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Abstract 

Choice confidence, an individual’s internal estimate of judgment accuracy, plays a critical role in 

adaptive behaviour. Despite its importance, the early (decisional) stages of confidence processing 

remain underexplored. Here, we recorded simultaneous EEG/fMRI while participants performed a 

direction discrimination task and rated their confidence on each trial. Using multivariate single-trial 

discriminant analysis of the EEG, we identified a stimulus- and accuracy-independent component 

encoding confidence, appearing prior to subjects’ choice and explicit confidence report. The trial-to-

trial variability in this EEG-derived confidence signal was uniquely associated with fMRI responses in 

the ventromedial prefrontal cortex (VMPFC), a region not typically associated with confidence for 

perceptual decisions. Furthermore, we showed that the VMPFC was functionally coupled with 

regions of the prefrontal cortex that support neural representations of confidence during explicit 

metacognitive report. Our results suggest that the VMPFC encodes an early confidence readout, 

preceding and potentially informing metacognitive evaluation and learning, by acting as an implicit 

value/reward signal. 
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Introduction 

Our everyday lives involve frequent situations where we must make judgments based on noisy or 

incomplete sensory information – for example deciding whether crossing the street on a foggy 

morning, in poor visibility, is safe. Being able to rely on an internal estimate of whether our 

perceptual judgments are accurate is fundamental to adaptive behaviour and accordingly, recent 

years have seen a growing interest in understanding the neural basis of confidence judgments. 

Within the perceptual decision making field, one line of research has focused specifically on 

identifying neural correlates of confidence during metacognitive evaluation (i.e., while subjects 

actively judge their performance following a choice), and demonstrated the functional involvement 

of the anterior prefrontal cortex (Fleming et al., 2012; Hilgenstock et al., 2014). Concurrently, 

psychophysiological work in humans and non-human primates using time-resolved measurements 

have shown that confidence encoding can also be observed at earlier stages, and as early as the 

decision process itself (Kiani and Shadlen, 2009; Zizlsperger et al., 2014; Gherman and Philiastides, 

2015).  

Correspondingly, recent fMRI studies have reported confidence-related signals nearer the time of 

decision (e.g., during perceptual stimulation) in regions such as the striatum (Hebart et al., 2016), 

dorsomedial prefrontal cortex (Heereman et al., 2015), cingulate and insular cortices (Paul et al., 

2015), and other areas of the prefrontal, parietal, and occipital cortices (Heereman et al., 2015; Paul 

et al., 2015). Interestingly, confidence-related processing has also been reported in the ventromedial 

prefrontal cortex (VMPFC) during value-based and a range of ratings tasks (De Martino et al., 2013; 

Lebreton et al., 2015), however the extent to which this region is additionally involved in perceptual 

judgments relying on temporal integration of sensory evidence remains unclear.  

Importantly, research investigating the neural correlates of decision confidence has thus far relied – 

nearly exclusively – on correlations with behavioural measures, the most common of these being the 
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subjective ratings given by participants after the decision (see (Grimaldi et al., 2015) for a review). 

However, theoretical and empirical work suggests that post-decisional metacognitive reports may be 

affected by processes occurring after termination of the initial decision (Resulaj et al., 2009; Pleskac 

and Busemeyer, 2010; Fleming et al., 2015; Moran et al., 2015; Murphy et al., 2015; Yu et al., 2015; 

Navajas et al., 2016; van den Berg et al., 2016; Fleming and Daw, 2017), such as integration of 

existing information, processing of novel information arriving post-decisionally, or decay (Moran et 

al., 2015), and may consequently be only partly reflective of early confidence-related states.  

Here we aim to derive a more faithful representation of these early confidence signals using EEG, 

and exploit the trial-by-trial variability in these signals to build parametric EEG-informed fMRI 

predictors, thus aiming to provide a more complete spatiotemporal account of decision confidence. 

We hypothesise that using an electrophysiologically-derived (i.e. endogenous) representation of 

confidence to detect associated fMRI responses would provide not only a more temporally precise, 

but also a more accurate spatial representation of confidence around the time of decision.  

To test this hypothesis, we collected simultaneous EEG/fMRI data while participants performed a 

random-dot direction discrimination task and rated their confidence on each trial. Using a 

multivariate single-trial classifier to discriminate between High vs. Low confidence trials in the EEG 

data, we extracted an early, stimulus- and accuracy-independent discriminant component appearing 

prior to participants’ behavioural response. We then regressed the resultant single-trial component 

amplitudes against the fMRI signal and identified a positive correlation with this early confidence 

signal in a region of the VMPFC that has not been previously linked to perceptual decisions. Crucially, 

activation of this region was unique to our EEG-informed fMRI predictor (i.e., additional to those 

detected with a conventional fMRI regressor, which relied solely on participants’ post-decisional 

confidence reports). Furthermore, a functional connectivity analysis revealed a link between the 

activation in the VMPFC and regions of the prefrontal cortex found to hold neural representations of 

confidence during explicit metacognitive report. 
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Results 

Behaviour. Subjects (N=24) performed a speeded perceptual discrimination task whereby they were 

asked to judge the motion direction of random dot kinematograms (left vs. right), and rate their 

confidence in each choice on a 9-point scale (Fig. 1A). Stimulus difficulty (i.e., motion coherence) was 

held constant across all trials, at individually determined psychophysical thresholds. We found that 

on average, subjects indicated their direction decision 994 ms (SD = 172 ms) after stimulus onset and 

performed correctly on 75% (SD = 5.2%) of the trials. In providing behavioural confidence reports, 

subjects tended to employ the entire rating scale, showing that subjective confidence varied from 

trial-to-trial despite perceptual evidence remaining constant throughout the task. As a general 

measure of validity of subjects’ confidence reports, we first examined the relationship with 

behavioural task performance. Specifically, confidence is largely known to scale positively with 

decision accuracy and negatively with response time (Vickers and Packer, 1982; Baranski and 

Petrusic, 1998) (though this relationship is not perfect, and is subject to individual differences, e.g., 

(Baranski and Petrusic, 1994; Fleming et al., 2010; Fleming and Dolan, 2012). As expected, we found 

a positive correlation with accuracy (subject-averaged R = .30; one-sample t-test, t(23) = 13.9, p < 

.001) (Fig. 1B), and a negative correlation with response time (subject-averaged R = -.27; one-sample 

t-test, t(23) = -7.8, p < .001) (Fig. 1C). Thus, subjects’ confidence ratings were generally reflective of 

their performance on the perceptual decision task. 
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Figure 1. Experimental design and behavioural performance.  A, Schematic representation of the behavioral 

paradigm. Subjects made speeded left vs. right motion discriminations of random dot kinematograms 

calibrated to each individual’s perceptual threshold. Stimulus difficulty (i.e., motion coherence) and was held 

constant across trials. Stimuli were presented for up to 1.2 s, or until a behavioural response was made. After 

each direction decision, subjects rated their confidence on a 9-point scale (3 s). The response mapping for high 

vs. low confidence ratings alternated randomly across trials to control for motor preparation effects, and was 

indicated by the horizontal position of the scale, with the tall end representing high confidence. All behavioural 

responses were made on a button box, using the right hand. B, Mean proportion of correct direction choices 

as a function of reported confidence. C, Mean response time as a function of reported confidence. Error bars 

in B and C represent the standard errors across subjects. 
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Next, we asked whether subjects’ confidence reports could be explained by local fluctuations in 

attention. To address this possibility, we performed a serial autocorrelation regression analysis on a 

single subject basis, which predicted confidence ratings on the current trial from ratings given on the 

immediately preceding five trials. On average, this model accounted for only a minimal fraction of 

the variance in confidence ratings (subject-averaged R2 = .07). Finally, we sought to rule out the 

possibility that trial-to-trial variability in confidence could be explained by potential subtle 

differences in low-level physical properties of the stimulus that may go beyond motion coherence 

(e.g., location and/or timing of individual dots). To this end, we compared subjects’ confidence 

reports on the two experimental blocks which contained an identical set of stimuli, and found no 

significant correlation between these (R = 0.02, p = 0.44). Taken together, these results support the 

hypothesis that subjects’ reports reflected internal fluctuations in their sense of confidence, which 

are largely unaccounted for by external factors. 

 

EEG-derived measure of confidence. To identify confidence-related signals in the EEG data, we first 

separated trials into three confidence groups (Low, Medium, and High) on the basis of subjects’ 

confidence ratings. We then conducted a single-trial multivariate classifier analysis (Parra et al., 

2005; Sajda et al., 2009) on the stimulus-locked EEG data to estimate linear spatial weightings of the 

EEG sensors discriminating between Low vs. High confidence trials (see Materials and Methods). 

Applying the estimated electrode weights to single-trial data produced a measurement of the 

discriminating component amplitudes (henceforth  ), which represent the distance of individual 

trials from the discriminating hyperplane, which we treat as a surrogate for the neural confidence of 

the decision. Note that separating trials in this manner only served to increase the precision of the 

discrimination process, i.e., estimate the electrode contribution patterns that optimally captured 

confidence. Data from all trials, including those not originally used in the discrimination analysis, 

were subsequently subjected through these spatial filters, resulting in discriminant component 

amplitudes that represent graded (individual trial) measures of internal confidence. To quantify the 
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discriminator's performance over time we used the area under a receiver operating characteristic 

curve (i.e. Az value) with a leave-one-out trial cross validation approach. 

 

 

 
 
Figure 2. Neural representation of confidence in the EEG. A, Classifier performance (Az) during High- vs. Low-

confidence discrimination for stimulus-locked single-trial data, i. Mean confidence discrimination performance 

as a function of time (shaded area represents standard errors across subjects). Inset shows average 

(normalised) topography associated with the discriminating component at subject-specific times of peak 

confidence discrimination, ii. Distribution of peak confidence discrimination times across subjects. In selecting 

these, we considered only the discrimination period ending on average at least 100 ms (across-subject mean 

271±162 ms) prior to the subjects’ mean response times, to minimise potential confounds with activity related 

to motor execution (due to a sudden increase in corticospinal excitability in this period (Chen et al., 1998), iii. 

Distribution of Az values at the time of peak confidence discrimination across subjects. B, Mean amplitude of 

the confidence discriminant component as a function of confidence group (Low, Medium, High; grey bars). As 

expected, component amplitudes for the Medium confidence trials (i.e., trials which were independent from 
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those used to perform the discrimination analysis) are situated between the Low and High confidence trials. 

The mean component amplitudes for individual confidence ratings (weighted by each subjects’ trial count per 

rating) are also shown (inset). C, Mean amplitude of the confidence discriminant component as a function of 

reported confidence, for correct trials only. The same pattern as in B is observed. D, Trial-by-trial confidence 

discriminant component amplitudes were positively correlated with accuracy. To visualise this relationship, 

single-trial component amplitudes were grouped into five bins. Error bars represent the standard error of the 

mean across subjects.  E, Mean amplitudes of the confidence discriminant component did not differ 

significantly between trials associated with High vs. Low prestimulus oscillatory power in the alpha band. 

White dots in B, C, and E represent individual subject means. 

 

We found that discrimination performance (Az) between the two confidence trial groups peaked, on 

average, 708 ms after stimulus onset (SD = 162ms, Fig. 2A). To visualise the spatial extent of this 

confidence component, we computed a forward model of the discriminating activity (Materials and 

methods), which can be represented as a scalp map (Fig. 2A). Importantly, both the temporal profile 

and electrode distribution of confidence-related discriminating activity appeared consistent with our 

previous work (Gherman and Philiastides, 2015) where we used stand-alone EEG to identify time-

resolved signatures of confidence during a face vs. car task. Together these observations are an 

indication that the temporal dynamics of decision confidence can be reliably captured using EEG 

data acquired inside the MR scanner, and that these early confidence-related signals may generalise 

across tasks. 

To provide additional support linking this discriminating component to choice confidence, we 

considered the Medium-confidence trials. Importantly, these trials can be regarded as “unseen” 

data, as they are independent from those used to train the classifier. We subjected these trials 

through the same neural generators (i.e. spatial projections) estimated during discrimination of High 

vs. Low confidence trials and, as expected from a graded quantity, found that the mean component 

amplitudes for Medium-confidence trials were situated between, and significantly different from, 
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those in the High- and Low-confidence trial groups (both p < .001, Fig. 2B). To verify whether 

modulation of the discriminant component amplitude by confidence might be purely explained by 

subjects’ performance on the task (i.e., accuracy of the direction decision), we conducted the same 

comparison using only correct trials, and showed that this pattern persisted (both p < .001, Fig. 2C). 

This additional test was motivated by the observation that trial-to-trial discriminant component 

amplitudes were positively correlated with decision accuracy (subject-averaged R = .13; one-sample 

t-test, t(23) = 8.6, p < .001, Fig. 2D), in line with an increase in confidence with performance.  

Further we addressed the possibility that the observed variability in the confidence discriminating 

component could be attributed to local fluctuations in attention, by conducting a serial 

autocorrelation analysis. As before, this model only explained a small fraction of the variance in 

component amplitudes (subject-averaged R2 = .03). We also assessed the influence of a neural signal 

known to correlate with attention (Thut et al., 2006) and predict visual discrimination (van Dijk et al., 

2008), namely occipitoparietal prestimulus alpha power. To do this, we separated trials into High vs. 

Low alpha power groups, individually for each subject, and compared the corresponding average 

discriminant component amplitudes. We found that these did not differ significantly between the 

two groups (paired t-test, p=.19, Fig. 2E). Finally, we note that variability in the confidence 

discriminant component was also independent of stimulus difficulty, as this was held constant across 

all trials. We further supported this by showing that discriminant component amplitudes between 

the two identical-stimulus experimental blocks were not significantly correlated (mean R = .02; one-

sample t-test, p = .39). 

 

fMRI correlates of reported confidence. To spatially characterise confidence signals in the fMRI 

data, we employed a general linear model approach (GLM). While this analysis was primarily aimed 

at identifying activation correlating with endogenous signatures of confidence derived from our EEG 

analysis at the time of the perceptual decision, our design matrix also included regressors accounting 
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for variance linked to subjects’ behavioural confidence reports, as well as other potentially 

confounding factors (task performance, response time, attention, and visual stimulation; see 

Materials and methods).  

 

Figure 3. Parametric modulation of the BOLD signal by reported confidence. A, Clusters showing positive 

correlation with confidence during the decision phase of the trial. B, Clusters showing negative correlation 

with confidence at the onset of the rating cue (i.e., rating phase). All results are reported at |Z|≥2.57, and 

cluster-corrected using a resampling procedure (minimum cluster size 162 voxels; see Materials and Methods). 

Ang Gyr, angular gyrus; Ant Ins, anterior insula; IFG (orb), inferior frontal gyrus (orbital region); LOFC, lateral 

orbitofrontal cortex; MedFG, medial frontal gyrus; MidFG, middle frontal gyrus; NAcc, nucleus accumbens; 

pgACC, pregenual anterior cingulate cortex; RLPFC, rostrolateral prefrontal cortex; SFG, superior frontal gyrus. 

The complete lists of activations are shown in Tables 1 and 2. 

 

Thus, we first inspected the activation patterns associated with confidence ratings during the 

perceptual decision phase of the trial (Fig. 3A).  The coordinates of all activations are listed in Table 
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1. We found that the BOLD response increased with reported confidence in the striatum, lateral 

orbitofrontal cortex (OFC), the ventral anterior cingulate cortex (ACC) – areas thought to play a role 

in human valuation and reward (O'Doherty, 2004; Rushworth et al., 2007; Grabenhorst and Rolls, 

2011) – as well as the right anterior middle frontal gyrus, amygdala/hippocampus, and visual 

association areas. Overall, these activations appear consistent with findings from previous studies 

that have identified spatial correlates of decision confidence (Rolls et al., 2010; De Martino et al., 

2013; Heereman et al., 2015; Hebart et al., 2016). Negative activations (i.e., regions showing 

increasing BOLD response with decreasing reported confidence) were found in the right 

supplementary motor area, dorsomedial prefrontal cortex, right inferior frontal gyrus (IFG), anterior 

insula/frontal operculum, in line with previous reports of decision uncertainty near the time of 

decision (Heereman et al., 2015; Hebart et al., 2016).  

   Peak MNI 
coordinates (mm) 

 

Brain region BA Laterality X Y Z Z value (peak) 

Positive parametric effect (Z > 2.57)       

Striatum (nucleus accumbens / ventral putamen) - L -10 4 -10 4.64 
 - R 12 4 -10 4.09 
Lateral orbitofrontal cortex 11/47 L -28 46 -8 4.46 
 47 R 32 38 -6 3.86 
Anterior cingulate cortex 32/10 R, L 2 36 6 4.19 
Lateral occipital cortex (inferior) 19 L -42 -68 -10 4.04 
 19 R 48 -82 8 3.13 
Middle frontal gyrus (anterior) 10 R 40 62 10 3.94 
Striatum (dorsal putamen / pallidum) - L -28 -18 2 3.72 
Occipital pole 17 R, L 4 -102 8 3.66 
Cerebellum - R 22 -46 -22 3.55 
Inferior temporal gyrus  37 R 54 -46 -16 3.51 

Negative parametric effect (Z < -2.57)       

Superior frontal gyrus (supplementary motor 
area) 

6 R 14 12 64 5.62 

Dorsomedial prefrontal cortex 6/32 R, L -6 12 52 4.13 
Inferior frontal gyrus 44/45 R 50 16 2 3.95 
Precentral gyrus 6 R 50 4 46 3.61 
 6 L -44 2 38 3.46 

MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere; BA, approximate Broadmann area. 

Table 1. Complete list of brain activations correlating with subjects’ confidence reports, at the time of stimulus 
onset (decision phase). 
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During the metacognitive report stage of the trial (i.e., rating phase, Fig. 3B), we found negative 

correlations with confidence ratings in extended networks (Table 2) which included regions of the 

rostrolateral prefrontal cortex (bilateral, right lateralised), middle frontal gyrus, superior frontal 

gyrus (extending along the cortical midline and into the medial prefrontal cortex), orbital regions of 

the IFG, angular gyrus, precuneus, posterior cingulate cortex (PCC), and regions of the occipital and 

middle temporal cortices. These activations are largely in line with research on the spatial correlates 

of choice uncertainty (Grinband et al., 2006; Fleming et al., 2012) and metacognitive evaluation 

(Fleming et al., 2012; Molenberghs et al., 2016). Finally, positive correlations were observed in the 

striatum and amygdala/hippocampus, as well as motor cortices. Intriguingly, the seemingly distinct 

confidence-related network activations at the time of the perceptual decision vs. metacognitive 

report suggest these regions may encode qualitatively distinct representations of confidence at 

different times within the trial, for example faster and more automated representations of 

confidence (see (Lebreton et al., 2015)) around the time of decision, in contrast to metacognitive 

representations, when explicit evaluation/report are required.  
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   Peak MNI 
coordinates (mm) 

 

Brain region BA Laterality X Y Z Z value (peak) 

Positive parametric effect (Z > 2.57)       

Amygdala / Hippocampus - R 28 -10 -14 4.16 
 - L -28 -12 -12 3.27 
Putamen - L -22 18 2 4.01 
Precentral gyrus 6/4 L -38 -10 70 3.87 
 6 R 38 -14 70 3.04 

Negative parametric effect (Z < -2.57)       

Angular gyrus 39 L -58 -56 34 5.87 
Angular gyrus 39 R 60 -54 36 5.82 
Superior frontal gyrus / RLPFC 10/9 R 24 58 26 5.84 
 10/9 L -20 52 26 5.2 
Inferior frontal gyrus (orbital area) / Anterior insula 13/45 L -44 24 -8 5.58 
 13/45 R 42 22 -6 5.26 
Middle frontal gyrus 8/9 R 44 20 42 5.56 
 8/9 L -40 20 42 4.92 
Medial frontal gyrus 8/9 L, R 0 42 34 5.19 
Inferior frontal gyrus (triangular area) 45 L -50 22 6 5.02 
 45 R 58 30 8 4.94 
Precuneus 7 L, R -2 -68 38 4.51 
Occipitotemporal gyrus 37 L -38 -62 -22 4.34 
Posterior cingulate cortex 23 L, R -2 -26 32 4.76 
Middle temporal gyrus (anterior) 20/21 R 50 2 -34 4.36 
Thalamus - R 10 -10 2 4.35 
 - L -12 -10 6 3.82 
Lingual gyrus 18 L -2 -80 0 4.14 
Calcarine cortex 17 R 16 -90 2 4.14 
 17 L -12 -92 2 3.93 
Middle temporal gyrus (posterior) 21/37 R 56 -34 -12 3.93 
 21 L -54 -30 -8 3.82 
Inferior occipital gyrus  18 R 28 -90 -10 3.19 
Lateral occipital cortex (superior) 19 R 44 -74 20 3.58 
 19 L -40 -88 20 3.43 

MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere; BA, approximate Broadmann area; 
RLPFC, rostrolateral prefrontal cortex 
 

Table 2. Complete list of brain activations correlating with subjects’ confidence reports, at the time of 

confidence rating (rating phase). 

fMRI correlates of EEG-derived confidence. We used the single-trial variability associated with the 

confidence discriminating component to construct a parametric EEG-derived fMRI regressor (YCONF 

regressor), in order to identify potential brain regions encoding internal representations of early 

confidence as captured by this EEG component.  
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Crucial to our approach was modelling the fMRI activation using time-resolved, 

electrophysiologically-derived signatures of confidence which were specific to each subject. These 

measures captured the variability in the neural representation of confidence around the perceptual 

decision itself (i.e., prior to behavioural response), and at a time point of maximum confidence 

discrimination, thus allowing us to detect its associated spatial correlates with increased temporal 

and spatial precision, relative to what behavioural ratings and fMRI measurements alone permitted. 

Importantly, as these signals were only partially correlated with reported confidence, they could 

potentially provide additional explanatory power in our fMRI model.  

This EEG-informed fMRI analysis revealed a large cluster in the ventromedial prefrontal cortex 

(VMPFC, peak MNI coordinates [-8 40 -14]), extending into the subcallosal region and ventral 

striatum, and a smaller cluster in the right precentral gyrus (peak MNI coordinates [30 -20 64]), 

where the BOLD response correlated positively with the EEG-derived confidence discriminating 

component (Fig. 4). Recent studies have linked the VMPFC to confidence in value-based as well as 

other complex decisions (De Martino et al., 2013; Lebreton et al., 2015), however this region is not 

typically associated with confidence in perceptual decisions (though see (Heereman et al., 2015)). 

This finding is consistent with recent work proposing a domain-general role for the VMPFC in 

encoding confidence (Lebreton et al., 2015), and raises the possibility that this region holds 

information about early confidence signals emerging prior to the execution of a behavioural choice.  

Importantly, we note that the EEG-derived measures, which informed the fMRI analysis, were 

independent of task difficulty, accuracy, or attention, as discussed in previous sections. Additionally, 

the GLM model included separate regressors controlling for these variables, and other potential 

confounds (see Materials and Methods). In particular, our simultaneous EEG/fMRI approach allowed 

the introduction of an additional level of control for attentional confounds in the fMRI analysis, 

namely by including the same EEG-derived index of attention as a nuisance predictor in the GLM 

model. This regressor showed significant correlation with the intraparietal regions and the frontal 
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eye fields, consistent with the dorsal attentional network thought to be involved in top-down control 

of visual attention (Corbetta and Shulman, 2002). 

 

 

Figure 4. Positive parametric modulation of the BOLD signal by EEG-derived single-trial confidence measures 

(see Materials and Methods), during the decision phase of the trial. Results are reported at |Z|≥2.57, and 

cluster-corrected using a resampling procedure (minimum cluster size 162 voxels). VMPFC, ventromedial 

prefrontal cortex.  

 

Next, we asked whether BOLD activation observed in the VMPFC during the perceptual decision 

period was uniquely associated with the EEG-derived YCONF regressor, i.e., over and above what 

could be explained by the behavioural confidence ratings (i.e., the RatingsDEC regressor, Fig. 3A) 

alone. To test this, we compared mean parameter estimates (z-scored beta values) associated with 

the two predictors, within the VMPFC region identified with the YCONF regressor. We found that, 

across subjects, these were significantly higher for the YCONF regressor than for the RatingsDEC 
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regressor (paired t-test, t (23) = 9.48, p<.001). Moreover, VMPFC parameter estimates for the YCONF 

regressor remained significantly higher than those associated with the RatingsDEC, even when the 

latter were obtained with a control GLM model that did not include YCONF as a predictor (paired t-

test, t (23) = 7.99, p<.001). Taken together, these observations indicate that our EEG-derived 

endogenous measures of confidence were better predictors of VMPFC activity at the time of 

decision than the post-decision behavioural reports. 

Interestingly, the scalp map associated with our confidence discriminating EEG component showed a 

diffused topography including contributions from several centroparietal electrode sites. This 

emphasizes that spatial inferences made on the basis of scalp maps alone are limited due to volume 

conduction effects and field spread on the scalp-measured EEG signals (thus further highlighting the 

utility of the simultaneous EEG/fMRI method in locating these signals). This being considered, 

another possibility is that the observed spatial pattern reflects sources of shared variance between 

the EEG component and confidence ratings themselves (which was otherwise controlled for in our 

original fMRI analysis). To test this, we ran a separate control GLM analysis where the confidence 

ratings (RatingsDEC) regressor was removed, and found that with this model the YCONF regressor 

explained additional variability of the BOLD signal within several regions, including precuneus/PCC 

regions of the parietal cortex. Notably, these regions have been previously shown to scale with 

confidence (De Martino et al., 2013; White et al., 2014) and hypothesised to play a role in 

metacognitive ability (McCurdy et al., 2013). 

Psychophysiological interaction (PPI) analysis. Having identified the VMPFC as uniquely encoding a 

confidence signal early on in the trial (i.e., near the time of the perceptual decision), we next sought 

to examine potential functional interactions with regions holding neural representations of 

confidence at later stages, during explicit metacognitive evaluation/report. To this end, we 

conducted a functional connectivity analysis, using a psychophysiological interaction (PPI) approach 

(see Materials and methods). The PPI allows one to look for regions in the brain where the fMRI 
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response is modulated by the interaction between ongoing activation in a seed region (i.e., a 

physiological variable) and an experimental condition (i.e., psychological variable) (O'Reilly et al., 

2012). Here, we used the VMPFC as a seed and looked for regions across the brain in where BOLD 

activation time series correlated with that of the seed during the perceptual decision phase of the 

trial (i.e., defined here as the trial-by-trial time window between onset of the motion stimulus and 

subject’s explicit commitment to choice). As we were primarily interested in interactions with 

networks involved in confidence processing during explicit metacognitive evaluation, we performed 

a conjunction analysis to examine the spatial overlap with these regions (as informed by our 

previous GLM analysis, see Fig. 3B). Note that during the rating phase of the trial, we observed 

predominantly negative correlations with confidence (whereas the EEG-derived confidence 

regressor at the time of choice revealed positive correlations with VMPFC signals). Accordingly, we 

sought to identify negative couplings with VMPFC activity in the PPI. Indeed, this analysis revealed 

two clusters in the left anterior prefrontal cortex (aPFC, peak MNI coordinates [-40 46 4]) and right 

dorsolateral prefrontal cortex (dlPFC, peak MNI coordinates [48 22 30]), respectively (Fig. 5), which 

showed increased negative correlation with VMPFC activation during the perceptual decision.  
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Figure 5. Psychophysiological interaction (PPI) analysis showing functional connectivity with the ventromedial 

prefrontal cortex (i.e., the seed region of interest; approximate location shown in green) during the perceptual 

decision . Displayed here are PPI activations that overlap spatially with those regions showing parametric 

modulation with subjective confidence at the time of metacognitive report (see Fig. 3B). Two clusters in the 

anterior and dorsolateral prefrontal cortices, respectively (shown in blue), show stronger negative correlation 

with the VMPFC during the perceptual decision. All results are reported at |Z|≥2.57, and cluster-corrected 

using a resampling procedure (minimum cluster size 162 voxels). 

 

Discussion 

Here, we used a simultaneous EEG/fMRI approach to investigate the neural correlates of confidence 

during perceptual decisions. We found that BOLD activation in a region of the VMPFC was uniquely 

explained by the single-trial variability in an early EEG-derived neural signature of confidence 

occurring prior to subjects’ behavioural expression of response. Importantly, we showed that this 

activity was additional to what could be explained by subjects’ behavioural reports alone. Our results 

provide empirical support for the involvement of the VMPFC in confidence of perceptual decisions, 

consistent with recent evidence for a domain-general role of the VMPFC in encoding decision 
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confidence. In turn this suggests that the VMPFC may support an early readout of confidence that 

precedes explicit metacognitive evaluation.  

Our method allowed us to capitalise on the increased explanatory power inherent to our time-

resolved internal measures of confidence, to identify relevant activation in the fMRI data. This, in 

turn, provided a more precise spatiotemporal characterisation than allowed by fMRI measures 

alone. The observation that the VMPFC holds information about confidence signals occurring prior 

to behavioural response is intriguing, as it raises novel possibilities for the role of this region in the 

confidence processing stream. Specifically, the VMPFC may encode early confidence representations 

(at, or near, the time of decision), which in turn could have important adaptive functions in 

influencing action that follows from the perceptual decision, and potentially informing choice itself 

(Lak et al., 2017). Additionally, such signals may be qualitatively different from confidence estimates 

available at the time of report as the latter are likely to undergo additional processing that continues 

after a choice is made (Resulaj et al., 2009; Pleskac and Busemeyer, 2010; Moran et al., 2015).  

 Interestingly, computational/neurobiological accounts of confidence processing have proposed 

architectures by which a first-level form of confidence in a decision emerges as a natural property of 

the same neural processes that support the decision, which in turn is read out (i.e., summarised) by 

separate higher-order monitoring network(s) (Insabato et al., 2010; Meyniel et al., 2015; Pouget et 

al., 2016). As the VMPFC is not typically known to support perceptual decision processes, the VMPFC 

confidence signals we observe here are thus likely to represent a readout of confidence-related 

information.  

Consistent with a role as a monitoring module providing a confidence readout, recent work suggests 

the VMPFC may encode confidence in a task-independent and possibly domain-general manner. 

Specifically, several functional neuroimaging studies have shown positive modulation of VMPFC 

activation by confidence, across a range of decision making tasks (Rolls et al., 2010; De Martino et 

al., 2013; Heereman et al., 2015; Lebreton et al., 2015). Notably, one study showed that fMRI 
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activation in the VMPFC was modulated by confidence across four different tasks involving both 

value-based and non-value based rating judgments (Lebreton et al., 2015). Furthermore, evidence 

from memory-related decision making research appears to also implicate the VMPFC in confidence 

processing (see Hebscher and Gilboa (2016) for a review). Our work, therefore, complements the 

existing literature by bringing empirical support for the involvement of VMPFC in perceptual decision 

making. 

Nonetheless, confidence representations in the VMPFC may in themselves not be sufficient or 

available in an appropriate form for metacognitive report (Grimaldi et al., 2015), thus requiring 

further read-out from higher-order networks (Insabato et al., 2010) such as the prefrontal cortex 

(Fleming et al., 2012; De Martino et al., 2013). In line with this hypothesis, we showed evidence for a 

functional interaction between the VMPFC and regions of the prefrontal cortex that hold neural 

representations of confidence during explicit metacognitive reports. This functional link was 

observed in the perceptual decision phase of the trial, potentially indicative of an early transfer of 

confidence-related information to higher-order regions for metacognitive appraisal. 

The observation that the VMPFC, a region known for its involvement in choice-related subjective 

valuation (Philiastides et al., 2010; Rangel and Hare, 2010; Bartra et al., 2013; Pisauro et al., 2017) 

encodes confidence signals during perceptual decisions raises an interesting possibility for 

interpreting our results. Our behavioural paradigm did not involve an explicit reward/feedback 

manipulation and accordingly, the observed confidence-related activation cannot be interpreted as 

an externally driven value signal. Instead, as has been suggested previously (Barron et al., 2015; 

Lebreton et al., 2015), a likely explanation is that, by being an internal measure of performance 

accuracy, confidence is inherently valuable. Such a signal may represent implicit reward and possibly 

act as a teaching signal (Daniel and Pollmann, 2012; Guggenmos et al., 2016; Lak et al., 2017) to 

drive learning (e.g., perceptual learning (Law and Gold, 2009; Kahnt et al., 2011; Diaz et al., 2017).  
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In line with this interpretation, Hebart et al. (2016) observed positive correlation with confidence in 

the ventral striatum, a region known for its involvement in reward (O'Doherty et al., 2004). 

Authorssuggest that confidence signals in this region may play a role in confidence-driven learning, 

such that feelings of reward associated with a choice reinforce optimal behavior on subsequent 

choices. A different study (Guggenmos et al., 2016) demonstrated that regions of the human 

mesolimbic dopamine system, namely the striatum and ventral tegmental area, encoded both 

anticipation and prediction error related to decision confidence (i.e., in the absence of feedback), 

similar to what is typically observed during reinforcement learning tasks where feedback is explicit 

(Preuschoff et al., 2006; Fouragnan et al., 2015; Fouragnan et al., In Press). Importantly, these effects 

were predictive of subjects’ perceptual learning efficiency. Thus, confidence in valuation/reward 

networks could be propagated back to the decision systems to optimize the dynamics of the decision 

process, possibly by means of a reinforcement-learning mechanism.  

 

In conclusion, we showed that by employing a simultaneous EEG/fMRI approach, we were able to 

localise an early representation of confidence in the brain with higher spatiotemporal precision than 

allowed by fMRI alone. In doing so, we provided novel empirical evidence for the encoding of a 

generalised confidence readout signal in the VMPFC preceding explicit metacognitive report. Our 

findings provide a starting point for further investigations into the neural dynamics of confidence 

formation in the human brain and its interaction with other cognitive processes such as learning, and 

the decision itself.  

 

Materials and methods 

Participants. Thirty subjects participated in the simultaneous EEG/fMRI experiment. Four were 

subsequently removed from the analysis due to near chance (n=3) and ceiling (n=1) performance, 
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respectively, on the perceptual discrimination task. Additionally, one subject was excluded whose 

confidence reports covered only a limited fraction of the provided rating scale, thus yielding an 

insufficient number of trials to be used in the EEG discrimination analysis (see below). Finally, one 

subject had to be removed due to poor (chance) performance of the EEG decoder (see below). All 

results presented here are based on the remaining 24 subjects (age range 20-32 years). All were 

right-handed, had normal or corrected to normal vision, and reported no history of neurological 

problems. The study was approved by the College of Science and Engineering Ethics Committee at 

the University of Glasgow (CSE01355) and informed consent was obtained from all participants. 

Stimuli and task. All stimuli were created and presented using the PsychoPy software (Peirce, 2007). 

They were displayed via an LCD projector (frame rate=60Hz) on a screen placed at the rear opening 

of the bore of the MRI scanner, and viewed through a mirror mounted on the head coil (distance to 

screen = 95cm). Stimuli consisted of random dot kinematograms (Newsome and Pare, 1988), 

whereby a proportion of the dots moved coherently to one direction (left vs. right), while the 

remainder of the dots moved at random. Specifically, each stimulus consisted of a dynamic field of 

white dots (number of dots=150; dot diameter=0.1 degrees of visual angle, dva; dot life time=4 

frames; dot speed=6 dva/s), displayed centrally on a grey background through a circular aperture 

(diameter=6 dva). Task difficulty was controlled by manipulating the proportion of dots moving 

coherently in the same direction (i.e., motion coherence). 

We aimed to maintain overall performance on the main perceptual decision task consistent across 

subjects (i.e., near perceptual threshold, at approximately 75% correct). For this reason, task 

difficulty was calibrated individually for each subject on the basis of a separate training session, prior 

to the day of the main experiment.  

Training. To first familiarise subjects with the random dot stimuli and facilitate learning on the 

motion discrimination task, subjects first performed a short simplified version of the main task 

(lasting approx. 10 minutes), where feedback was provided on each trial. The task, which required 
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making speeded direction discriminations of random dot stimuli (see below), began at a low-

difficulty level (motion coherence = 40%) and gradually increased in difficulty in accordance with 

subjects’ online behavioural performance (a 3-down-1-up staircase procedure, where three 

consecutive correct responses resulted in a 5% decrease in motion coherence, whereas one 

incorrect response yielded a 5% increase). This was followed by a second, similar task, which served 

to determine subject-specific psychophysical thresholds. Seven motion coherence levels (5%, 8%, 

12%, 18%, 28%, 44%, 70%) were equally and randomly distributed across 350 trials. The proportion 

of correct responses was separately computed for each motion coherence level, and a logarithmic 

function was fitted through the resulting values in order to estimate an optimal motion coherence 

yielding a mean performance of approximately 75% correct. Subjects who showed near-chance 

performance across all coherence levels or showed no improvement in performance with increasing 

motion coherence were not tested further and did not participate in the main experiment. No 

feedback was given for this or any of the subsequent tasks. 

Main task. On the day of the main experiment, subjects practiced the main task once outside the 

scanner, and again inside the scanner prior to the start of the scan (a short 80 trial block each time). 

Subjects made left vs. right direction discriminations of random dot kinematograms and rate how 

confident they were in their choices, on a trial-by-trial basis (Fig. 1A).  

Each trial began with a random dot stimulus lasting for a maximum of 1.2 s, or until the subject 

made a behavioural response. Subjects were instructed to respond as quickly as possible, and had a 

time limit of 1.35 s to do so. The message “Oops! Too slow” was displayed if this time limit was 

exceeded or no direction response was made. Once the dot stimulus disappeared, the screen 

remained blank until the 1.2 s stimulation period elapsed and through an additional random delay 

(1.5-4 s). Next, subjects were presented with a rating scale for 3 s, during which they reported their 

confidence in the previous direction decision. The confidence scale was represented intuitively by 

means of a white horizontal bar of linearly varying thickness, with the thick end representing high 
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confidence. Its orientation on the horizontal axis (thin-to-thick vs. thick-to-thin) informed subjects of 

the response mapping, and this was equally and randomly distributed across trials to control for 

motor preparation effects. To make a confidence response, subjects moved an indicator (a small 

white triangle) along a 9-point marked line. The indicator changed colour from white to yellow when 

a confidence response was selected and this remained on the screen until the 3 s elapsed). A final 

delay (blank screen, jittered between 1.5-4 s) ended the trial. Failing to provide either a direction or 

a confidence response within the respective allocated time limits on a given trial rendered it invalid, 

and this was subsequently removed from further analyses. This resulted in a total fraction of .04 (.02 

and .02, respectively) of trials being discarded.  

Subjects performed 2 experimental blocks of 160 trials each, corresponding to two separate fMRI 

runs. Each block contained two short (30 s) rest breaks, during which the MR scanner continued to 

run. Subjects were instructed to remain still throughout the entire duration of the experiment, 

including during rest breaks and in between scans. Motion coherence was held constant across 

trials, at the subject-specific level estimated during training. The direction of the dots was equally 

and randomly distributed across trials. To control for confounding effects of low-level trial-to-trial 

variability in stimulus properties on decision confidence, an identical set of stimuli was used in the 

two experimental blocks. Specifically, for each subject, the random seed, which controlled dot 

stimulus motion parameters in the stimulus presentation software was set to a fixed value. This 

manipulation allowed for subsequent control comparisons between pairs of identical stimuli.   

Subjects were encouraged to explore the entire scale when making their responses and to abstain 

from making a confidence response on a given trial if they became aware of having made a motor 

mapping error (this was in an effort to avoid “confident errors”). They were instructed to make their 

responses as quickly and accurately as possible, and provide a response on every trial. All 

behavioural responses were executed using the right hand, on an MR-compatible button box. 
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EEG data acquisition. EEG data was collected using an MR-compatible EEG amplifier system (Brain 

Products, Germany). Continuous EEG data was recorded using the Brain Vision Recorder software 

(Brain Products, Germany) at a sampling rate of 5000 Hz. We used 64 Ag/AgCl scalp electrodes 

positioned according to the 10-20 system, and one nasion electrode. Reference and ground 

electrodes were embedded in the EEG cap and were located along the midline, between electrodes 

Fpz and Fz, and between electrodes Pz and Oz, respectively. Each electrode had in-line 10 kOhm 

surface-mount resistors to ensure subject safety. Input impedance was adjusted to <25 kOhm for all 

electrodes. Acquisition of the EEG data was synchronized with the MR data acquisition (Syncbox, 

Brain Products, Germany), and MR-scanner triggers were collected separately to enable offline 

removal of MR gradient artifacts from the EEG signal. Scanner trigger pulses were lengthened to 

50μs using a built-in pulse stretcher, to facilitate accurate capture by the recording software. 

Experimental event markers (including participants’ responses) were synchronized, and recorded 

simultaneously, with the EEG data. 

EEG data processing. Preprocessing of the EEG signals was performed using Matlab (Mathworks, 

Natick, MA). EEG signals recorded inside an MR scanner are contaminated with gradient artifacts 

and ballistocardiogram (BCG) artifacts due to magnetic induction on the EEG leads. To correct for 

gradient-related artifacts, we constructed average artifact templates from sets of 80 consecutive 

functional volumes centred on each volume of interest, and subtracted these from the EEG signal. 

This process was repeated for each functional volume in our dataset. Additionally, a 12 ms median 

filter was applied in order to remove any residual spike artifacts. Further, we corrected for standard 

EEG artifacts and applied a 0.5–40 Hz band-pass filter in order to remove slow DC drifts and high 

frequency noise. All data were downsampled to 1000 Hz.  

To remove eye movement artifacts, subjects performed an eye movement calibration task prior to 

the main experiment (with the MRI scanner turned off, to avoid gradient artifacts), during which 

they were instructed to blink repeatedly several times while a central fixation cross was displayed in 
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the centre of the computer screen, and to make lateral and vertical saccades according to the 

position of the fixation cross. We recorded the timing of these visual cues and used principal 

component analysis to identify linear components associated with blinks and saccades, which were 

subsequently removed from the EEG data (Parra et al., 2005).  

Next, we corrected for cardiac-related (i.e., ballistocardiogram, BCG) artifacts. As these share 

frequency content with the EEG, they are more challenging to remove. To minimise loss of signal 

power in the underlying EEG signal, we adopted a conservative approach by only removing a small 

number of subject-specific BCG components, using principal component analysis. We relied on the 

single-trial classifiers to identify discriminating components that are likely to be orthogonal to the 

BCG. BCG principal components were extracted from the data after the data were first low-pass 

filtered at 4 Hz to extract the signal within the frequency range where BCG artifacts are observed. 

Subject-specific principal components were then determined (average number of components 

across subjects: 1.8). The sensor weightings corresponding to those components were projected 

onto the broadband data and subtracted out. Finally, data were baseline corrected by removing the 

average signal during the 100 ms prestimulus interval. 

Single-trial EEG analysis. To increase statistical power of the EEG data analysis, trials were separated 

into three confidence groups (Low, Medium, High), on the basis of the original 9-point confidence 

rating scale. Specifically, we isolated High- and Low-confidence trials by pooling across each subject’s 

three highest and three lowest ratings, respectively. To ensure robustness of our single trial EEG 

analysis, we imposed a minimum limit of 50 trials per confidence trial group. For those data sets 

where subjects had an insufficient number of trials in the extreme ends of the confidence scale, 

neighbouring confidence bins were included to meet this limit.   

We used a single-trial multivariate discriminant analysis, combined with a sliding window approach 

(Parra et al., 2005; Sajda et al., 2009) to discriminate between High and Low confidence trials in the 

stimulus-locked EEG data. This method aims to estimate, for predefined time windows of interest, 
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an optimal combination of EEG sensor linear weights (i.e., a spatial filter) which, applied to the 

multichannel EEG data, yields a one-dimensional projection (i.e., a “discriminant component”) that 

maximally discriminates between the two conditions of interest. Importantly, unlike univariate trial-

average approaches for event-related potential analysis, this method spatially integrates information 

across the multidimensional sensor space, thus increasing signal-to-noise ratio whilst simultaneously 

preserving the trial-by-trial variability in the signal, which may contain task-relevant information. In 

our data, we identified confidence-related discriminating components,  (t), by applying a spatial 

weighting vector   to our multidimensional EEG data  (t), as follows:  

 ( )     ( )   ∑     ( )
 
                                          (1) 

 

where   represents the number of channels, indexed by  , and   indicates the transpose of the 

matrix. To estimate the optimal discriminating spatial weighting vector  , we used logistic 

regression and a reweighted least squares algorithm (Jordan and Jacobs, 1994). We applied this 

method to identify   for short (60 ms) overlapping time windows centred at 10 ms-interval time 

points, between -100 and 1000 ms relative to the onset of the random dot stimulus (i.e., the 

perceptual decision phase of the trial). This procedure was repeated for each subject and time 

window. Applied to an individual trial, spatial filters ( ) obtained this way produce a measurement 

of the discriminant component amplitude for that trial. In separating the High and Low trial groups, 

the discriminator was designed to map the component amplitudes for one condition to positive 

values and those of the other condition to negative values. Here, we mapped the High confidence 

trials to positive values and the Low confidence trials to negative values, however note that this 

mapping is arbitrary. 

 

To quantify the performance of the discriminator for each time window, we computed the area 

under a receiver operating characteristic (ROC) curve (i.e., the Az value), using a leave-one-out trial 
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procedure (Duda et al., 2001). We determined significance thresholds for the discriminator 

performance using a bootstrap analysis whereby trial labels were randomised and submitted to a 

leave-one-out test. This randomisation procedure was repeated 500 times, producing a probability 

distribution for Az, which we used as reference to estimate the Az value leading to a significance 

level of p<0.01. 

 

Given the linearity of our model we also computed scalp projections of the discriminating 

components resulting from Eq. 1 by estimating a forward model for each component: 

 

   
   

   
                          (2) 

 

where the EEG data ( ) and discriminating components ( ) are now in a matrix and vector notation, 

respectively, for convenience (i.e., both   and   now contain a time dimension). Equation 2 

describes the electrical coupling of the discriminating component   that explains most of the activity 

in  . Strong coupling indicates low attenuation of the component   and can be visualised as the 

intensity of vector  .  

 

Single-trial power analysis. We calculated prestimulus alpha power (8-12Hz) in the 400 ms epoch 

beginning at -500 ms relative to the onset of the random dot stimulus. To do this, we used the 

multitaper method (Mitra and Pesaran, 1999) as implemented in the FieldTrip toolbox for Matlab 

(http://www.ru.nl/neuroimaging/fieldtrip). Specifically, for each epoch data were tapered using 

discrete prolate spheroidal sequences (2 tapers for each epoch; frequency smoothing of ±4Hz) and 

Fourier transformed. Resulting frequency representations were averaged across tapers and 

frequencies. Single-trial power estimates were then extracted from the occipitoparietal sensor with 

the highest overall alpha power and baseline normalised through conversion to decibel units (dB). 
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MRI data acquisition. Imaging was performed at the Centre for Cognitive Neuroimaging, Glasgow, 

using a 3-Tesla Siemens TIM Trio MRI scanner (Siemens, Erlangen, Germany) with a 12-channel head 

coil. Cushions were placed around the head to minimize head motion. We recorded two 

experimental runs of 794 whole-brain volumes each, corresponding to the two blocks of trials in the 

main experimental task. Functional volumes were acquired using a T2*-weighted gradient echo, 

echo-planar imaging sequence (32 interleaved slices, gap: 0.3 mm, voxel size: 3 × 3 × 3 mm, matrix 

size: 70 × 70, FOV: 210 mm, TE: 30 ms, TR: 2000 ms, flip angle: 80°). Additionally, a high-resolution 

anatomical volume was acquired at the end of the experimental session using a T1-weighted 

sequence (192 slices, gap: 0.5 mm, voxel size: 1 × 1 × 1 mm, matrix size: 256 × 256, FOV: 256 mm, TE: 

2300 ms, TR: 2.96 ms, flip angle: 9°), which served as anatomical reference for the functional scans. 

fMRI preprocessing. The first 10 volumes prior to task onset were discarded from each fMRI run to 

ensure a steady-state MR signal. Additionally, 13 volumes were discarded from the post-task period 

at the end of each block. The remaining 771 volumes were used for statistical analyses. Pre-

processing of the MRI data was performed using the FEAT tool of the FSL software 

(http://www.fmrib.ox.ac.uk/fsl) and included slice-timing correction, high-pass filtering (>100 s), and 

spatial smoothing (with a Gaussian kernel of 8 mm full width at half maximum), and head motion 

correction (using the MCFLIRT tool). The motion correction preprocessing step generated motion 

parameters which were subsequently included as regressors of no interest in the general linear 

model (GLM) analysis (see fMRI analysis below). Brain extraction of the structural and functional 

images was performed using the Brain Extraction tool (BET). Registration of EPI images to standard 

space (Montreal Neurological Institute, MNI) was performed using the Non-linear Image Registration 

Tool with a 10-mm warp resolution. The registration procedure involved transforming the EPI images 

into an individual’s high-resolution space (with a linear, boundary-based registration algorithm, 

(Greve and Fischl, 2009)) prior to transforming to standard space. Registration outcome was visually 

checked for each subject to ensure correct alignment. 
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fMRI analysis. Whole-brain statistical analyses of functional data were conducted using a general 

linear model (GLM) approach, as implemented in FSL (FEAT tool):  

                                                                                                            (3) 

where   represents the BOLD response time series for a given voxel, structured as a T×1 (T time 

samples) column vector, and   represents the T×N (N regressors) design matrix, with each column 

representing one of the psychological regressors (see GLM analysis below for details), convolved 

with a canonical hemodynamic response function (double-gamma function).   represents the 

parameter estimates (i.e., regressor betas) resulting from the GLM analysis in the form of a N × 1 

column vector. Lastly, ε is a T × 1 column vector of residual error terms. A first-level analysis was 

performed to analyse each subject’s individual runs. These were then combined at the subject-level 

using a second-level analysis (fixed effects). Finally, a third-level mixed-effects model (FLAME 1) was 

used to combine data across all subjects. 

Simultaneous EEG/fMRI analysis. With the combined EEG/fMRI approach, we sought to identify 

confidence-related activation in the fMRI surpassing what could be explained by the relevant 

behavioural predictors alone. In particular, we looked for brain regions where BOLD responses 

correlated with the confidence-discriminating component derived from the EEG analysis. Our 

primary motivation behind this approach was the hypothesis that endogenous trial-by-trial 

variability in the confidence discriminating EEG component (near the time of perceptual decision, 

and prior to behavioural response) would be more reflective of early internal representations of 

confidence at the single-trial level, compared to the metacognitive reports which are provided post-

decisionally and therefore likely to be subjected to additional processes. We predicted that the 

simultaneous EEG/fMRI approach would enable identification of latent brain states that might 

remain unobserved with a conventional analysis approach. To this end, we extracted trial-by-trial 

amplitudes of  ( ) (resulting from Eq. 1) at the time window of maximum confidence discrimination, 
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and used these to build a BOLD predictor, which we henceforth refer to as the YCONF regressor. 

Importantly, to avoid possible confounding effects of motor preparation/response, the time of this 

component was determined on a subject-specific basis, by only considering the period prior to the 

behavioural choice (mean peak discrimination time = 708 ms from stimulus onset, SD=162 ms). Thus, 

on average this was selected 287ms (SD=171 ms) prior to each subject’s mean response time.  

Note that the trial-by-trial variability in our EEG component amplitudes is driven mostly by cortical 

regions found in close proximity to the recording sensors and to a lesser extent by distant (e.g., 

subcortical) structures. Nonetheless, an advantage of our EEG-informed fMRI predictors is that they 

can also reveal relevant fMRI activations within deeper structures, provided that their BOLD activity 

covaries with that of the cortical sources of our EEG signal. 

GLM analysis. We designed our GLM model to account for variance in the BOLD signal at two key 

stages of the trial, namely the perceptual decision period (beginning at the onset of the random dot 

visual stimulus) and the metacognitive evaluation/rating (beginning at the onset of the rating scale 

display), respectively. A total of 10 regressors were included in the model. Our primary predictor of 

interest was the EEG-derived endogenous measure of confidence (YCONF regressor). We modelled 

this as a stick function (duration = 0.1 s) locked to the stimulus onset, with event amplitudes 

parametrically modulated by the trial-to-trial variability in the confidence discriminating component 

 ( ). To ensure variance explained by this regressor was unique (i.e., not explained by subjects’ 

behavioural reports), we included a second regressor whose event amplitudes were parametrically 

modulated by confidence ratings, and which was otherwise identical to the YCONF regressor (i.e., 

RatingsDEC regressor, duration = 0.1 s, locked to stimulus onset). Importantly, YCONF amplitudes were 

only moderately correlated with behavioural confidence ratings (mean R=.39, SD=.07), thus allowing 

us to exploit additional explanatory power inherent to this regressor. Other regressors of no interest 

for the perceptual decision stage included: one regressor parametrically modulated by prestimulus 

alpha power in the EEG signal (to control for potential attentional baseline effects), one categorical 
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regressor (1/0) accounting for variability in response accuracy, and one unmodulated regressor (all 

event amplitudes set to 1) modelling stimulus-related visual responses of no interest across both 

valid and non-valid (missed) trials (all event durations = 0.1 s, locked to stimulus onset). To control 

for motor preparation/response, we also included a parametric regressor modulated by subjects’ 

reaction time on the direction discrimination task (duration = 0.1 s, locked to the time of behavioural 

response).  

Additionally, locked to the onset of the metacognitive rating period, we included one parametric 

regressor (duration = 0.1 s) with event amplitudes modulated by subjects’ confidence ratings, one 

boxcar regressor with duration equivalent to subjects’ active behavioural engagement in confidence 

rating (to minimise effects relating to motor processes), and one unmodulated regressor (duration = 

0.1 s). Lastly, we included one categorical boxcar regressor (1/0) to model non-task activation (i.e., 

rest breaks within each run). Motion correction parameters obtained from fMRI preprocessing were 

entered as additional covariates of no interest.  

Resampling procedure for fMRI thresholding. To estimate a significance threshold for our fMRI 

statistical maps whilst correcting for multiple comparisons, we performed a nonparametric 

permutation analysis that took into account the a priori statistics of the trial-to-trial variability in our 

primary regressor of interest (YCONF), in a way that trades off cluster size and maximum voxel Z-score 

(Debettencourt et al., 2011). For each resampled iteration, we maintained the onset and duration of 

the regressor identical, whilst shuffling amplitude values across trials, runs and subjects. Thus, the 

resulting regressors for each subject were different as they were constructed from a random 

sequence of regressor amplitude events. This procedure was repeated 200 times. For each of the 

200 resampled iterations, we performed a full 3-level analysis (run, subject, and group). Our design 

matrix included the same regressors of non-interest used in all our GLM analysis. This allowed us to 

construct the null hypothesis H0, and establish a threshold on cluster size and Z-score based on the 

cluster outputs from the permuted parametric regressors. Specifically, we extracted cluster sizes 
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from all activations exceeding a minimal cluster size (5 voxels) and Z-score (2.57 per voxel) for 

positive correlations with the permuted parametric regressors. Finally, we examined the distribution 

of cluster sizes (number of voxels) for the permuted data and found that the largest 5% of cluster 

sizes exceeded 162 voxels. We therefore used these results to derive a corrected threshold for our 

statistical maps, which we then applied to the clusters observed in the original data (that is, Z=2.57, 

minimum cluster size of 162 voxels, corrected at p=0.05). 

 

Psychophysiological interaction analysis. We conducted a psychophysiological (PPI) analysis to 

explore potential functional connectivity between the region of the VMPFC found to uniquely 

explain trial-to-trial variability in our electrophysiologically-derived measures of confidence, and the 

rest of the brain, during the perceptual decision phase of the trial.  To carry out the PPI analysis, we 

first extracted the time-series data from the seed region. Specifically, we identified the cluster of 

interest at the group level (i.e., in standard space) by applying the cluster correction procedure 

described in the previous section. Using this as a template, we constructed subject-specific masks of 

the voxels exhibiting the strongest correlation with the VMPFC region of interest, and back-

projected these into the functional space of each individual. Resulting masks were used to compute 

average time-series data, separately for each subject and functional run, which subsequently served 

as the physiological regressor(s) in the PPI model. To carry out the PPI analysis, we performed a new 

GLM analysis. This included the following regressors, locked to the time of stimulus onset: (1) an 

unmodulated regressor (all event amplitudes set to 1), (2) the physiological regressor (time course of 

the VMPFC seed), (3) the psychological regressor (a boxcar function with event amplitudes set to 1 

and duration parametrically modulated by subjects’ response time on the direction discrimination 

task), and (4) the interaction regressor. Additionally, motion parameters estimated during 

registration (see preprocessing step) were included as regressors of no interest. The statistical 

output from the interaction regressor thus reveals regions of the brain where correlation with the 

BOLD signal in the vmPFC is stronger during the perceptual decision than the rest of the trial. 
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Importantly, this represents variance additional to that explained by the psychological and 

physiological regressors alone. Correction for multiple comparisons was performed on the whole 

brain using the outcome of the resampling procedure as described earlier. To identify only those 

activations which were common (i.e., overlapped spatially) with the confidence-related activations 

at the time of subjective reports (Fig. 3B), we created an intersection of the statistical maps 

associated with the PPI regressor and the RatingsRAT regressor from the original GLM analysis. We 

only report resulting joint activations. 
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