	of	models	to	MEG	variance,	we	537 
conducted	a	variance	partitioning	analysis	in	which	we	compared	the	results	of	different	multiple	538 
regression	analyses	applied	to	MEG	RDMs	(see	Methods;	Figure	6a).	We	first	considered	the	total	539 
percent	of	variance	 in	 the	MEG	RDMs	explained	when	all	 three	predictors	are	combined	 in	a	540 
single	regression	model	(‘full	model’)	in	comparison	to	the	percent	variance	explained	by	each	541 
model	separately	(Figure	6b).	Since	variance	explained	by	each	model	separately	is	identical	to	542 
the	square	of	the	model	correlation,	the	results	of	this	analysis	are	very	similar	to	those	of	the	543 
previous	section	presented	in	Figure	5,	with	the	only	difference	that	these	results	were	collapsed	544 
across	groups	before	conducting	variance	partitioning.	Explained	variance	of	DNN	Layer	3	peaked	545 
at	118	ms	(R2:	11.0	%),	DNN	Layer	7	at	151	ms	(R2:	7.0	%),	and	behavior	at	160	ms	(R2:	4.8	%).		546 
Importantly,	 however,	 the	 dashed	 line	 indicates	 how	 these	 contributions	 relate	 to	 the	 total	547 
variance	 accounted	 for	 by	 all	 three	models	 combined.	 At	 its	 peak	 at	 118	ms,	 the	 full	model	548 
explains	11.6	%	of	the	variance,	which	 is	similar	to	the	amount	of	variance	explained	by	DNN	549 
Layer	3	alone,	suggesting	that	all	variance	captured	at	this	time-point	can	be	attributed	uniquely	550 
to	DNN	Layer	3,	with	limited	additional	contribution	of	DNN	Layer	7	or	behavior.	At	later	time	551 
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points,	however,	the	full	model	always	substantially	explains	more	variance	than	the	individual	552 
predictors,	 providing	 a	 first	 clue	 that	 some	 or	 all	 of	 these	 predictors	 contribute	 unique	 (i.e.,	553 
additive)	variance.	554 

To	directly	quantify	 the	unique	and	shared	variance	of	each	model,	we	compared	 the	555 
regression	outcomes	with	different	model	variables	included	(Figures	6c,	6d).	The	unique	MEG	556 
variance	explained	by	DNN	Layer	3	peaked	very	early	in	time,	at	109	ms	(R2:	8.3%).	DNN	Layer	7	557 
peaked	next	at	151	ms	(R2:	2.0	%),	 followed	closely	by	behavior	at	160	ms	(R2:	2.6	%),	with	a	558 
second	peak	at	277	ms	(R2:	3.2	%).	Importantly,	DNN	Layer	3	explained	the	most	unique	variance	559 
until	143	ms,	after	which	behavior	predicted	the	most	unique	variance	until	~400	ms.	Thus,	while	560 
all	 three	models	 (DNN	Layer	3,	DNN	Layer	7	and	behavior)	captured	some	unique	variance	 in	561 
MEG	activity	throughout	the	trial,	behavior	dominated	after	around	150	ms.	562 

Finally,	 to	complete	the	picture,	we	partitioned	the	variance	 into	shared	contributions	563 
from	 combinations	 of	 the	 different	 models.	 Both	 DNN	 Layers	 contributed	 the	 most	 shared	564 
variance	across	all	time	points	after	stimulus	onset,	which	is	perhaps	not	surprising	considering	565 
that	both	layers	are	derived	from	the	same	computational	model.	This	shared	variance	between	566 
DNN	Layer	3	and	Layer	7	peaked	at	126	ms	(R2:	3.5	%).	Interestingly,	the	shared	variance	between	567 
behavior	and	DNN	layer	7	demonstrated	a	clear	peak	at	151	ms	(R2:	1.7	%),	suggesting	that	it	is	568 
around	this	time-point	that	DNN	Layer	7	best	captures	neural	information	that	is	also	reflected	569 
in	behavior.	 	The	shared	variance	between	DNN	Layer	3	and	behavior	was	slightly	negative,	a	570 
result	 that	 is	 not	 untypical	 for	 variance	 partitioning,	 indicative	 of	 small	 suppression	 effects	571 
(Pedhazur,	1997)	and	suggesting	that	DNN	layer	3	does	not	capture	information	that	is	relevant	572 
for	behavioral	judgments.		573 

Collectively,	 the	 variance	 partitioning	 results	 indicate	 that	 behavioral	 judgments	 are	574 
reflected	in	the	MEG	response	above	and	beyond	what	is	captured	by	the	DNN,	with	behavioral	575 
judgments	explaining	the	most	unique	variance	between	200	and	400	ms	after	stimulus	onset.	576 
Further,	before	150	ms,	DNN	layer	3	explains	the	most	variance,	suggesting	that	representations	577 
prior	to	this	point	are	unlikely	to	be	conceptual	in	nature.		578 
	579 
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	580 
	581 
Figure	6.	Time-resolved	variance	partitioning:	Total,	shared,	and	unique	MEG	variance	explained	by	models:	DNN	582 
Layer	3,	DNN	Layer	7,	and	behavior.	a.	Schematic	of	unique	and	shared	variance	components	using	a	Venn	diagram.	583 
b.	Percent	MEG	variance	explained	by	each	model	independently	(colored	lines),	and	total	MEG	variance	explained	584 
at	all	time	points	(dotted	line).	c.	Unique	variance	explained	by	each	model.	d.	Shared	variance	between	different	585 
model	combinations.	586 
 587 
Discussion	588 
	589 
In	 this	 study,	 we	 investigated	 the	 temporal	 evolution	 of	 visual	 object	 representations.	 In	590 
particular	 we	 focused	 on	 determining	 a	 lower	 bound	 for	 the	 emergence	 of	 conceptual	591 
representations	 of	 objects.	 We	 proposed	 two	 criteria	 that	 would	 reflect	 conceptual	592 
representations:	1)	generalization	of	representations	between	different	exemplars	of	the	same	593 
object,	 and	2)	 relationship	 to	high-level	behavioral	 judgments.	We	 find	qualitatively	different	594 
processing	of	objects	over	time:	Early	responses	(<	150	ms)	were	characterized	by	exemplar-level	595 
representations	and	similarity	with	computational	visual	models,	whereas	later	responses	(>	150	596 
ms)	showed	increasing	generalization	across	exemplars	and	similarity	with	behavioral	judgments,	597 
with	greater	stability	of	representations	over	time.	598 
												 To	 evaluate	 generalization	 of	 representations	 reflecting	 conceptual	 processing,	 we	599 
compared	the	representational	structure	of	MEG	responses,	both	within	exemplar	and	between	600 
sets	 of	 exemplars.	 This	 analysis	 revealed	 two	 interesting	 features.	 First,	 between-exemplar	601 
generalization	 was	 found	 to	 be	 consistently	 lower	 than	 within-exemplar	 generalization,	602 
demonstrating	the	persistence	of	exemplar-specific	responses.	This	reduced	between-exemplar	603 
generalization	 likely	 reflects	 the	 impact	 of	 low-level	 features	 varying	 between	 different	604 
exemplars.	 The	 fact	 that	 this	 advantage	 is	 maintained	 throughout	 the	 trial,	 suggests	 some	605 
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persistence	of	low-level	feature	representation.	This	interpretation	is	supported	by	the	temporal	606 
generalization	even	for	very	early	time	points	and	the	variance	explained	by	DNN	Layer	3	(which	607 
likely	corresponds	to	early	to	mid-level	visual	processing,	Cichy	et	al.,	2016a;	Güçlü	&	van	Gerven,	608 
2015;	 Wen	 et	 al.,	 2017),	 throughout	 the	 trial.	 Second,	 both	 within	 and	 between-exemplar	609 
generalization	showed	two	distinct	peaks,	one	early	around	100	ms,	and	another	late	around	200	610 
ms.	However,	their	relative	amplitude	was	reversed:	While	the	early	peak	was	stronger	than	the	611 
second	within-exemplar,	this	pattern	was	reversed	between-exemplar.	This	striking	increase	in	612 
generalization	between	exemplars	that	occurs	for	the	later	peak	suggests	the	emergence	of	a	613 
common	 representation	 across	 exemplars,	 a	 key	 marker	 for	 conceptual	 representations.	614 
Together	 these	 results	 suggest	 that	 the	 earliest	 time	 point	 for	 the	 emergence	 of	 conceptual	615 
representations	is	around	150	ms,	but	also	suggest	a	prolonged	representation	of	low-level	visual	616 
features.	617 
												 To	evaluate	 the	 relationship	 to	high-level	behavioral	 judgments,	we	 compared	models	618 
derived	 from	 behavior,	 semantics	 (GloVe),	 and	 computational	 vision	 (DNN)	 with	 the	 MEG	619 
response	 to	 objects.	 We	 found	 that	 all	 models	 show	 significant	 correlation	 with	 the	 MEG	620 
response	throughout	most	of	the	trial.	The	early	DNN	layer	showed	the	strongest	and	earliest	621 
correlation,	while	the	GloVe	model	showed	the	weakest	correlation.	This	result	highlights	the	622 
importance	 of	 testing	multiple	models	 rather	 than	 relying	 on	 a	 significant	 effect	 for	 a	 single	623 
model.	 Since	 the	models	 themselves	are	correlated	 (Figure	4),	 this	demonstrates	 that	 testing	624 
multiple	models	is	also	not	sufficient;	it	is	important	to	determine	the	unique	and	shared	variance	625 
explained	by	the	different	models	(Lescroart	et	al.,	2015;	Groen	et	al.,	2012;	Greene	et	al.,	2016;	626 
Hebart	 et	 al.,	 2017),	motivating	 our	 variance	 partitioning	 analysis.	 Given	 the	 complexities	 of	627 
describing	the	unique	and	shared	variance	partitions	of	more	than	three	model	variables,	we	628 
decided	to	exclude	one	of	the	four.	Since	the	GloVe	model	showed	the	weakest	correlation	with	629 
MEG	we	focused	on	the	DNN	and	behavioral	model	variables.	630 
												 The	 variance	partitioning	 revealed	 several	 important	 features.	 Focusing	on	 the	unique	631 
contribution	of	each	model	variable,	 it	becomes	clear	that	DNN	Layer	3	dominates	early	MEG	632 
responses	peaking	at	100	ms,	whereas	behavior	explains	the	most	variance	after	150	ms,	peaking	633 
at	 270	 ms.	 This	 result	 fulfills	 our	 second	 criterion	 –	 relationship	 with	 high-level	 behavioral	634 
judgments	–	converging	with	the	results	of	both	the	temporal	generalization	analysis	and	the	635 
representational	generalization	across	exemplars	in	identifying	the	time	period	after	around	150	636 
ms	as	reflecting	a	lower	bound	for	the	emergence	of	conceptual	representations.	Focusing	on	637 
the	shared	contribution	of	model	variables,	the	results	largely	reflect	the	correlations	between	638 
model	 variables	 (Figure	4),	 e.g.	 no	 shared	variance	between	DNN	Layer	3	 and	behavior,	 high	639 
shared	variance	between	Layers	3	and	7	of	the	DNN	model.	However,	they	provide	important	640 
information	about	the	timing	of	the	shared	variances.	In	particular,	the	shared	variance	between	641 
DNN	Layers	3	and	7	persisted	even	late	in	time,	again	suggesting	a	sustained	representation	of	642 
low-level	visual	information.	643 

Our	results	are	generally	consistent	with	prior	work	investigating	how	visual	processing	644 
of	 objects	 evolves	 over	 time,	 showing	 the	 gradual	 emergence	 of	 high-level	 representations	645 
(Contini	et	al.,	2017).	While	early	signals	reflect	low-level	visual	features	(e.g.	Groen	et	al.,	2013;	646 
Cichy	et	al.,	2014),	later	signals	reflect	perceptual	similarity	(Wardle	et	al.,	2016),	some	tolerance	647 
for	changes	 in	size	and	position	(Isik	et	al.,	2014),	categorical	processing	(Carlson	et	al.,	2013;	648 
Cichy	 et	 al.,	 2014),	 and	 correlate	with	 task	 performance	 and	 reaction	 times	 (Van	 Rullen	 and	649 
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Thorpe,	2001;	Philiastides	and	Sajda,	2006;	Martinovic	et	al.,	2008;	Ritchie	et	al.,	2015).	Further,	650 
comparisons	of	deep	neural	networks	with	MEG	have	revealed	a	correspondence	of	early	layers	651 
with	earlier	MEG	 responses,	 likely	 reflecting	 initial	 stages	of	processing	 in	early	 visual	 cortex,	652 
while	 higher	 layers	 reflect	 later	 stages	 of	 processing	 in	 occipitotemporal	 cortex	 (Cichy	 et	 al.,	653 
2016b;	Seeliger	et	al.,	2017).	Our	results	significantly	extend	these	results	by	establishing	a	lower	654 
bound	for	the	development	of	conceptual	representations.	655 

Other	studies	have	also	investigated	high-level	conceptual	processing	over	time	using	656 
explicit	 semantic	 feature	models	 (Clarke	&	Tyler,	2015)	or	behavioral	 judgments	 (Cichy	et	al.,	657 
2017).	 For	 example,	 Clarke	 and	 colleagues	 showed	 semantic	 feature	 effects	 before	 120	ms,	658 
although	 including	basic	visual	 features	based	on	the	HMAX	model	 revealed	unique	semantic	659 
contributions	 to	MEG	 signals	 only	 after	~200	ms	 (Clarke	 et	 al.,	 2013;	 Clarke	 et	 al.,	 2014).	 In	660 
contrast	to	these	studies,	we	used	more	recent	deep	convolutional	neural	networks	which	have	661 
been	shown	to	be	more	closely	tied	to	neural	and	behavioral	data	(Khaligh-Razavi	et	al.,	2016;	662 
Jozwik	 et	 al.,	 2017;	 Cichy	 et	 al.,	 2016a).	 Further,	 we	 operationalized	 high-level	 conceptual	663 
processing,	 using	 both	 a	 computational	 semantic	 model	 based	 on	 semantic	 co-occurrence	664 
statistics	(GloVe	model),	as	well	as	behavioral	judgments	of	object	similarity	that	we	take	to	more	665 
broadly	reflect	conceptual	processing.	Indeed,	our	results	suggest	that	MEG	variance	explained	666 
by	 the	 GloVe	 model	 was	 comparably	 low	 and	 mostly	 covaried	 with	 behavioral	 judgments,	667 
suggesting	that	conceptual	representations	extend	beyond	those	relationships	captured	by	the	668 
GloVe	model.	Despite	these	differences,	our	results	are	generally	consistent	with	the	results	of	669 
Clarke	and	colleagues,	but	suggest	a	lower	bound	for	conceptual	processing	around	~150	ms	(see	670 
also	Cichy	et	al.,	2017).	Further,	we	show	that	the	computational	visual	model	and	behavioral	671 
judgments	explain	shared	variance	even	prior	to	150	ms.	This	shared	variance	indicates	that	the	672 
neural	 activity	 captured	by	 compational	models	 is	 behaviorally	 relevant	 and	argues	 against	 a	673 
strong	distinction	between	(low-level)	visual	features	on	the	one	hand,	and	high-level	conceptual	674 
processing	on	the	other.	At	the	same	time,	the	presence	of	significant	unique	variance	explained	675 
by	 behavior	 after	 150	ms	 suggests	 that	 not	all	 aspects	 of	 conceptual	 object	 representations	676 
reflected	in	MEG	activity	are	explained	by	current	generations	of	computational	visual	models.	677 

While	our	study	provides	insight	into	the	development	of	conceptual	representations,	678 
there	are	some	important	considerations.	First,	we	used	behavioral	similarity	judgments	using	679 
the	 multi-arrangement	 task	 (Kriegeskorte	 &	 Mur,	 2012)	 to	 index	 conceptual	 processing.	680 
However,	 this	 choice	 of	 method	 might	 constrain	 the	 ability	 to	 capture	 conceptual	681 
representations.	While	the	behavioral	judgments	explain	more	variance	in	the	MEG	signal	than	682 
the	semantic	GloVe	model	we	tested,	we	do	not	know	what	aspects	of	conceptual	processing	are	683 
reflected	in	those	judgments.	Further,	it	is	unclear	how	sensitive	those	behavioral	judgments	are	684 
to	the	context	imposed	by	the	stimuli	and	instructions.	Second,	we	only	employed	two	exemplars	685 
per	object	concept	to	test	generalization	of	representations	and	this	may	not	have	contained	686 
sufficient	 variability	 to	 fully	 disentangle	 low-level	 and	 high-level	 processing.	 	Future	 studies	687 
should	consider	broader	sets	of	stimuli,	different	behavioral	tasks,	and	alternative	computational	688 
models	that	may	better	match	the	MEG	signal.	689 

In	 conclusion,	 by	 focusing	on	 two	 criteria	 for	 conceptual	 object	 representations	we	690 
provide	an	estimate	for	a	lower	bound	for	the	emergence	of	conceptual	object	representations	691 
of	around	150	ms.	Prior	to	this	time,	our	results	demonstrate	limited	generalization	across	object	692 
exemplars	and	time,	and	importantly	little	unique	contributions	of	behavioral	judgments	to	the	693 
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MEG	response.		The	multifaceted	nature	of	our	findings	here	show	that	the	combination	of	neural	694 
data,	 behavior,	 and	models	 are	 a	 viable	 method	 to	 probe	 the	 temporal	 dynamics	 of	 object	695 
recognition	and	allow	us	to	establish	a	novel	profile	of	emergent	conceptual	representations	in	696 
time. 	697 
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