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Abstract

Background There are numerous computational tools for taxonomic or functional analysis of mi-

crobiome samples, optimized to run on hundreds of millions of short, high quality sequencing reads.

Programs such as MEGAN allow the user to interactively navigate these large datasets. Long read se-

quencing technologies continue to improve and produce increasing numbers of longer reads (of varying

lengths in the range of 10k-1M bps, say), but of low quality. There is an increasing interest in using long

reads in microbiome sequencing and there is a need to adapt short read tools to long read datasets.

Methods We describe a new LCA-based algorithm for taxonomic binning, and an interval-tree based

algorithm for functional binning, that are explicitly designed for long reads and assembled contigs. We

provide a new interactive tool for investigating the alignment of long reads against reference sequences.

For taxonomic and functional binning, we propose to use LAST to compare long reads against the NCBI-

nr protein reference database so as to obtain frame-shift aware alignments, and then to process the results

using our new methods.

Results All presented methods are implemented in the open source edition of MEGAN and we refer to

this new extension as MEGAN-LR (MEGAN long read). We evaluate the LAST+MEGAN-LR approach
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in a simulation study, and on a number of mock community datasets consisting of Nanopore reads, PacBio

reads and assembled PacBio reads. We also illustrate the practical application on a Nanopore dataset

that we sequenced from an anammox bio-rector community.

Keywords: microbiome, long reads, sequence analysis, taxonomic binning, functional binning, algorithms,

software, Nanopore, PacBio

Background

There are numerous computational tools for taxonomic or functional binning or profiling of microbiome

samples, optimized to run on hundreds of millions of short, high quality sequencing reads [1, 2, 3, 4].

Alignment-based taxonomic binning is often performed using the näıve LCA algorithm [5], because it is fast,

easy to interpret and easy to implement. Functional binning usually involves a best-hit strategy to assign

reads to functional classes.

Software or websites for analyzing microbiome shotgun sequencing samples usually provide some level

of interactivity, such as MG-RAST [2]. The interactive microbiome analysis tool MEGAN, which was first

used in 2006 [6], is one of the most feature-rich tools of this type. MEGAN is highly optimized to enable

users to interactively explore large numbers of microbiome samples containing hundreds of millions of short

reads.

Illumina HiSeq and MiSeq sequencers allow researchers to generate sequencing data on a huge scale, so

as to analyze many samples at a great sequencing depth [7, 8, 9]. A wide range of questions, in particular

involving the presence or absence of particular organisms or genes in a sample, can be answered using such

data. However, there are interesting problems that are not easily resolved using short reads. For example,

the question whether two genes, which both are detected in the same microbiome sample, also occur together

on the same genome, can often not be answered even for genes that lie close to each other in a genome,

despite the use of contig binning techniques [10].

Current long read sequencing technologies produce smaller numbers (in the range of hundreds of thou-

sands) of longer reads (of varying lengths in the range of 10 kb – 1 Mb, say) of lower quality (error rates

around 10%, say). There is increasing interest in using long reads in microbiome sequencing and there is

a need to adapt short read tools to long read datasets. There are a number of tools that are applicable to

long reads, such as WIMP [11], Centrifuge [12] or Kaiju [13]. While the two former are based on comparing

against DNA references, the latter can also use a protein reference database.
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Here we present a new classification pipeline for taxonomic and functional analysis of long reads and

contigs, based on protein alignments. The pipeline, LAST+MEGAN-LR, consists of first running the pro-

tein alignment tool LAST and then processing the resulting alignments using new algorithms provided in

MEGAN-LR. We perform a simulation study to evaluate the performance of the method in the context of

taxonomic assignment, and compare it with Kaiju, one of the few tools that works on protein references.

We also investigate the performance of the pipeline using mock-community datasets and illustrate its use on

Nanopore reads sequenced from an anammox enrichment bio-rector.

Methods

Long read taxonomic binning

The näıve LCA (lowest common ancestor) algorithm is widely used for binning short reads onto the nodes of a

given taxonomy (such as the NCBI taxonomy), based on alignments [5]. Consider a read r that has significant

alignments a1 . . . , ak to reference sequences associated with taxa t1, . . . , tk. The näıve LCA assigns r to the

lowest taxonomic node that lies above the set of all nodes representing t1, . . . , tk. The set of significant

alignments is defined to consist of those alignments whose score lies close to the best score achieved for the

given read, defined, say, as those that have a bit score that lies within 10% of the best bit score.

The näıve LCA algorithm is extremely fast, easy to implement and the results are easy to interpret.

When applied to protein alignments, an implicit assumption of the algorithm is that any read aligns to only

one gene and so all associated taxa are “competing” for the same gene; this justifies the above definition of

significant alignments. While reads that are only a few hundred base pairs long usually fulfill this assumption,

longer reads or assembled contigs often overlap with more than one gene and so the näıve algorithm is not

suitable for them.

To make the näıve algorithm applicable to protein alignments on a long read or contig r, a simple idea

is to first detect different “conserved genes” along the read as regions where alignments accumulate, and

then to apply the naive LCA to each of these regions individually. The final placement of the read is then

determined, for example, using the LCA of all the gene-based LCAs. There are two problems here. First,

protein alignments around the same location can have quite different lengths and thus delineating different

“conserved genes” can be difficult in practice. Second, because a large proportion of genes in a long read

or contig may be conserved across different taxonomic groups, the final placement of the read will often be

very unspecific.
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To address these issues, we present a new taxonomic binning for long reads that we call the interval-union

LCA. This algorithm processes each read r in turn, in two steps. First, the read is partitioned into a set

of intervals v1, . . . , vm that have the property that every alignment associated with r starts and ends at

the beginning or end of some interval, respectively. In other words, a new interval starts wherever some

alignment begins or ends. We say that an alignment ai is significant on an interval vj , if its bit score lies

within 10% (by default) of the best bit score seen for any alignment that covers vj .

In the second step, for each taxon t that is associated with any of the alignments, let I(t) denote the union

of all intervals for which there exists some significant alignment ai associated with taxon t. In a post-order

traversal, for each higher-rank taxonomic node s we compute I(s) as the union of the intervals covered by

the children of s. In result, every node of the taxonomy is labeled by a set of intervals. (Note that, during

the computation of the union of interval sets, we merge any overlapping intervals into a single interval.)

The read r is then placed on the taxon s that has the property that its set of intervals I(s) covers 80%

(by default) of the total aligned or covered portion of the read, while none of its children does (see Figure 1).

Note that it theoretically possible that multiple nodes have this property, in which case the read is assigned

to the LCA of all such nodes.

Long read functional binning and annotation

Functional binning of short reads is usually performed by assigning each read to a class in a functional

classification system such as InterPro [14] , eggNOG [15] or KEGG [16], based on its alignments.

This is often done using a simple best-hit strategy, as follows. For a short read r, let a denote the

highest-scoring alignment of r to a reference protein for which the functional class c is known. Assign r to

the functional class c. For example, c might be an InterPro family or an eggNOG cluster. In short read

analysis, any read is assigned to at most one class in any given functional classification (and many reads

remain unclassified because all corresponding reference proteins are unclassified.)

A long read may contain multiple genes and alignments will pile up at the locations of such genes. A

functional binning algorithm for long reads and contigs must select a subset of alignments to report functional

classes on, to avoid a high level of redundant or conflicting reports along the read.

Let r be a long read and let a1, . . . , ak be a set of DNA-to-protein alignments from r to a suitable protein

reference sequences. For the sake of concreteness, let us assume that we are using the InterPro classification

and that the InterPro family is known for each of the reference sequences.

To reduce the number of redundant functional classes associated with r, we introduce the following

4

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224535doi: bioRxiv preprint 

https://doi.org/10.1101/224535
http://creativecommons.org/licenses/by-nc/4.0/


concept. We say that an alignment ai dominates an alignment aj , if (1) ai covers more than 50% of the read

that is covered by aj , (2) if the bit score of ai is greater than that of aj , and (3), both alignments lie on the

same strand of r. Optionally, one could also require that the taxonomic identify of each protein reference

sequence under consideration is compatible with the taxonomic bin assigned to the read r.

The set of functional classes associated with a long read r is then given by the functional classes associated

with those alignments or r that are not dominated by some other alignment of r. Each read can be binned

to all functional classes associated with it. Moreover, the set of associated classes can be used to provide a

simple functional annotation of the read or contig.

To exploit that latter, we provide a dialog for exporting taxonomic and functional annotations in GFF3

format. It can be applied to any selection of taxonomic or functional classification nodes, or it can be applied

to a set of selected reads in the new long read inspector, which is described in more detail below. The user

chooses a classification and then each alignment to a reference sequence associated with that classification is

exported as a CDS item. By default, only those alignments that are not dominated by some other alignment

are exported. In addition, the user can decide to export only those items for which the taxon associated

with the corresponding reference sequence is compatible with the taxon assigned to the read.

Reporting counts

In taxonomic or functional binning of short reads, it usually suffices to report the number of reads assigned

to a specific classification node, because all reads are of very similar length and all alignments have much

the same length as the reads. For long reads or contigs, the lengths and alignment coverage can vary

widely. Moreover, the number of reads contained in a contig, or contig coverage, is an additional factor to

be considered. To address this, in MEGAN-LR each node can be labeled by one of the following:

1. the number of reads assigned,

2. the total length of all reads assigned,

3. the total number of aligned bases of all reads assigned, or

4. in the case of contigs, the total number of reads contained in all assigned contigs.

For long reads, by default, in MEGAN–LR report (3), the number of aligned bases, as this down-weights

any long stretches of unaligned sequence. In addition, we use this value to determine the minimum support

required for a taxon so that it is reported. By default, a taxon is only reported if it obtains at least 0.05%
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of all aligned bases. If the number of aligned bases assigned to a taxon t does not meet this threshold, then

the assigned bases are pushed up the taxonomy until a taxon is reached that has enough aligned bases to be

reported.

Long read alignment

In this paper we focus on taxonomic and functional binning of long reads using protein alignments. Currently

long read sequencing technologies (Oxford Nanopore and PacBio) exhibit high rates of erroneous insertions

and deletions. Programs such as BLASTX [17] and DIAMOND [18] cannot handle frame–shifts and so are

not suitable for such reads.

The LAST program [19, 20] uses a frame–shift aware algorithm to align DNA to proteins and produces

long protein alignments on long reads, even in the presence of many frame–shifts. Initial indexing of the

NCBI–nr database (containing over 100 million sequences) by LAST takes over one day on a server. However,

once completed, alignment of reads against the NCBI-nr database using the index is fast; the alignment of

Nanopore reads takes roughly one hour per gigabase on a server.

Long read analysis

LAST produces output in a simple text–based multiple alignment format (MAF). For performance reasons,

LAST processes all queries and all reference sequences in batches and in consequence, alignments associated

with a given query are not reported consecutively, but rather in batches.

In addition, the size of a MAF file is often very large and subsequent sorting and parsing of alignments

can be time consuming. To address these issues, we have implemented a new program called “MAF2DAA”

that takes MAF format as input, either as a file or piped directly from LAST, and produces a DAA file

as output. The program processes the input in chunks, first filtering and compressing each chunk of data

on-the-fly, and then interleaving and filtering the results into a single DAA file that contains all reads with

their associated alignments. During filtering, MAF2DAA removes all alignments that are strongly dominated

by some other alignment, so as to reduce a large amount of redundant alignments.

In more detail, for a given read r, we say that an alignment a of r strongly dominates an alignment b for

r, if it covers most of b (by default, we require 90% coverage) and if its bit score is significantly larger (by

default, we require that 0.9 · bitscore(a) > bitscore(b)).

A DAA file obtained in this way can then be processed by MEGAN’s Meganizer program that performs

taxonomic and functional binning, and indexing, of all reads in the DAA file. This program does not produce
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a new file, but rather simply appends the results to the end of the DAA file and any such “meganized” DAA

file can be directly opened in MEGAN for interactive analysis. We have modified MEGAN so that it supports

frame–shift containing alignments. The final DAA file is usually around 10 times smaller than the MAF file

produced by LAST.

Long read visualization

Interactive analysis tools for short read microbiome sequencing data usually focus on representing the tax-

onomic and functional classifications systems used for binning or profiling the reads, for example reporting

the number of reads assigned to each class. In addition, some tools provide a reference-centric visualization

that displays how the reads align against a given reference sequence. However, visualizations of the short

reads themselves are usually not provided.

For long read or contigs, there is a need for visualization techniques that make it easy to explore the

taxonomic and functional identity of reference sequences to which the reads align. To address this, we have

designed and implemented a long read inspector (using JavaFX) that allows one to investigate all long reads

assigned to a given taxonomic or functional class (see Figure 2).

In this tool, each long read or contig r is represented by a horizontal line and all corresponding aligned

reference sequences are shown as arrows above (forward strand alignments) or below (reverse strand align-

ments) the line. The user can select which annotations to display in the view. For example, if the the user

requests Taxonomy and InterPro annotations, then all reference sequences will be labeled by the associated

taxonomic and InterPro classes. The user can search for functional attributes in all loaded reads.

Let a be an arrow representing an alignment of r to a reference sequence associated with taxon s. We

use a hierarchical coloring scheme to color such arrows. Initially, we implicitly assign a color index to each

taxon, e.g. using the hash code of the taxon name. For each arrow a with associated reference taxon s we

distinguish between three different cases. First, if s = t, then we use the color assigned to t to color a.

Second, if s is a descendant of t, then t has a unique child u that lies on the path from t down to s and

we use the color of u to color a. Otherwise, we color a gray to indicate that the taxon associated with a is

either less specific or incompatible with t.

For example, if a read r is assigned to the genus Candidatus Brocadia and has an alignment to the strain

Candidatus Brocadia sinica JPN1, then we color the corresponding arrow a using the color that represents

the species Candidatus Brocadia sinica.

This is a useful strategy when used in combination with the taxonomic binning procedure described
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above: a read r is binned to the lowest taxon t that covers 80% (by default) of the aligned read and the

taxonomy-based coloring makes it easy to see how the different taxonomic classes below t contribute. For

example, if all arrows on one half of the read have one color and all arrows on the other half have some other

color, then this may indicate a chimeric read or misassembled contig.

As discussed above, an alternative approach is to export reads and their alignments in GFF format and

then to use a genome browser such as IGB [21] to explore them (see Figure 3).

LAST+MEGAN-LR

In summary, we propose to use the following pipeline to analyze metagenomic long reads and contigs (see

Figure 4):

• Align all reads against a protein reference database (such as NCBI-nr) using LAST, producing MAF

output.

• Either pipe the output of LAST directly to MAF2DAA, or apply MAF2DAA to the MAF file generated

by LAST, so as to obtain a much smaller output file in DAA format.

• Meganize the DAA file either using the Meganizer command-line tool, or interactively in MEGAN.

• Open the meganized DAA file in MEGAN for interactive exploration using the long-read inspector.

Export annotated reads in GFF format for further investigation, e.g. using a genome browser such as

Artemis [22] or IGB [21].

Nanopore Sequencing

To obtain a Nanopore sequencing dataset for method evaluation, we sequenced the genomic DNA of the

Microbial Mock Community B (even, high concentration, catalog nr. HM-276D, BEI Resources). Library

preparation was performed using a Low Input by PCR Genomic Sequencing Kit SQK-MAP006 (Oxford

Nanopore Technologies, Oxford, UK) for 2D sequencing. Briefly, 100 ng of genomic DNA was sheared in a

Covaris g-TUBE (Covaris, Inc., Woburn, MA, USA) at 6000 rpm, treated with PreCR (New England Biolabs,

Ipswich, MA, USA) and used as input for adapter ligation according to the ONT protocol. Adapter-ligated

DNA was further amplified with the LongAmp Taq 2X Master Mix (NEB) using the following program: 95°C

3 min; 18 cycles of 95°C 15 sec, 62°C 15 sec, 65°C 10 min; 65°C 20 min. Sequencing was performed using an

early access MinION device (ONT) on a FLO-MAP003 flowcell (ONT). Raw fast5 files were obtained with

8

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224535doi: bioRxiv preprint 

https://doi.org/10.1101/224535
http://creativecommons.org/licenses/by-nc/4.0/


MinKNOW (v0.50.2.15, ONT) using a 48 h genomic sequencing protocol, basecalled with ONT’s proprietary

Metrichor cloud-based basecalling service and the 2D Basecalling for SQK-MAP006 v1.34 workflow.

Genomic DNA from the lab scale Anammox enrichment reactor described in Liu et al. [23] was extracted

using FastDNA SPIN Kit for Soil with 4x homogenization on the FastPrep instrument (MP Bio). The DNA

was further purified using Genomic DNA Clean and Concentator -10 Kit (Zymo Research). ≈ 1700 ng of

extracted DNA was used for library preparation using a Ligation Sequencing Kit SQK-LSK108 (Oxford

Nanopore Technologies, Oxford, UK) for 1D sequencing according to the manufacturer protocol. Sequencing

was performed using an early access MinION device (ONT) on a SpotON FLO-MIN106 flowcell (R9.4).

The run was stopped after 22 hours due to low number of active pores. Fast5 files were obtained with

MinKNOW (v1.3.30, ONT) using a 48 h genomic sequencing protocol. Basecalling was performed using

Metrichor (Instance ID:135935, 1D Basecalling for FLO-MIN106 450 bps RNN (rev.1.121)).

Simulation study

To evaluate the performance of the proposed LAST+MEGAN-LR approach and, in particular, of the interval-

union LCA algorithm, we undertook a simulation study to estimate the sensitivity and precision of the

algorithm, following the protocol reported in [13] We attempted to model two major obstacles in metagenomic

studies, namely sequencing errors and the incompleteness of reference databases.

Our simulation study is based on a set P of 4, 282 prokaryotic genomes from NCBI for which both

annotated genomes and annotated sets of proteins are available, downloaded in March 2017. In addition,

we defined a subset Q of 1, 151 genomes that consists of all those organisms in P whose genus contains at

least 2 and at most 10 organisms in P , and for which a full taxonomic classification is given. Notice that

Q can be partitioned into nine different categories, based on the number 2 − 10 of organisms in Q that the

corresponding genus contains.

For each target species t in Q, we performed the following leave-one-out evaluation:

• First, we collected a set of R of 1, 000 simulated reads from the genome sequence of t using NanoSim

[24], a read simulator that produces synthetic reads that reflect the characteristic base-calling errors

of ONT reads, running in chromosomal circular mode.

• Second, we constructed a protein reference database Dt̂ that contained all annotated proteins associated

with all organisms in P except for t.
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• Third, we performed taxonomic binning of all reads in R using LAST+MEGAN-LR as follows. We

first build a LAST reference index on Dt̂, then aligned all reads in R against Dt̂ using LAST with

a frameshift cost of 15, and then performed taxonomic binning of all reads in MEGAN using the

interval-union LCA algorithm (default parameters).

• Fourth, for comparison, we also ran the taxonomic binning program Kaiju[13] on R and Dt̂, as this

is one the few tools that performs taxonomic binning using a protein reference database. We built

custom Kaiju indexes of Dt̂. We performed taxonomic binning of simulated reads using Kaiju’s greedy

mode, with the maximum number of allowed substitutions set to 5.

To be precise, we ran each of the four steps twice so as to produce two simulation datasets, each containing

1, 000 reads per target species. The first dataset was produced using the ecoli R73 2D (R7.3) simulator

profile, whereas the second was produced using the ecoli R9 2D (R9) profile. Both profiles were downloaded

from the NanoSim FTP address (ftp://ftp.bcgsc.ca/supplementary/NanoSim/) in April 2017. The R7.3

profile introduces more errors in reads and should make it harder for analysis methods to identify appropriate

reference sequences.

To compare the performance of MEGAN-LR and Kaiju, we calculated the sensitivity and precision with

which both programs made taxonomic assignments at the genus, family and order levels. In more detail,

following the approach used in [13], we define sensitivity as the percentage of reads in R that are assigned

to the correct taxon. We define precision as the percentage of reads that are assigned correctly, out of all

reads that were binned to any node that is not an ancestor of the correct taxon.

Results

We have implemented the interval-union taxonomic binning algorithm and modified functional binning al-

gorithms. In addition, we have implemented a new long read interactive viewer (using JavaFX). We provide

methods for exporting long read annotations in GFF3 format. Our code has been integrated into the open

source edition of MEGAN. In addition, we have modified MEGAN (and all tools bundled with MEGAN) so

as to support DNA-to-protein alignments that contain frame-shifts. We use the term MEGAN-LR (MEGAN

long read) to refer to this major extension of MEGAN.
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Simulation study

The results of our simulation study are shown in Figure 5, where we summarize the sensitivity and precision

scores achieved at genus level by LAST+MEGAN-LR and Kaiju, for both the R7.3 and R9 datasets. In all

cases, LAST+MEGAN-LR shows better sensitivity and precision than Kaiju. As expected, both methods

are less sensitive on the R7.3 data, as many reads remain unclassified. However, the difference in performance

between the two methods is larger on the R7.3 data and we suspect that this is due to the ability of LAST

to perform frame-shift aware alignments and thus to accommodate erroneous insertions and deletions.

A per-dataset performance analysis of LAST+MEGAN-LR and Kaiju is presented in Figure 6. This

shows that LAST+MEGAN-LR outperforms Kajiu on a vast majority of the simulated datasets, with Kajiu

sometimes showing better performance at when the sensitivity or precision is very low.

Kaiju is many times faster than LAST+MEGAN-LR. However, the latter approach computes and uses

all relevant protein alignments, and these are also used to perform functional analysis of the reads or contigs.

Hence, we suggest to use Kaiju to obtain a fast, first taxonomic profile for a set of long reads or contigs, and

then to use LAST+MEGAN-LR to perform a more accurate and detailed subsequent analysis.

PacBio reads on HMP mock community

To test LAST+MEGAN-LR on a publicly available PacBio mock community dataset, we downloaded

“HMP dataset 7” from the PacBio website https://github.com/PacificBiosciences/DevNet/wiki/

Human_Microbiome_Project_MockB_Shotgun in April 2017. This dataset contains 319, 703 reads of average

length 4, 681 bp. It was sequenced using the P5 polymerase and C3 chemistry.

LAST alignment against the NCBI-nr database (downloaded January 2017) resulting in protein align-

ments for 279, 926 reads (87% of all reads). MEGAN-LR analysis using the interval-union assigned 1, 000

megabases (Mb) aligned bases to taxonomic nodes. Of these, 923.8 Mb were assigned to bacterial genera,

with a false positive rate of 0.2%. A total of 743.6 Mb of aligned sequences were assigned to bacterial species,

of which 741.6 Mb were assigned to true positive species (that is, species known to be contained in the mock-

community), whereas approximately 2 Mb were assigned to false positive species, resulting in a false positive

binning rate of 0.3%. The 20 bacterial species in the mock community received between 2.6 Mb (0.3%) and

143 Mb (19%) aligned bases assigned at the species level, whereas the highest false positive species obtained

1.3 Mb (0.2%).

To investigate the use of LAST+MEGAN-LR on assembled reads, we assembled this set of reads using

minimap (options -Sw5 -L100 -m0 -t8) and miniasm (default options) [25] and obtained 1, 130 contigs, with
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a mean length of 43, 976 and maximum length of 1, 272, 994. LAST alignment against the NCBI-nr database

resulted in 41.8 Mb of aligned sequences. Of this, 40 Mb and 37.3 Mb, were assigned to genus and species

nodes, respectively, with no false positives and only one false negative species.

PacBio reads on another mock community

Analysis of PacBio reads recently published on a mock-community containing 26 bacterial and archaeal

species [26] gave rise to similar results. Of 53, 654 reads of average length 1, 041 and maximum length

16, 403, exactly 51, 124 received LAST alignments against NCBI-nr. Of 49.4 Mb of aligned sequences, 45.6

Mb were assigned to prokaryotic genera, with no assignments to false positive species.

The amount of sequence assigned at the species level was 36.8 Mb, all of which was assigned to true

positive species.

Of the 26 species in the mock community, there are two that are not reported in the analysis and therefore

constitute false negative species. These make up approximately 0.01% (Nocardiopsis dassonvillei) and 0.1%

(Salmonella bongori) of the community and are thus on the borderline of detection using the default settings

of MEGAN-LR. By default, MEGAN-LR requires that a taxon receives at least 0.05% of all aligned bases

before it is reported.

Nanopore reads on HMP mock community

To perform a first test of our new methods on Nanopore data, we sequenced the content of the Genomic

DNA from Microbial Mock Community B, as described in the Methods section. We obtained 124, 911 pass

reads of average length 2, 870, including all template, complement and 2D reads.

LAST alignment against the NCBI-nr database resulting in protein alignments for 61, 261 reads (49% of

all reads). MEGAN-LR analysis assigned a total of 110.8 Mb aligned bases. Of these, 96.8 MB were assigned

to bacterial genera, with a false positive assignment of 0.3%. Approximately 71.2 Mb of aligned sequences

were assigned at the species level, with a false positive rate of 0.6%. The 20 bacterial species in the mock

community received between 0.3 Mb (0.5%) and 12 Mb (17%) aligned bases assigned at the species level,

whereas the highest false positive species obtained 0.2 Mb (0.3%). Around 60 kb of all aligned sequences

(0.05%) were falsely assigned to Eukaryota.
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Application to anammox data

To illustrate the utility of our new methods in a research context, we applied Nanopore sequencing to a sample

obtained from a laboratory bio-reactor enriched for anaerobic ammonium oxidizing bacteria (AnAOB) [27],

as described in the Methods section. We obtained 71, 411 reads of average length 4, 658 and maximum length

30, 846.

LAST alignment against the NCBI-nr database resulted in protein alignments for 64, 097 reads (90% of

all reads). MEGAN-LR analysis assigned a total of 209 Mb aligned bases. Of these, 96.3 Mb were assigned

to bacterial genera and 113 Mb to bacterial species. The reason why there are more assignments to species

than there are to genera is that a number of the species are not contained in any genus. The top ten bacterial

species assignments are shown in Table 1. This indicates that the most abundant organism in the sample is

Candidatus Brocadia sinica, a known AnAOB species.

To illustrate the use of LAST+MEGAN-LR on assembled reads, we assembled this set of reads using

minimap (options -Sw5 -L100 -m0 -t8) and miniasm (default options) [25] and obtained 31 contigs, with a

mean length of 129, 601 and maximum length of 750, 799. LAST alignment against the NCBI-nr database

resulted in 2.98 Mb of aligned sequences. The interval-union algorithm assigned 13 reads and 96% of all

aligned bases to Candidatus Brocadia sinica. Another 6 reads and 1.5% of all aligned were assigned to

Armatimonadetes bacterium OLB18.

Discussion

The application of long read sequencing technologies to microbiome samples promises to provide a much

more accurate description of the genomes present in environmental samples. The alignment of long reads

against a protein reference database is a key step in the functional analysis of such data. Here we show that

such protein alignments can also be used to perform accurate taxonomic binning using the interval-union

LCA algorithm.

Our simulation study suggests that using LAST+MEGAN-LR performs taxonomic binning of long reads

accurately, even in the absence of the same species in the reference database. The reported results on mock

community datasets suggest a high level of accuracy down to the species level, when the corresponding

species are represented in the protein reference database. In addition, the computed protein alignments can

be used to identify genes and MEGAN-LR provides a useful visualization of the annotated sequences.

A main motivation for developing these new methods was to assist our work on the study of micro-
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bial communities in enrichment bio-rectors, where long read sequencing promises to provide access to near

complete genome sequences of the dominating species.

The simple assembly of the anammox data presented in this paper places the dominant species into 11

contigs of length greater than 100 kb, containing about 2.8 Mb of aligned sequence and 3.7 Mb of total

sequence. This suggests that a more careful assembly, assisted by a set of high quality MiSeq reads, should

result in a near complete genome.

Our simulation study indicates that LAST+MEGAN-LR is much more accurate than Kaiju. Because

Kaiju uses a heuristic based on the longest match found, we suspect that Kaiju will perform poorly on

chimeric reads or misassembled contigs, assigning such a read to one of the source taxa. In contrast, the

interval-union requires by default that 80% of the aligned read is assigned to a taxon and so in practice,

such reads will often be placed on a higher taxonomic node.

All datasets discussed in this paper are available here: http://ab.inf.uni-tuebingen.de/software/

downloads/megan-lr
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Figure 1: To illustrate the interval-union LCA algorithm, here we show eight hypothetical species A, . . .H
separated into two genera, P and Q, belonging to a family R. Alignments from the read r to proteins
associated with the species are indicated by arrows on the right and cover between 80% (for A) and 20% (for
H) of the aligned read. Using arrows, on the left we depict the sets of intervals computed for nodes P,Q,R
as the union of the sets of intervals of the children of each node. Nodes R and P each cover 100% of the
aligned read. The read r is placed on A as it is the lowest taxonomic node with ≥ 80% coverage. Note that,
if A only covered 60% of the aligned read, say, then the read would be assigned to taxon P , even if one of
the taxa below Q also had 60% coverage, say.

Figure 2: This screen shot of the MEGAN-LR long read inspector shows three contigs assigned to the genus
Candidatus Brocadia. Alignments to reference protein sequences are shown as arrows, colored by species
of the references; blue for Candidatus Brocadia sinica, brown for Candidatus Brocadia sp. 40 and pink for
Candidatus Brocadia fulgida. Alignments are labeled by taxonomic and functional classes associated with
the corresponding reference proteins.
.
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Figure 3: Example of long read data exported from MEGAN-LR and imported into the IGB genome browser.

Figure 4: The LAST+MEGAN-LR pipeline. Long reads or contigs are aligned against the NCBI-nr database
using LAST and the resulting MAF file (multiple alignment format) is converted to DAA format (Diamond
alignment format), including filtering of dominated alignments. Taxonomic and functional binning of the
reads or contigs is then performed using the Meganizer program and the results are stored to the DAA file.
The meganized DAA file can then opened and analyzed in MEGAN-LR.

20

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/224535doi: bioRxiv preprint 

https://doi.org/10.1101/224535
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5: Simulation study results for two simulation studies based on the R7.3 and R9 Nanopore chemistry
profiles. We report the sensitivity and precision of LAST+MEGAN-LR and Kaiju at genus level for 9
categories (reflecting the number of species in the genus from which the target species was removed). We
report the sensitivity and precision for the R7.3 profile in (A) and (B), respectively, and for the R9 profile
in (C) and (D), respectively.
.
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Figure 6: Here we plot the sensitivity and precision at genus level for Kaiju versus LAST+MEGAN-LR on
the R7.3 samples in (A) and (B), respectively, and on the R9 samples in (C) and (D), respectively.
.
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Species Assigned bases
Candidatus Brocadia sinica 85.9 Mb
Armatimonadetes bacterium OLB18 9.1 Mb
Bacteroidetes bacterium OLB12 5.0 Mb
Chloroflexi bacterium OLB13 4.8 Mb
Nitrospira sp. OLB3 1.5 Mb
Streptomyces sp. SolWspMP-5a-2 1.5 Mb
Candidatus Brocadia sp. 40 0.66 Mb
Burkholderia pseudomallei 0.54 Mb
Chlorobi bacterium OLB4 0.49 Mb
Chlorobi bacterium OLB15 0.48 Mb

Table 1: The ten top bacterial species identified in a Nanopore dataset taken from an anammox enrichment
bioreactor. The number of aligned bases assigned to Candidatus Brocadia sinica suggest at least ten-fold
coverage of that genome.
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