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The Protein Data Bank (PDB) is the single worldwide archive of experimentally-

determined three-dimensional (3D) structures of proteins and nucleic acids. As of 

January 2017, the PDB housed more than 125,000 structures and was growing by more 

than 11,000 structures annually. Since the 3D structure of a protein is vital to 

understand the mechanisms of biological processes, diseases, and drug design, correct 

oligomeric assembly information is of critical importance. For example, it makes a 

difference if the protein is normally a dimer and not a monomer or a trimer or a tetramer 

or a hexamer in nature. Unfortunately, the biologically relevant oligomeric form of a 3D 

structure is not directly obtainable by X-ray crystallography. Instead, this information 

may be provided by the PDB Depositor as metadata coming from additional 

experiments, be inferred by sequence-sequence comparisons with similar proteins of 

known oligomeric state, or predicted using software, such as PISA (Proteins, Interfaces, 

Structures and Assemblies) or EPPIC (Evolutionary Protein Protein Interface Classifier). 

Despite significant efforts by professional PDB Biocurators during data deposition, there 

remain a number of structures in the archive with incorrect quaternary structure 

descriptions (or annotations). Further investigation is, therefore, needed to evaluate the 

correctness of quaternary structure annotations. In this study, we aim to identify the 

most probable oligomeric states for proteins represented in the PDB. Our approach 

evaluated the performance of four independent prediction methods, including text 

mining of primary publications, inference from homologous protein structures, and two 

computational methods (PISA and EPPIC). Aggregating predictions to give consensus 

results outperformed all four of the independent prediction methods, yielding 86% 

correct, 9% incorrect, and 5% inconclusive predictions, when tested with a well-curated 
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benchmark dataset. We have developed a freely-available web-based tool to make this 

approach accessible to researchers and PDB Biocurators (http://quatstruct.rcsb.org). 

 

Introduction  

The Protein Data Bank (PDB, pdb.org) [1] provides detailed information about the 

three-dimensional (3D) structures of biological macromolecules, including proteins and 

nucleic acids. The PDB was established in 1971 with only 7 X-ray crystal structures of 

proteins and now contains more than 125,000 structures (as of January 2017). Today, 

the PDB archive is managed by the international Worldwide Protein Data Bank 

(wwPDB, wwpdb.org) partnership [2], which includes the RCSB Protein Data Bank 

(RCSB PDB, rcsb.org) [1], the Protein Data Bank in Europe (PDBe, pdbe.org), Protein 

Data Bank Japan (PDBj, pdbj.org), and BioMagResBank (BMRB, bmrb.org). The 

majority (~90%) PDB structures were determined by X-ray crystallography. This 

experimental method yields 3D atomic level structures of the so-called asymmetric unit 

(Fig 1A), which is the repeating unit that makes up the crystal (Fig 1B). Knowledge of 

the 3D structure of the asymmetric unit and intermolecular interactions among 

asymmetric units does not provide sufficient information to reveal conclusively the 

oligomeric structures of protein assemblies, because is often not possible to distinguish 

biologically relevant intermolecular contacts from contacts that merely stabilize the 

crystal lattice.	
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Fig 1. 3D structure information for PDB entry 1STP. A) Monomeric asymmetric unit. 

B) Unit cell containing asymmetric units within the crystal lattice.  

 

Many proteins form structurally well-characterized thermodynamically stable 

multimeric complexes, which are important for biological function [e.g., hemoglobin 

occurs in nature a heterotetramer (A2B2) with a cyclic (C2) symmetry and dihedral (D2) 

pseudo-symmetry] [3]. Experimental methods, such as size exclusion chromatography 

or analytical ultracentrifugation are sometimes required to ascertain the correct 

oligomerization state for a protein structure determined by X-ray crystallography. 

Alternatively, correct oligomeric state information may be inferred by comparison with 

better characterized homologous proteins or be provided by the PDB Depositor as 
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metadata. It can also be predicted using computational methods, such as PISA 

(Proteins, Interfaces, Structures, and Assemblies) [4] or EPPIC (Evolutionary Protein-

Protein Interface Classifier) [5]. Since the PDB was established in 1971, oligomeric 

state information has been obtained from Depositors or predicted by PQS [6] and more 

recently with PISA. Although experimental evidence for oligomeric state was not a 

mandatory data item in legacy PDB deposition systems, collection of experimental 

evidence has been improved in the new wwPDB OneDep global deposition, biocuration, 

and validation system [7]. 

Quaternary structures of proteins can be characterized by two main descriptors 

that define their oligomeric states: stoichiometry and symmetry. Stoichiometry describes 

the composition of the assembly in terms of subunit number and composition. There are 

several widely used methods for determining the stoichiometry of protein complexes, 

including size exclusion chromatography [8], analytical ultracentrifugation [9], and gel-

electrophoresis [10, 11]. Protein assembly stoichiometry is described using a 

composition formula. Typically, an uppercase letter, such as A, B, C, etc., represents 

each type of different protein subunit in alphabetical order. (N.B.: These letters are not 

the same as the chain identifiers found in PDB archival entries.] The number of 

equivalent subunits is added as a coefficient next to each letter. For example the 

stoichiometry of the two-component human hemoglobin heterotetramer is represented 

as A2B2 (a dimer of heterodimers composed to two distinct polypeptide chains). 

Symmetry is another important feature of protein tertiary and quaternary structure [12] 

and plays a key role in understanding protein evolution and structure/function 

relationships [3], [12], [13], [14], [15], [16]. At the quaternary structure level, we 
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characterize symmetry by the point group, a set of symmetry elements, whose 

symmetry axes go through a single point [12]. Most oligomeric protein structures (either 

homomeric or heteromeric) are symmetric macromolecules, which is probably a simple 

consequence of how subunits associate in solution without aggregating indefinitely [17] 

and can be classified using closed symmetry groups [18]. They are typically described  

as  cyclic (i.e., C2, C3, C4, ...), dihedral (i.e., D2, D3, D4, ...), or cubic (tetrahedral, 

octahedral, icosahedral). Dihedral and cyclic symmetries are geometrically related: a 

structure with Dn symmetry can be constructed from n dimers with C2 or from two n-

mers with Cn symmetry [19]. Additionally,  helical symmetry is also a common open-

symmetry encountered in protein structures. 

 The PDB archive grows by more than 11,000 structures annually. However, 

because of incomplete data and errors made during data entry, the oligomeric state 

annotations provided by the PDB are not always correct and reliable [20]. In spite of 

great efforts to improve the quality of the PDB archive, it has been reported that there 

are a significant number of PDB entries with incorrect quaternary structure annotations 

(Fig 2). Levy put the the error rate at ~14% [21], while more recently Baskaran et al. [22] 

reported a lower bound for the error rate of ~7%. Development of methods for accurate 

detection of incorrect annotations and assignment of most probable oligomeric state is, 

therefore, a matter of some urgency.  
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Fig 2. Quaternary structure annotations for PDB entry 1Z77. A) Incorrectly 

annotated as monomer during PDB deposition. Correctly annotated as a dimer by B) 

PISA, C) EPPIC, and D) the primary publication. 

 

 This study has two main objectives: (i) to enable identification of incorrect 

quaternary structure annotations in the PDB archive, and (ii) to enable assignment  the 

most probable quaternary structure for such cases. To accomplish these goals, we 

evaluated four different methods for assessing quaternary structure annotations in the 

PDB. First, we took an evolutionarily approach by clustering proteins related by amino 

acid sequence and attributed to each member of a given cluster the oligomerization 

state found to be most prevalent with the cluster. Second, we took a text mining 
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approach by searching through the primary citations of indivdiual PDB entries and 

extracting information about oligomeric state and experimental evidence thereof. Third 

and fourth, we took two independent computational approaches using PISA and EPPIC, 

respectively, to predict oligomeric states. We aggregated results from these methods to 

generate a consensus prediction for the most probable oligomeric state for each protein 

structure in the PDB. We tested this combined approach using a well-curated 

benchmark dataset. During the course of this effort, we developed an efficient approach 

to evaluate oligomeric states of protein structures in the PDB, which we have made 

freely available to both PDB Biocurators and researcher as a web-based tool.  

Materials and Methods 

Benchmark Dataset 

We aggregated three previously published, manually curated, benchmark 

datasets to create a considerably larger combined benchmark dataset for this work. The 

Ponstingl dataset [23] contains 218 protein complexes, including 55 monomers, 88 

dimers, 24 trimers, 38 tetramers, and 13 hexamers. The Bahadur dataset [24, 25] 

contains 266 PDB entries, including 144 monomers and 122 dimers. The Duarte 

dataset contains [5] 152 protein structures, including 78 monomers, 62 dimers, 2 

trimers, 8 tetramers, 1 hexamer, and 1 dodecamer. After removing duplicate entries (Fig 

3), our final combined benchmark dataset contains 543 biological macromolecules, 

including 248 monomers, 209 dimers, 26 trimers, 44 tetramers, 14 hexamers, 1 octamer 

and 1 dodecamer. 
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Fig 3. Overlapping structures between datasets. Most of the duplicates occcurred 

between the Ponstingl and the Bahadur datasets. These two datasets share 89 protein 

structures, whereas only 2 structures were found to be common between the Bahadur 

and the Duarte datasets, and only 1 structure was detected in both the Ponstingl and 

the Duarte datasets.  

Sequence Clustering 

Since many protein chains in the PDB are similar at the level of sequence, we 

use this information to cluster polypeptide chains on the basis of amino acid sequence 

identity and assign a representative oligomeric state for each cluster based on a 

consistency score. For this purpose, we first constructed sequence clusters at various 

identity thresholds, including 95%, 90%, 70% and 40%. Clusters were calculated using 

the BLASTClust algorithm [26], which detects pairwise matches with the blastp 

algorithm [27] and then places each sequence in a certain cluster if the sequence 

matches that of at least one cluster member (Fig. 4).  
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Fig 4. Sequence cluster construction and consistency score calculation. A 

consistency score is calculated based on the distribution of stoichiometry and symmetry 

values within each cluster. (St: Stoichiometry, Sy: Symmetry, C(St, Sy): consistency 

score for given St and Sy).  

 

A cluster is defined as a set of protein chains that are at least k% sequence 

identical to each other over 90% of the same length, and is associated with two discrete 

random variables: 
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• St represents stoichiometry and consists of a list (a,b,c,…,m) giving the number 

of copies of each unique molecule (e.g., A: monomer, A2: homodimer, A2B2: 

heterotetramer). 

• Sy represents symmetry and takes on values such as C2 (cyclic), D4 (dihedral), 

H (helical). 

 For a certain sequence identity threshold k, a consistency score for a given 

stoichiometry t and symmetry y can be estimated by the joint probability of these two 

events: 

 

 

 

 After consistency score calculation, we applied a binary decision rule based on 

the majority probability to predict a representative quaternary structure for a certain 

cluster. The maximum consistency score in a cluster must be greater than 0.5 to satisfy 

the majority rule and to predict a representative quaternary structure, otherwise the 

result is deemed inconclusive. 

For the consistency score to be statistically meaningful, there must be minimum 

number of members in a cluster. We used our benchmark dataset to determine the 

minimum number of cluster members for different sequence cluster identity thresholds, 

including 40%, 70%, 90% and 95%. For this purpose, we selected different number of 

cluster sizes from (n=1,…,50) and predicted the most representative oligomeric state for 

each cluster using the consistency score described above. Then, we calculated the 

percentage of correct, incorrect, and inconclusive predictions for each minimum number 

C t , y( )= P St = t ,Sy = y( )= P St = t( )iP Sy = y( ) 																															 1( )
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of cluster members and for each sequence identity threshold. According to these 

results, each increment in the minimum number of cluster members reduces the 

number of incorrect results, but increases the number of inconclusive results. Hence, 

there is a trade-off between errors and inconclusive results. In Figs 5A-D, we plotted 

each prediction against cluster size and required at least 70% correct prediction for 

each sequence identity threshold. Lower sequence identities require more cluster 

members, while higher sequence identities require fewer. Based on our work with the 

benchmark dataset results, minimum cluster size should be 5 for 40% sequence identity 

threshold, yielding a 6% error rate and and 24% inconclusive rate. For 70%, 90%, and 

95% sequence identities we found that the cluster size should be at least 3, yielding a 

4% error rate and a 26% inconclusive rate. 
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Fig 5. Cluster size vs. correct, incorrect, and inconclusive rates. A) For 40% 

sequence identity. B) For 70% sequence identity. C) For 90% sequence identity. D) For 

95% sequence identity.  

 

Text Mining 

Nearly 82% of the protein structures archived in the PDB have an associated 

primary article as of January 2017. Using CrossRef TDM (text and data mining) services 

(http://tdmsupport.crossref.org/), we were able to extract information 

regarding oligomeric state and supporting experimental evidence from  8,600 primary 

publications, describing nearly 32,000 PDB entries. 

 We first split the full-text article into sentences. Then, we identified sentences 

containing oligomeric state information using a keyword list (monomer, dimer, trimer, 

etc., see Table S1 for the full keyword list). Some of these sentences proved misleading 

or irrelevant. For example, some sentences described the asymmetric unit not 

quaternary structure, and some sentences refer to protein structures other than the one 

of interest. We, therefore, used a machine-learning approach to eliminate non-relevant 

sentences by classifying sentences as quaternary structure relevant (positive) or 

irrelevant (negative). To do so with traditional machine learning algorithms that require 

numerical inputs, each sentence had to be tokenized into words. Then, we converted 

each word to numerical values using the term frequency-inverse document frequency 

(tf-idf) method [28] to create a numerical data matrix. This method reflects how 

important a word is to a document in a corpus using the following formula: 
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were tf(n,s) represents the frequency of word n in sentence s, df(n) represents the 

number of sentences containing word n, and N is the total number of sentences. To 

improve the effectiveness of the tf-idf method, all words in each sentence were 

converted to lower case, with extra spaces and internal punctuation marks removed. 

Finally, we calculated the tf-idf score for each word in each sentence and created a data 

matrix for the training procedure (wherein each row represented a single sentence and 

each column represented a unique word). To avoid the high-dimensional data matrix, 

we mapped the each column (i.e. features) to a hash-table by using a hash function. In 

this study, we used the murmurhash3 hash function, proposed by Weinberger et al. 

[29]. After applying the hashing function, we used two machine-learning algorithms, 

support vector machines (SVM) [30] and boosted logistic regression (BLR) [31-34], to 

classify each sentence in a paper as positive and negative.  

 A similar approach was used to search sentences for experimental evidence of 

oligomeric state. An experimental evidence keyword list was used for this task (see S2 

Table for the full list). After oligomeric state keyword filtering, a second filtering was 

applied based on these keywords. Finally, after two filtering procedures, the quaternary 

structure prediction for each PDB entry was made based on the majority probability of 

remaining oligomeric state keywords. The text mining result was deeemed inconclusive 

for a particular PDB entry, if machine learning algorithms failed to detect any quaternary 

structure related sentences and supporting experimental evidence. A general workflow 

of our text mining approach can be found in Fig 6. 

tf-idf n,s( )= tf n,s( )i log N
df n( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
																															 2( )
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Fig 6. General workflow of the text mining approach. After a publication upload or 

download, the term frequency-inverse document frequency (tf-idf) method is used to 

create numerical data matrix from words, a hash table is created using the hash 

function, extracted sentences are classified using machine learning alorithms, remaining 

sentences are searched for experimental evidence and oligomeric state information is 

determined by using a majority rule.  

 

 To train and test our machine learning algorithms for the text mining approach, 

we created a dataset using PDB primary papers. For this task, first, we extracted 

sentences from the papers using the keyword list in the S1 Table. Then, the keyword list 
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in the S2 Table was used to split these sentences into two classes. The sentences, 

which match to this second keyword list, were used to create the positive dataset of 

5500 positive sentences and the remaining sentences were used to create the negative 

dataset of 5500 negative sentences. Next, the dataset was split as 80% training and 

20% test set. A grid search was used with 10-fold cross-validation to select optimal 

parameters in the training set. Two parameters optimized for the SVM algorithm were 

sigma = 0.013 and cost = 4, and the optimal number of boosting iterations found as 101 

for BLR algorithm. Identical parameters were used for the test set to confirm that both 

datasets were on the same scale and homoscedastic relative to each other. Finally, we 

tested model performance on the test set (Table 1). SVM performed better than BLR in 

terms of accuracy, kappa, area under the ROC curve (AUC), sensitivity, negative 

predictive value, F1 score, and Matthews correlation coefficient. Conversely, BLR 

showed better specificity and positive predictive value results, suggesting that it predicts 

positive sentences slightly better than SVM. 

 

Table 1. Test set (20% of the original data) performances of the machine learning 

algorithms.  SVM outperforms BLR on a number of performance measures, whereas 

BLR has slightly better specificity and positive predictive value results.  

 

SVM BLR 

Accuracy 0.94 0.89 

Kappa 0.87 0.78 

Area Under the ROC Curve 0.98 0.92 

Sensitivity 0.92 0.80 
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Specificity 0.95 0.99 

Positive Predictive Value 0.95 0.98 

Negative Predictive Value 0.93 0.83 

F1 Score 0.94 0.88 

Matthews Correlation Coefficient 0.88 0.81 

	
 

PISA Prediction 

Following successful crystallographic structure determination efforts are made to 

identify biologically relevant intermolecular interactions within the crystal [35], and 

distinguish them from intermolcular contacts that simply stabilize the crystal lattice. The 

PISA program, developed by Krissinel and Henrick [4], uses a quantitative approach to 

address this problem [35]. The stability of an oligomeric structure is a function of free 

energy formation, solvation energy gain, interface area, hydrogen bonds, salt-bridges 

across the interface, and hydrophobic specificity [4]. PISA uses these properties to 

analyze protein structures and predict possible stable oligomeric states. Following 

successful evaluation (i.e., 90% accuracy [20]) using the Ponstingl et al. [23] benchmark 

data in 2007, PISA was deployed as a web server at the European Bioinformatics 

Institute (EBI) [35]. Soon thereafter, it was adopted as a quaternary structure validation 

and annotation tool for PDB archival depositions. 

 PISA can be accessed through a web service  (http://www.ebi.ac.uk/) or as a 

standalone program (http://www.ccp4.ac.uk/pisa/) from Collaborative Computational 

Project No. 4 or CCP4 (http://www.ccp4.ac.uk/). The software provides broad 
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information about assemblies, interfaces, and monomers, and gives information 

regarding possible oligomeric states, such as stoichiometry, solvent accessible surface 

area (ASA), buried surface area (BSA), and Gibbs free energy of dissociation score, 

which represents the free energy difference between the associated and dissociated 

states [36]. Possible oligomeric states yielding positive and negative Gibbs free energy 

of dissociation score are considered  to be chemically stable and unstable quaternary 

structures, respectively [37]. Those with borderline values are deemed indeterminate. 

 In this study, we used the command line version of PISA to generate XML files 

for each possible oligomeric state, which include rotation/translation operators for each 

of the chains together with ASA, BSA, Gibbs free energy of dissociation score, entropy, 

internal energy, and macromolecular size. The PISA XML files were then parsed to 

extract rotation/translation operators and chains with which to build up the atomic 

coordinates of each possible oligomeric state. Finally, we used BioJava [38] to 

characterize each of the possible oligomeric states in terms of stoichiometry and 

symmetry (Fig 7). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224196doi: bioRxiv preprint 

https://doi.org/10.1101/224196
http://creativecommons.org/licenses/by/4.0/


	 19	

 

Fig 7. Overview of the PISA annotation procedure. An XML file is created using 

PISA, the file is parsed to extract symmetry operators and corresponding chains and 

BioJava is used to assign stoichiometry and symmetry.  

 

EPPIC Prediction 

To distinguish intermolecular contacts stabilizing biologically relevant oligomeric 

states from simple crystal contacts, an evolutionary-based classifier (EPPIC;  

http://www.eppic-web.org) was developed by Duarte et al. [5]. This method uses a 

geometric measure, number of interfacial residues, and evolutionary features to classify 
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interfaces as biological versus crystal. Unlike other evolutionary-based methods, EPPIC 

uses only close homologs with >60% sequence identity to ensure homologs share high 

degrees of quaternary structure similarity. This approach achieved ~89% accuracy with 

the Ponstingl et al. [23] benchmark data. The new version of EPPIC (3.0.1) uses the 

pairwise interface classifications from version 2, combining them to come up with 

quaternary structure predictions [39]. The crystal lattice is represented as a periodic 

graph from which the different valid assemblies (those with point group symmetry) can 

be enumerated. Based on the pairwise scores the software can then decide which of 

the viable assemblies is the most likely quaternary structure in solution. We obtained 

early access to the results from the authors. Output results for the whole PDB archive 

were provided in XML format, containing quaternary structure predictions for each entry 

in the PDB. We parsed these XML files to extract the respective stoichiometry and 

symmetry information for PDB entries.  

  

Consensus Result Approach  
Predictions from sequence clustering, text mining, PISA, and EPPIC, were 

combined and a majority vote rule was applied to arrive at a consensus result. In the 

following cases, predictions from individual methods were excluded: 

• Sequence clustering: insufficient homologous proteins comprising the cluster (at 

least 3 structures for 70% sequence identity). 

• Text mining: no full-text publication available or no clear information regarding 

quaternary structure therein. 

• PISA: indeterminate predictions in “gray” region. 
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Web-Tool Development 

To make this approach accessible, we developed a user-friendly, easy-to-use 

web-based tool using R, JavaScript, jQuery, CSS, and HTML (Fig 8). The tool was 

predominantly constructed using R software [40]. Publications were downloaded either 

in PDF or XML format, and XML [41], Rcurl [42], tm [43], NLP [44], openNLP [45], and 

stringr [46] packages were used to convert PDF files to plain text files, to parse XML 

files, to extract sentences, and to split  words. The FeatureHashing package [47] was 

used to map features to the hash table [29]. Machine learning algorithms were trained 

and tested using the caret package [48]. Data tables were built using the DT package 

[49], and the shiny package [50] was used to create an interactive web-based 

application. 

 

Fig 8. Evaluation of the quaternary structure prediction of PDB entry 1Z77. All 

methods (SC: sequence clustering, TM: text mining, PISA, EPPIC) are selected for the 

evaluation process. The output includes two parts: oligomeric state and symmetry. In 

the oligomeric state table, it states that 1Z77 (first column: PDB ID) has one oligomeric 

state prediction (second column: BA Number), and it is annotated as a monomeric 
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structure in the PDB (third column: PDB). However, according to SC (fourth column: 

Sequence clustering), PISA (fifth column), EPPIC (sixth column), and TM (seventh 

column: Text Mining), 1Z77 is a dimeric protein. Therefore, our consensus result (eighth 

column) states that 1Z77 is a dimer. In the symmetry table one quaternary structure 

prediction is shown (second column: BA Number), having C1 symmetry (third column: 

PDB). However, according to the SC (fourth columns: Sequence cluster), PISA (fifth 

column) and EPPIC (sixth column), 1Z77 has a C2 symmetry. Therefore our consensus 

result (seventh column) states that 1Z77 has a C2 symmetry. Red denotes divergence 

between current PDB annotation of oligomeric state and results provided by each of the 

four evaluation methods. 

The new web tool offers a wide range of methods for evaluating oligomeric states 

in the PDB, including 

i. Determination of a representative oligomeric state for a given certain sequence 

identity threshold using the sequence clustering approach with consistency 

scoring. 

ii. Generate a PISA oligomeric state prediction for a given structure, rebuild the 

quaternary structure, and assign stoichiometry and symmetry using BioJava. 

iii. Generate a EPPIC oligomeric state prediction for a given structure, including 

stoichiometry and symmetry. 

iv. Extract oligomeric state information with experimental evidence from any 

publication describing a crystal structure of a protein. 
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The tool has a simple user interface, requiring only four character PDB IDs as 

input and a single mouse click to launch the calculation. Users can either enter a single 

PDB entry or upload a .txt file, which includes multiple PDB IDs, using the option in the 

tool for processing multiple PDB entries. Users can also upload a PDF version of a 

paper within the text mining module.  

 

Results 

Benchmark Dataset Results 

We applied sequence clustering, text mining, PISA, and EPPIC to our 543 

structure benchmark dataset to test the performance of each approach. Then, we 

aggregated all available results to arrive at a consensus result. S3 Table lists the 

individual predictions and S4 Table summarizes the results for individual methods and 

the consensus predictions. Accuracy rates for individual methods ranged between 46% 

and 81%. We achieved 86% accuracy rate using the consensus approach (Fig 9). 
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Fig 9. Overall performance results for the benchmark dataset using four different 

methods and consensus approach.  

The number of correct predictions for method-agreements are summarized in Fig 

10A. Four-method agreement correctly predicted the oligomeric states of 122 

structures. The combination of SC, PISA and EPPIC (i.e. three-method agreement) 

correctly predicted 149 cases. In two-method agreements, PISA and EPPIC correctly 

predicted 40 cases, while SC and EPPIC correctly predicted 31 cases, and SC and 

PISA predicted 21 cases correctly. When we checked number of incorrect predictions 

(Fig 10B), all methods incorrectly predicted only 1 structure. The most incorrect results 

occurred between PISA and EPPIC methods with 34 cases. Three methods, TM, PISA, 

and EPPIC, and two methods, TM and EPPIC, incorrectly predicted. Finally, 

inconclusive results (Fig 10C) mostly occurred between TM and SC methods with 40 

cases. 
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Fig 10. Prediction agreement of the consensus approach. A) Correct prediction 

agreements between methods. B) Incorrect prediction agreements between methods. 

C) Inconclusive prediction agreements between methods.  

  

Since TM gives high inconlusive results, we also provide a 3-method consensus 

based on SC, PISA and EPPIC results. After exclusion of TM, the accuracy rate 

decreased to 81%, while incorrect rate increased to 11% and inconclusive rate 

increased to 8%. Thus, even though its highly inconclusive nature, TM provides useful 

insights regarding correct quaternary structure information.  

Discussion 

The oligomeric state (or states) of a protein represents the essential biological 

unit(s) that carries out a biological function in a living organism [4]. It is, therefore, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224196doi: bioRxiv preprint 

https://doi.org/10.1101/224196
http://creativecommons.org/licenses/by/4.0/


	 26	

crucial to determine with high reliability the biologically-relevant oligomerization state(s) 

of a macromolecule. This problem has been extensively studied and the scientific 

literature abounds with various methods and approaches. An extensive analysis of the 

problem can be found in Capitani et al. [20], wherein the authors reviewed main 

concepts of different approaches, including thermodynamic estimation of interface 

stability, evolutionary approaches and interface co-occurrence across different crystal 

forms. 

 The difficulty of the protein interface classification problem has led to incomplete 

or ambiguous experimental data, which in turn has resulted in incorrect annotations of 

the oligomerization states of macromolecules in the PDB. Another source of error are 

the simple mistakes during the deposition process. For example, authors sometimes 

simply identify the quaternary structure of the asydmmetric unit. To the best of our 

knowledge, there are only two studies in the literature, which have investigated 

quaternary structure annotation errors in the PDB [21, 22]. 

 In this study, we focused on two main issues: (i) detection of the incorrectly 

annotated biological macromolecules in the PDB and (ii) assignment of the most 

probable quaternary structures for those incorrect structures. We used two of the most 

popular and widely used methods to evaluate the quaternary structures of 

macromolecules, PISA and EPPIC. To investigate author annotations, we provided a 

text mining approach for searching and extracting correct quaternary structure 

information from primary papers of the macromolecules. In addition, we utilized 

homology, by looking at consensus within sequence clusters, for detection of incorrect 

quaternary structure annotations in the PDB. Finally, we obtained quaternary structure 
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predictions from each method, including oligomeric state and symmetry information, and 

came up with a consensus result for each entry in the PDB. The consensus result 

approach, which uses the method agreements, has improved the prediction reliability. 

The number of correct predictions is increased, while both the number of incorrect 

predictions and the number of inconclusive predictions are decreased. The best 

combination of the methods is found as the three methods combination of Sequence 

Cluster, PISA and EPPIC, which correctly predicted 149 cases together. On the other 

hand, the four method agreement correctly predicted 122 quaternary structures.  On the 

other hand, the four method agreement correctly predicted 110 quaternary structures. 

The reason of the lower number of correct predictions in the four method agreements is 

the high rate of inconclusive results in the text mining approach, which is almost 46%.  

The most important issue in the text mining method is the difficulty in the full-text 

publication access. Even though, 42% of the primary articles in the PDB are open-

access publications, it is hard to get these publications using the PMC database or 

publishers’ websites for text mining, because these services have their own restrictions 

based on their respective policies. PMC does provide a service for bulk downloading of 

the publications for an open-access subset. However, this subset only covers 1/26 of all 

articles in PubMed, and that makes it impractical for text mining purposes. Some 

publishers, such as Elsevier and Wiley, provide their own text mining services through a 

specific API (application program interface). However, these services are not stable and 

not working all the time and more importantly they are not allowing bulk access to many 

papers. In addition, they do not provide all the publications through these services; 

instead they only provide a small subset of them. We found CrossRef TDM services as 
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the most useful service for text mining purposes. They provide full-text links from 

various publishers in a user friendly and easy-to-access way. However, since some 

publishers only share a small part of their paper repositories, we are only able to reach 

30% of the primary articles of the PDB entries.  

In addition to the 4-method consensus results, we also provided a 3-method 

consensus based on SC, PISA and EPPIC results by excluding TM. The 3-method 

consensus has the advantage that it can be applied to most structures in the PDB. On 

the other hand, TM results are useful to guide the user/biocurator to the specific 

papers/sentences that contain statements about the experimental evidence, as well as 

a resource to verify the author annotations. Therefore, we provided 3-method 

consensus as well as 4-method consensus in our web-tool. 

 

Conclusion 

Determination of a 3D macromolecular structure is crucial to understand the 

fundamental mechanisms of biological processes, such as enzymatic reactions, ligand 

binding, or signalling. It is also important to reveal the underlying mechanisms of 

diseases, such as genetic variations. Furthermore, the 3D structures of macromolecules 

are vital for drug design and development studies, especially in structure-based drug 

design. Because of these reasons, the correct quaternary structure has a critical 

importance. 

 In this study, we developed a consensus approach by aggregating predictions 

from three and four different methods in order to detect incorrect quaternary structures 

in the PDB and assign the most likely quaternary structures for the possibly incorrect 
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annotations. For this task, we first benefited from homology to cluster similar PDB 

entries based on a certain sequence identity threshold and to predict a representative 

quaternary structure for the cluster through a consistency score calculation. Second, we 

searched through the primary articles associated with the PDB entries to validate the 

author deposition by extracting oligomeric state and experimental evidence information 

using a text mining approach. Moreover, we used the PISA and EPPIC to predict the 

quaternary structures. Then, we combined predictions from different approaches to 

achieve a consensus result and to predict the most probable quaternary structures for 

the possibly incorrect structures. To test the performance of our consensus approach, 

we created a benchmark dataset using Ponstingl et al. [23], Bahadur et al. [24], 

Bahadur et al. [25] and Duarte et al. [5] datasets. Our consensus approach 

outperformed single methods and achieved 86% correct, 9% incorrect, and 5% 

inconclusive predictions, respectively. Therefore, our method provides more reliable 

evaluation than any single approach. Finally, we developed a web-based tool in order to 

make this approach usable for researchers in the field and PDB Biocuators.  

 

Availabilty 

The tool is freely available through http://quatstruct.rcsb.org. All source code is available 

on Github repository at https://github.com/selcukorkmaz/BET. This tool will be updated 

regularly to include the future quaternary structures in the PDB. 
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