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Abstract 29 

Background 30 

The phenotypes of cancer cells are driven in part by somatic structural variants (SVs). SVs can 31 

initiate tumours, enhance their aggressiveness and provide unique therapeutic opportunities. 32 

Whole-genome sequencing of tumours can allow exhaustive identification of the specific SVs 33 

present in an individual cancer, facilitating both clinical diagnostics and the discovery of novel 34 

mutagenic mechanisms. A plethora of somatic SV detection algorithms have been created to 35 

enable these discoveries, however there are no systematic benchmarks of them. Rigorous 36 

performance evaluation of somatic SV detection methods has been challenged by the lack of 37 

gold-standards, extensive resource requirements and difficulties in sharing personal genomic 38 

information. 39 

Results 40 

To facilitate SV detection algorithm evaluations, we created a robust simulation framework for 41 

somatic SVs by extending the BAMSurgeon algorithm. We then organized and enabled a 42 

crowd-sourced benchmarking within the ICGC-TCGA DREAM Somatic Mutation Calling 43 

Challenge (SMC-DNA). We report here the results of SV benchmarking on three different 44 
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tumours, comprising 204 submissions from 15 teams. In addition to ranking methods, we 45 

identify characteristic error-profiles of individual algorithms and general trends across them. 46 

Surprisingly, we find that ensembles of analysis pipelines do not always outperform the best 47 

individual method, indicating a need for developing new ways to aggregate somatic SV 48 

detection approaches. 49 

Conclusions 50 

The synthetic tumours and somatic SV detection leaderboards remain available as a community 51 

benchmarking resource, and BAMSurgeon is available at 52 

https://github.com/adamewing/bamsurgeon. 53 

Keywords 54 

somatic mutations, simulation, structural variants, benchmarking, cancer genomics, whole-55 

genome sequencing, crowd-sourcing 56 

 57 

Background 58 

Somatic structural variants (SVs) are mutations that arise in tumours involving rearrangements, 59 

duplications or deletions of large segments of DNA. SVs are often defined to be events larger 60 

than 100 bp in size, although with significant variability in this definition. Somatic SVs are critical 61 

in driving and regulating tumour biology. They can initiate tumours [1,2] and because they are 62 

unique to the cancer, can serve as highly-selective avenues for therapeutic intervention [3]. The 63 

overall mutation load of somatic SVs serves as a proxy for genomic instability, and can robustly 64 

predict tumour aggressiveness in multiple tumour types [4,5]. 65 
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While somatic SVs that alter copy-number can be detected using microarray assays, the 66 

resolution of such studies is limited, and many other important types of SVs cannot be detected. 67 

As a result, high-throughput DNA sequencing is now a standard approach for detecting SVs in 68 

cancer genomes. Although RNA-based assays are useful for detecting SVs that alter protein-69 

structure, DNA-based assays are required for most others. As a result, a broad range of 70 

algorithms has been developed to detect SVs from short-read sequencing data using read 71 

depth analysis, split read (i.e. a read that maps to different parts of the reference sequence) 72 

alignment, paired end mapping and de novo assembly techniques [6–9]. However, the accuracy 73 

of existing methods is poorly described. There are no comprehensive benchmarks of somatic 74 

SV detection approaches. Most comparison results are reported by the developers of newly 75 

published methods. These developer-run benchmarks are potentially subject to several types of 76 

selection biases. For example, the developers of one tool may be experts in parameterizing and 77 

tuning it, but may lack the same skill in tuning methods developed by others. Further, evaluating 78 

the accuracy of somatic SV detection is more challenging than evaluating the accuracy of 79 

somatic single nucleotide variant (SNV) detection as validation data is more difficult to generate 80 

for SVs. Even the metrics of measuring accuracy are not agreed upon, with no community-81 

accepted standards on how SV prediction accuracy should be assessed, especially when 82 

predictions are close to, but not exactly at, the actual sequence breakpoints. As a result, there 83 

are no robust estimates of the false positive and false negative rates of somatic SV prediction 84 

tools on tumours of different characteristics. 85 

To fill this gap,  we created an open challenge-based assessment of somatic SV prediction tools 86 

as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge (the Challenge). We 87 

first extended BAMSurgeon [10], a tool for creating synthetic mutations, to generate somatic 88 

SVs. We then created and distributed three synthetic tumours, on which 204 submissions were 89 

made by 15 teams. 90 
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Results 91 

Simulation of SVs with BAMSurgeon 92 

In addition to point mutations [SNVs and short insertions or deletions (INDELs)], BAMSurgeon is 93 

capable of creating SVs through read selection, local sequence assembly, manipulation of 94 

assembled contigs, and simulation of sequence coverage over the altered contigs (Fig. 1a, 95 

Additional file 1: Figure S1). This, combined with careful tracking of read depth, yields 96 

approximations of SVs including insertions, deletions, duplication, and inversions into pre-97 

existing backgrounds of real sequence data. The BAMSurgeon manual, available online, 98 

contains a full description of input formatting and available parameters. The input regions define 99 

where local assembly will be attempted via Velvet [11]. For each region, the largest assembled 100 

contig is selected and re-aligned to the reference genome using Exonerate [12]. The contig is 101 

then trimmed to the length of its longest contiguous alignment and the alignment is used to 102 

accurately track breakpoint locations within the contig in terms of reference coordinate space. 103 

The location and identity of reads from the original BAM file in the assembled contig is tracked 104 

via parsing of the AMOS [13] file output by Velvet [14], which also enables tracking of reads 105 

included or excluded after contig trimming. If a suitable contig is not available for a given input 106 

segment, no mutation is made for that segment. For each segment where contig assembly 107 

succeeds, the contig is rearranged according to the user specification (e.g. insertion, deletion, 108 

duplication, or inversion of sequence). Following rearrangement of the contig, paired reads are 109 

simulated from the rearranged contig using wgsim [15], with specific parameters controllable by 110 

the user. Because reads are simulated using the rearranged contig, breakpoint-spanning reads 111 

and reads that will be discordant versus the reference genome assembly will be created. The 112 

number of reads simulated (final coverage, Cf) depends on the original coverage Co, the 113 
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difference in length between the original contig Lo and the rearranged contig Lf, and a user-114 

specified parameter controlling variant allele fraction (VAF). Thus, Cf = VAF*Co*(Lf/Lo). 115 

Duplications and insertions result in larger contigs and require new reads to be added to the 116 

final BAM, and deletions yielding a smaller contig require reads to be removed from the final 117 

BAM. In cases where reads must be added (duplications and insertions), additional reads are 118 

added to the final BAM. Conversely, where reads need to be removed from the original BAM, a 119 

list of reads to be deleted is maintained, which correspond to reads covering the deleted region 120 

in the original BAM. 121 

Validation of simulated somatic SVs 122 

To validate SVs simulated by BAMSurgeon, we performed a series of quality-control 123 

experiments analogous to those performed to validate simulated SNVs [10]. Briefly, we used 124 

BAMSurgeon to generate synthetic tumour-normal pairs, with the same set of target mutations, 125 

that differ by the division of reads into tumour and normal sequence sets, aligner or cell line. 126 

The target mutation set was designed to generate a synthetic tumour with a baseline level of 127 

complexity and thus did not include insertions. We ran four SV callers using default parameters 128 

on each pair: two widely used callers, CREST [16] and Delly [9], and two callers developed over 129 

the course of the Challenge, Manta [17] and novoBreak [18]. We did not optimize parameters 130 

for the callers since the goal of this validation was not to identify the best caller, but instead to 131 

verify that the caller ranking is maintained across analogous datasets. 132 

The definition of a SV suggests different scoring schemes for measuring the performance of a 133 

caller. All SVs can be defined by at least one breakpoint; deletions, duplications and inversions 134 

are SVs defined by a pair of breakpoints which in turn define a genomic region. Thus, we 135 

compared called SVs to true-positive SVs based on i) region overlap or ii) breakpoint closeness 136 

(Table 1, Additional file 1: Figure S2). The Challenge initially used a scoring scheme based on 137 
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region overlap (at least one or more bases in common; Additional file 1: Figure S2a). Here we 138 

focus on the breakpoint closeness scheme since it is well suited for all types of SVs. A called 139 

SV that is sufficiently similar to a known SV based on such criteria was considered a true 140 

positive; otherwise, a false positive. We used such annotations to assess the performance of a 141 

caller in terms of precision (fraction of calls that are true), recall (fraction of known SVs called) 142 

and F-score (harmonic mean of precision and recall).  143 

We performed several quality-control experiments. First, the caller ranking (by F-score) was 144 

independent of the random division of reads: Manta > novoBreak > CREST > Delly (Additional 145 

file 1: Figure S3a,b). Second, the same ranking was observed when alignments were generated 146 

either using the Burrows-Wheeler Aligner (BWA) or NovoAlign with and without INDEL 147 

realignment (i.e. local realignment to minimize mismatches across reads due to INDELs relative 148 

to the reference genome), indicating that the ranking was independent of the aligner used (Fig. 149 

1b, Additional file 1: Figure S3c). Lastly, when the genomic background was varied by using 150 

HCC1143 BL or HCC1954 BL sequence data, the caller ranking was largely independent of the 151 

cell line: Manta and novoBreak retained first and second place, respectively, while CREST and 152 

Delly swapped places, although their F-scores were very similar to each other when HCC1954 153 

BL was used (Fig. 1c, Additional file 1: Figure S3d). Overall, these results show that simulated 154 

SVs are robust to changes in the read division, aligner and genomic background. 155 

Crowd-sourced benchmarking of somatic SV calling 156 

The SV component of the Challenge consisted of the same three synthetic tumour-normal data 157 

sets used in the SNV component [10]. Briefly, the data sets were derived from existing cell line 158 

sequence data (thus minimizing data access restrictions) and in silico tumours 1-3 (IS1-IS3) 159 

were generated with increasing complexity (Fig. 1d). In terms of SVs, breakpoint locations were 160 

randomly selected and the tumours had increasing mutation rates (371 vs. 2,886 somatic SVs in 161 
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IS1 and IS3, respectively). Moreover, IS1 contained deletions, duplications and inversions while 162 

IS2 and IS3 additionally contained insertions. Like the SNV component, the SV component of 163 

the Challenge was implemented using the Dialogue for Reverse Engineering Assessments and 164 

Methods (DREAM) framework. Briefly, information about the Challenge was shared on its 165 

website [19], participants registered online, downloaded a data set, applied their SV calling 166 

pipelines to the data set and submitted the results in Variant Call Format (VCF) v4.1. IS1-IS3 167 

were released sequentially, each data set had its own competition phase and participants could 168 

make multiple submissions for each data set. Each tumour genome was divided into a training 169 

set and a testing set by holding out a portion of the genome. During the competition phase, 170 

leaderboards showed performance measures on the training set. After the competition closed, 171 

leaderboards also showed performance measures on the whole genome (training + testing 172 

sets).  173 

The Challenge administration team prepopulated the leaderboards with two submissions and 174 

the community provided 204 submissions from 15 teams (Additional file 2). A list of all 175 

submissions, and descriptions of pipelines used to generate them, can be found in Additional 176 

files 3 and 4, respectively. The submissions were surprisingly discordant in format. Some 177 

specified SV types that are not recognized as VCF formatted types, and between 5.5-11% of all 178 

submissions were not made in valid VCF format (Additional file 5). For this reason, and the 179 

ambiguity of specifying SV types (i.e. the same SV can be specified with a specific type, or by 180 

specifying the breakpoints and break-end adjacencies), type specifications were ignored when 181 

scoring submissions. Team ranking varied with the stringency of the scoring (Additional file 1: 182 

Figure S2d-i). For simplicity, we focused on scoring with f = 100 bp due to the balance between 183 

the median and variance of the resulting F-scores (Additional file 1: Figure S4). While the top-184 

performing teams achieved near maximal precision on the simplest tumour, IS1, their recall 185 

remained less than 0.9 (Fig. 2a), and decreased further on the other tumours (Additional file 1: 186 
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Figure S5a,b). On all three tumours, F-scores on the training and testing sets were highly 187 

correlated (Spearman’s rank correlation coefficient (ρ) ≥ 0.98; Fig. 2b, Additional file 1: Figure 188 

S5c,d). However, the slightly elevated F-scores in the training sets observed for IS1 and IS2 189 

may reflect minor overfitting; overfitting occurs when a statistical model is tuned to the training 190 

set, limiting generalizability. Notably, the total number of somatic SV mutations in IS3 is >4x that 191 

for IS1 and IS2 (Fig. 1d). Conversely, the percentage of mutations used for training is greater for 192 

IS1 (93%) and IS2 (92%) vs. IS3 (89%). Sampling from the IS3 mutations, we simulated training 193 

and testing sets of different sizes, and computed the differences between the F-scores on the 194 

training sets and the F-scores on the testing sets. We found that that the differences tend to be 195 

greater when the percentage of mutations used for training is greater (Additional file 1: Figure 196 

S5e). This suggests that the F-score differences observed for IS1 and IS2 are at least in part an 197 

artefact of training set size. 198 

Pipeline optimization 199 

The within-team variability in F-scores accounts for 21-43% of the total per-tumour variance in 200 

F-scores. The large variability in submissions by certain teams highlights the impact of tuning 201 

parameters during the Challenge (Fig. 3a, Additional file 1: Figure S6a,b). In comparing the 202 

initial (“naive”) and best (“optimized”) submissions of each team, for each tumour, the maximum 203 

F-score improvement was 0.75 (from 0.12 to 0.87 by Team 5 for IS1), and the median 204 

improvements were 0.20, 0.01, and 0.07 for IS1, IS2 and IS3, respectively (Fig. 3b). At least 205 

33% of teams improved their F-score by at least 0.05 and at least 25% of teams improved it by 206 

more than 0.20, depending on the tumour. Despite these improvements by parameterization, 207 

team rankings were only moderately changed: if a team’s naive submission ranked in the top 208 

three, their optimized submission remained in the top three 66% of the time (Fig. 3c). 209 
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Given the crowd-sourced nature of the Challenge, we explored “wisdom of the crowds” as an 210 

approach to optimize performance [20,21]. Specifically, we aggregated SV calls into an 211 

ensemble by first identifying sufficiently similar calls in the majority of the top k submissions. 212 

Pairwise distances between calls from different submissions were computed (i.e. a breakpoint-213 

length distance that incorporates distances between breakpoints and differences in SV length, 214 

Additional file 1: Figure S2c), and those calls with distances less than a selected threshold 215 

(equal to f, for consistency) were considered to represent an equivalent called SV event. The 216 

chromosome together with the median start and end positions of a set of similar calls would 217 

then define a single ensemble SV prediction. We considered two variations of this approach: i) a 218 

baseline approach with ensembles of the best submission from each team, and ii) a 219 

conservative approach with ensembles of all submissions and more stringent aggregation of 220 

called SVs (see Methods). The baseline ensembles were found to have F-scores comparable to 221 

that of the best submission (e.g. for IS1, the best ensemble and submission have F-scores of 222 

0.92 and 0.91, respectively; Fig. 3d, Additional file 1: Figure S7b). However, the ensembles had 223 

lower F-scores than the best submission for IS2 (Additional file 1: Figure S7a). When k > 15, we 224 

found that the conservative ensemble F-scores drop further below that of the best submission 225 

(Additional file 1: Figure S7c-e; e.g. for IS1, the best ensemble with k > 15 and the best 226 

submission have F-scores of 0.83 and 0.91, respectively). In contrast, the precision of all 227 

ensembles (range: 0.993-1.00) was similar or slightly improved compared to that of the best 228 

submission. Thus, any changes in the ensemble F-scores were mostly influenced by the 229 

changes in recall as k varied. 230 

Error characteristics 231 

We next exploited the large number of independent analyses to identify characteristics 232 

associated with false negatives (FNs) and false positives (FPs). For example, error profiles 233 
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differed significantly between subclonal populations in IS3, with greater FN rates for mutations 234 

present at lower VAFs (Additional file 1: Figure S8; one-sided Wilcoxon signed rank P = 0.02 for 235 

VAF = 0.2 vs. 0.33, P = 0.04 for VAF = 0.33 vs. 0.5, n = 7). We also selected the best 236 

submission from each team (by F-score) and focused on 14 variables associated with 237 

breakpoint positions, representing factors like coverage and mapping quality (Additional file 6). 238 

Several of these variables were associated with false-positive rates; in particular, tumour 239 

coverage (R > 0.24), bridging reads count (the number of reads that bridge a putative 240 

breakpoint, R > 0.21) and mapping quality (R < -0.29), have stronger associations with FPs for 241 

both IS2 and IS3, compared to other variables (Additional file 1: Figure S9a, S10-S25). By 242 

contrast, few were associated directly with false-negative rates (0 ≤ |R| ≤ 0.15; Additional file 1: 243 

Figure S9b, S10-S25). 244 

To evaluate whether these variables, and additional categorical variables, contribute 245 

simultaneously to somatic SV prediction error, we generated two Random Forests (non-246 

parametric learning models that can trivially merge multiple data types) [22] for each team to 247 

assess variable importance for FN and FP breakpoints separately. FN breakpoints are 248 

associated with variables such as high bridging reads count and strand bias (Fig. 4a,c,e,g,i; 249 

Additional file 1: Figure S26a). FP breakpoints are generally associated with variables such as 250 

low mapping quality (Fig. 4b,d,f,h,j; Additional file 1: Figure S26b). 251 

By executing specific SV callers, CREST (Fig. 4a,b), Delly (Fig. 4c,d) and Manta (Fig. 4e,f), with 252 

the same parameters on all three tumours, we identified tumour-specific error profiles. For 253 

example, the distance to the nearest germline INDEL tends to have stronger associations with 254 

errors in IS2 and IS3 compared to IS1 (Fig. 4a-e). Team-specific error profiles are more 255 

apparent with the FP breakpoint analysis. For example, Teams 8 and 10 have distinct FP 256 

profiles for the same tumour, IS2 (Fig. 4h); FPs by Teams 8 and 10 are negatively and positively 257 
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associated with tumour coverage, respectively. Algorithmic approaches to SV calling from 258 

sequencing data include i) read depth analysis, ii) paired end mapping, iii) split read alignment, 259 

and iv) de novo assembly [23]. Some teams submitted sufficient algorithm details to determine 260 

the general approaches used, as well as the choice of aligner (Fig. 4g-j). Based on the available 261 

annotations, teams using the same aligner do not have error profiles that tightly cluster for all 262 

three tumours, suggesting that the aligner is not as strong a driver of those profiles, compared 263 

to the caller algorithm. 264 

 265 

Discussion 266 

Crowd-sourced benchmarking challenges are ideal for questions where significant diversity in 267 

algorithmic approaches exists, particularly where individual methods are highly parameterized 268 

or computationally intensive [24,25]. The detection of variants from high-throughput sequencing 269 

data fits these criteria well: dozens of algorithms are in common use, many with complicated 270 

sets of parameters to tune and most requiring tens to hundreds of CPU hours to execute. We 271 

have quantified the critical importance of parameterization: it accounts for 21-43% of the 272 

variability in performance across the 204 submissions evaluated. This is comparable to the 26% 273 

of variability observed in somatic SNV detection benchmarking [10], and highlights the need for 274 

algorithm developers to continue to optimize parameters, provide guidance for their tuning and 275 

work toward automating their selection to make their software easier to use. 276 

The “wisdom of the crowds” is the idea that an ensemble of multiple algorithms can significantly 277 

outperform any individual method. Several crowd-sourced benchmarking competitions from 278 

diverse fields have shown great success in combining submissions from contestants to achieve 279 

a high-performing meta-predictor including challenges for somatic SNV detection [10], gene 280 
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regulatory network inference [21] and mRNA-based prognostic signatures for breast cancer 281 

[20]. By contrast, in somatic SV detection, we do not have clear evidence that an ensemble 282 

improves on the best individual method consistently across different tumours, despite testing 283 

several ways of creating ensembles. This may reflect the large diversity in the biases of each 284 

individual algorithm (Fig. 4), or it may represent the unique challenges of scoring SVs. While 285 

some SV classes may be well-represented by overlap-based scoring methods, others benefit 286 

more from breakpoint-based scoring, and the choice of scoring metric and parameter must be 287 

tuned to the specific biological question of interest. For example, breakpoint identification is 288 

critical when considering translocations -- especially those generating candidate fusion proteins 289 

-- while overlap of the called and known regions is much more important for copy-number 290 

analyses. The fact that the “wisdom of the crowds” via majority vote approach works very well 291 

for somatic SNV detection, it appears to fail for somatic SV detection. Thus there is a need for 292 

continued development of new, more complex ways to integrate multiple somatic SV detection 293 

methods [26]. 294 

Given the paucity of gold-standard benchmarking data for somatic SVs, the creation of the 295 

simulated datasets and the associated leaderboards constitutes a major contribution of this 296 

Challenge. There are distinct advantages to benchmarking on simulated datasets. It is 297 

dramatically easier to simulate large numbers of tumours, or to create tumours with highly 298 

divergent mutational properties, leading to well-supported estimates of per-tumour caller 299 

accuracy. This enables our strategy of generating synthetic tumours of increasing complexity by 300 

facilitating assessment of the impact of the complexity introduced at each step. Specifically, it is 301 

possible to identify strengths and weaknesses of an individual caller by comparing its tumour-302 

specific error profiles. Moreover, synthetic tumours can be designed to test the limits of callers. 303 

These advantages highlight the usefulness of synthetic datasets for benchmarking callers, and 304 

until synthetic datasets are completely realistic, they will serve as important complements to real 305 
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datasets. While 15 teams participated in the actual competitive phase of the Challenge, 8 teams 306 

have exploited the IS1-3 benchmarking resources since the competition, making 73 307 

submissions to benchmark their methods for pipeline evaluation and development. We hope 308 

that journals will begin to expect benchmarking on these standard datasets, as well as those 309 

being generated by the final phases of the ICGC-TCGA DREAM Somatic Mutation Calling 310 

Challenge, as a standard part of manuscripts reporting new somatic SV detection algorithms. 311 

 312 

Conclusions 313 

Analysis of the error profiles of the Challenge submissions showed that somatic SV calling is a 314 

distinctly harder problem than somatic SNV calling, with individual pipelines having complex and 315 

unique error profiles. Parameterization was a critical factor in determining the performance of 316 

teams. Finally, we demonstrate that, unlike almost every past DREAM Challenge, somatic SV 317 

prediction does not benefit from the “wisdom of the crowds” -- simple voting of multiple 318 

prediction pipelines does not yield improved predictions in this instance. The synthetic tumours 319 

and somatic SV detection leaderboards remain available as a community benchmarking 320 

resource. 321 

 322 

Methods 323 

Simulation of SVs by BAMSurgeon 324 

SV support in BAMSurgeon has evolved throughout the Challenge, largely as a result of 325 

constructive feedback from participants. Our descriptions of BAMSurgeon's method for 326 

simulating SVs is current as of commit (i.e., version) b851573474 of the code available at [27].  327 
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As input, BAMSurgeon (addsv.py) requires an indexed reference genome, a pre-existing BAM 328 

file (Additional file 1: Figure S1a), and a list of intervals (Additional file 1: Figure S1b) along with 329 

the SV type and parameters (see manual [28]). The intervals should be wide enough that local 330 

sequence assembly is successful in generating a contig that spans at least 2x the expected 331 

library size in the input BAM file. Intervals for which a sufficiently long contig cannot be 332 

generated are rejected, where the exact definition of 'sufficiently long' is an optional parameter. 333 

Intervals which contain too many discordant read pairs are also rejected, subject to a 334 

parameter. Following local assembly, the contig is re-arranged: the specific rearrangements for 335 

each supported SV type are illustrated in Fig. 1a (step iii) and Additional file 1: Figure S1c,e,g. 336 

The assembled contig is then re-aligned to the target interval in the reference genome 337 

(exonerate --bestn 1 -m ungapped) and is trimmed based on the start and end coordinates of 338 

this alignment. Read pairs corresponding to trimmed contig sequence are removed from further 339 

consideration. 340 

Read coverage is generated over the rearranged contig using a read simulator (wgsim -e 0 -R 0 341 

-r 0), to achieve the same average depth as the input BAM file, which has the effect of creating 342 

split reads relative to the reference genome supporting SV detection. For a deletion, the number 343 

of reads required to achieve (e.g.) 30x coverage is fewer than the number of reads required to 344 

reach 30x coverage prior to the deletion, so reads must be removed from the original BAM (Fig. 345 

1a, step iv). Inversely, for duplications and insertions additional reads need to be added to the 346 

original BAM (Additional file 1: Figure S1d,h). Inversions generally do not affect coverage 347 

(Additional file 1: Figure S1f). To ensure any reads removed actually correspond to the deleted 348 

region of the contig, the locations of reads in the assembled contig are tracked. The number of 349 

reads to be replaced, added, or deleted is scaled with the desired allele fraction. Finally, any 350 

read pairs in the original BAM corresponding to reads altered in the simulated SV are replaced, 351 

any read pairs marked for deletion are removed from the original BAM, and any additional read 352 
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pairs generated are added. It is recommended that the resulting altered BAM be post-processed 353 

(with postprocess.py) to ensure compliance with the SAM format specification (see manual 354 

[28]). 355 

Synthetic tumour generation 356 

Synthetic tumours were prepared by partitioning high-coverage BAMs from 'normal' cell lines 357 

into two groups of reads, picking read pairs at random as described previously [10]. For the 358 

three in silico challenges, non-overlapping regions were selected at random for SV addition, 359 

resulting in 371 variants added for IS1, 655 for IS2, and 2,886 for IS3 (Fig. 1d). Variant input 360 

files are available in Additional file 7. SVs were added using addsv.py with assembly 361 

GRCh37/hg19 as the reference genome and default parameters except where noted. For IS3, 362 

to simulate subclones a file specifying CNV fractions over SV regions was input via option -c to 363 

specify the variant allele frequency (VAF) of the spiked-in variants at either 0.5, 0.33, or 0.2 364 

(Additional file 7). The output BAMs were post-processed to account for any inconsistencies 365 

introduced due to remapping and merging of reads supporting SVs using the script 366 

postprocess.py included with BAMSurgeon. The BAMs were further adjusted with 367 

RealignerTargetCreator and IndelRealigner from the Genome Analysis Toolkit (v.2.4.9). All 368 

tumour-normal pairs generated via BAMSurgeon are verified for adherence to the SAM/BAM 369 

format specification using the ValidateSamFile tool included in the Picard tool set [29]. Truth 370 

VCF files, i.e. files specifying simulated mutations, for SVs were generated using the script 371 

etc/makevcf_sv.py and merged with truth files for SNP and INDEL locations, where applicable. 372 

SAMtools was used throughout to split, merge, sort, and index BAMs, and also index FASTA 373 

files. Details on the specific BAMSurgeon commits used for generating each tumour, as well as 374 

other tumour details are given at [30]. 375 
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Validation of BAMSurgeon 376 

To validate BAMSurgeon’s ability to simulate somatic SVs, we compared the output of four 377 

algorithms -- two widely used SV callers, CREST [16] and Delly [9], and two callers developed 378 

over the course of the Challenge, Manta [17] and novoBreak [18] -- on the IS1 tumour-normal 379 

data set, and analogous datasets generated with the same spike-in set of mutations, but with an 380 

alternate aligner (NovoAlign v.3.00.05 [31]), cell line (HCC1954 BL) or read division. We did not 381 

optimize parameters for the callers since the goal of this validation was not to identify the best 382 

caller, but instead to verify that the caller ranking is maintained across analogous datasets. 383 

Each tumour-normal pair was processed by CREST (v1.0) to extract soft clipping positions for 384 

each chromosome separately, using default parameters. This data was then used by CREST to 385 

call somatic SVs using the default protocol, and we converted the output into VCF v4.1 format. 386 

Somatic SVs were called from each tumour-normal pair using Delly (v0.5.5) with default 387 

parameters. Calling was performed on each chromosome separately for all supported SV types 388 

except for translocations, and we converted the translocation output into VCFv4.1 format. Calls 389 

with MAPQ < 20, PE < 5, or labeled as “LowQual” or “IMPRECISE” were filtered out. Somatic 390 

SVs were called from each tumour-normal pair using Manta (v0.26.3) with the following 391 

parameters: -m local -j 4 -g 10. Lastly, somatics SVs were called from each dataset using 392 

novoBreak (v1.04) with a modification to ensure that sequence windows around breakpoints 393 

never go beyond the start of the chromosome. All sets of SV calls were scored with f = 100 bp 394 

and j > 0, callers were ranked based on F-score for each tumour-normal pair, and rankings were 395 

compared across pairs (Fig. 1b,c and Additional file 1: Figure S3). 396 

Preprocessing VCF files 397 

We preprocess VCF files to parse out the SV-relevant details (e.g. the END coordinate in the 398 

INFO value or from the length of the REF sequence; if the END coordinate cannot be 399 
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determined from those values, it is set to the POS coordinate), remove SVs that did not pass 400 

filters (as indicated by the FILTER values) and ensure consistent formatting between files. To 401 

ensure consistent formatting in accordance with the VCFv4.1 specification [32] we: 402 

1. Add row entries to ensure that each MATEID specification has a corresponding pair of 403 

entries, where only a single entry is provided 404 

2. Re-assign IDs and MATEIDs to ensure unambiguous references to entries 405 

3. Where possible, replace SVTYPE = BND entries with entries specifying SVTYPE = 406 

{CNV, DEL, DUP, INS, INV} in accordance with REF, ALT and EVENT values 407 

Testing set SVs are indicated in the truth VCF file with the addition of masked genomic regions 408 

specified with CHROM, POS and END values indicating the chromosome, start and end 409 

coordinates, and SVTYPE = MSK. Specifically, a SV where ≥ 50% of the corresponding region 410 

overlaps a masked region is allocated to the testing set; otherwise, it is in the training set. 411 

Structural variant scoring 412 

Our scoring approaches evaluate the accuracy of a set of called SVs and requires input VCF 413 

files specifying: i) called SVs, and ii) true/known SVs. Generally, a called SV that is sufficiently 414 

similar to a known SV based on specific criteria (Table 1) is considered a true positive (TP); 415 

otherwise, a false positive (FP). Also, a known SV that is sufficiently similar to a called SV is 416 

considered a TP; otherwise, a false negative (FN). Our scoring supports two ways of quantifying 417 

similarity: 418 

A. Region overlap. The Jaccard coefficient (j) is computed from the lengths (in bp) of 419 

intersection and union regions (Additional file 1: Figure S2a). 420 
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B. Breakpoint closeness. The distance (Δ, in bp) between called and known breakpoints 421 

is computed (Additional file 1: Figure S2b). If Δ ≤ f (where f is a flank threshold 422 

parameter), a relative closeness is computed, c’ = 1 - Δ/f. The overall closeness (c) is 423 

defined as the geometric mean of the c’ values for the start and end breakpoints. If only 424 

one of the start and end breakpoints has Δ ≤ f, the called and known SVs are annotated 425 

as partially matching. 426 

Unless otherwise specified, we scored with f = 100 bp. If there is an ambiguous matching of 427 

called SVs to known SVs by sufficient similarity, the similarity values (j/c) are used to identify an 428 

optimal one-to-one matching. First, we restrict the matching to the best match(es) for each 429 

called and known SV. If a SV has multiple best matches by similarity, we attempt to break the 430 

tie by favouring SVs with the same SVTYPE, and/or test/training set membership. If the best 431 

matching is still ambiguous, we then use corresponding similarity values together with the 432 

Hungarian algorithm to obtain a one-to-one matching (with the clue v0.3-48 R package [33]). 433 

Finally, SVs are annotated based on this matching. SVs that have sufficient similarity but are not 434 

in the final matching are annotated as partially matching. Mated breakpoints are initially 435 

annotated separately. If one is annotated as partially matching or as a TP, and the other is a FP, 436 

the FP annotation is replaced by a partial match annotation. Subsequently, each set of mated 437 

breakpoints is treated as a single SV. 438 

These annotations are used to assess the performance of a SV caller in terms of precision = 439 

nTP/(nTP + nFP), recall = nTP/(nTP + nFN) and F-score (specifically, F1-score) = 2 x precision x 440 

recall/(precision + recall), where nTP, nFP and nFN represent the numbers of TPs, FPs and 441 

FNs, respectively. Partial matches are not counted in these computations. Unless otherwise 442 

specified, the precision, recall and F-score values presented here were computed on the testing 443 
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and training sets combined. The best submission of a given team is defined as the team’s 444 

submission with the greatest F-score computed against all known SVs. 445 

Execution of challenge-based benchmarking 446 

The SV component of the Challenge was executed concurrently with the SNV component, and 447 

the procedure has been described previously [10]. It was implemented using the Dialogue for 448 

Reverse Engineering Assessments and Methods (DREAM) framework. Briefly, information 449 

about the Challenge was shared on its website [19], participants registered online, downloaded 450 

a data set, applied their SV calling pipelines to the data set and submitted the results in 451 

VCFv4.1 format. IS1-IS3 were released sequentially, each data set had its own competition 452 

phase and participants could make multiple submissions for each data set. Each tumour 453 

genome was divided into a training set and a testing set. During the competition phase, 454 

leaderboards showed performance measures on the training set. After the competition closed, 455 

leaderboards also showed performance measures on the whole genome (training + testing 456 

sets), thus benchmarking the SV calling pipelines. The SV leaderboards for IS1 and IS2 were 457 

pre-populated with results from BreakDancer (v1.1.2_2013_03_08 [7]) run with default 458 

parameters; a reference point submission indicated labeled as “Standard” in figures and tables. 459 

Due to our exploration of multiple SV scoring methods in this manuscript, the leaderboard 460 

results are not completely consistent with the results presented here, but all raw and 461 

leaderboard data are available.  462 

Overfitting artefact analysis  463 

Due to the order of magnitude greater number of SVs spiked into IS3, we simulated training and 464 

testing sets of different sizes by sampling from the IS3 training set. Specifically, we assessed 465 

mutation totals of 100 to 1000 (by increments of 100), and training sets that were 80-95% (by 466 

increments of 1%) of the total, by sampling each {mutation-total, training-set%} combination 100 467 
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times. For each sample, we computed Ftrain - Ftest for each IS3 submission where Ftrain and Ftest 468 

are F-scores computed on the simulated training and testing sets, respectively. We then 469 

computed the median difference across samples to obtain a summary value for each 470 

submission, and finally show the median across submissions in Additional file 1: Figure S5e. 471 

(Ftrain - Ftest) > 0 suggests overfitting but such values are an artefact of testing set size since no 472 

fitting/training was done in this analysis. 473 

Team variation 474 

For each tumour-normal pair, we computed the percentage of variation in F-score, across all 475 

submissions, that is accounted for by within-team variation. Specifically, we computed the 476 

within-team sum of squares as a percentage of the total sum of squares. 477 

Definition of ensembles 478 

We aggregated SV calls from k submissions into an ensemble set with the following general 479 

approach: 480 

1. BND filter. Calls defined with SVTYPE = BND were excluded for simplicity. 481 

2. Compute call distances. Pairwise distances (d, in bp) between remaining predictions 482 

were computed (i.e. a breakpoint-length distance that incorporates distances between 483 

breakpoints and differences in predicted SV length, Additional file 1: Figure S2c). 484 

Distances were only computed between predictions from different submissions. 485 

3. Generate sets of similar calls. A distance less than a selected threshold (100 for 486 

consistency with f, see Structural variant scoring) indicated sufficiently similar calls. 487 

We assessed two variations: 488 

a. Baseline. We defined a graph such that vertices represented calls and edges 489 

connected sufficiently similar calls. We identified the connected components to 490 
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define the sets of similar calls. Sets with median intra-set distances > f were 491 

refined. Specifically, the call with the greatest median distance to the other set 492 

members was iteratively removed until the median intra-set distance dropped 493 

below f, or the set became empty. 494 

b. Conservative. We used the added constraint that called SVs overlap by ≥ 1 bp 495 

to be treated as sufficiently similar. Sets of similar calls were constructed by 496 

iterating over the sufficient similarity pairs from least to most distant. If a pair did 497 

not contain a call in an existing call set, the pair was used to define a new call 498 

set. Otherwise, one call was already in a set, and the other was a candidate for 499 

addition to the same set via guilt-by-association. If the candidate came from a 500 

submission that was not already covered by the set, and its median distance to 501 

the existing set members ≤ f, it was added to the set. Any unprocessed pairs 502 

within or between the prediction sets at that stage were excluded from 503 

consideration.  504 

4. Majority vote filter. Sets with calls from ≤ k/2 submissions were excluded; each 505 

remaining set covered the majority of submissions.  506 

5. Aggregate sets to define ensemble calls. The chromosome together with the median 507 

start and end positions of each set of calls defined a single ensemble SV call. 508 

An additional distinction between the baseline and conservative approaches is that the baseline 509 

approach only involved the best submission from each team whereas all submissions were 510 
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used with the conservative approach. To investigate different ensembles of N submissions for 511 

the same tumour-normal pair, we first ordered the submissions by overall F-score, computed 512 

after excluding calls with SVTYPE = BND. We then generated an ensemble call set with the top 513 

k submissions, for k = 2..N. The performance of ensembles was compared to that of the 514 

individual submissions, after excluding calls with SVTYPE = BND (e.g. Fig. 3d).  515 

Error characterization 516 

To characterize the errors made by a team, we assessed the team’s best submission for a given 517 

tumour-normal pair. We also assessed errors made by CREST, Delly and Manta when run, with 518 

the same protocols described in the Validation of BAMSurgeon section, on all three tumour-519 

normal pairs. Characterizing FNs and FPs involved comparisons to TPs and true negatives 520 

(TNs), respectively. Moreover, we characterized errors at the level of breakpoints. 521 

Sampling true negatives. Given a set of submissions for the same tumour-normal pair, we 522 

identified the maximum number of FPs from a single submission, m. We then sampled ≥ m TNs 523 

for each submission, by sampling regions from the reference genome that satisfied these 524 

criteria: 525 

1. length sampled from a log-normal distribution with mean and standard deviation equal to 526 

that of the logged lengths of the known SVs 527 

2. start position is not in known gap and repeat regions 528 

3. region does not overlap with any known SVs 529 

4. region does not overlap with any SVs called in the submission 530 

Some sampled regions qualified as TNs for multiple submissions. For IS2, we excluded Team 531 

14’s submission because it had a very large number (17,806) of FPs, and thus was 532 

computationally problematic for the subsequent Random Forest analysis. 533 
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Breakpoint annotations based on scoring. A single breakpoint may be associated with 534 

multiple (called/known) SVs, and therefore may be associated with multiple annotations 535 

depending on the scoring approach used, i.e. > 1 of {TP, FN, FP}. To remove ambiguity, we 536 

choose a single annotation for each breakpoint by prioritizing as follows: TP > FN > FP. This 537 

prioritization favours good performance (i.e. TP has highest priority) and then recall (i.e. FN > 538 

FP) since it appears to be a greater challenge than precision for SV calling (Fig. 2a, Additional 539 

file 1: Figure S5a,b). TN breakpoints should be unambiguous due to the way in which they were 540 

sampled (see above).  541 

Genomic variables. For each breakpoint position, we computed 16 genomic factors, 12 of 542 

which were previously described [10]. The additional genomic variables were computed as 543 

follows: 544 

A. Bridging reads count. We used samtools v0.1.19 to identify reads in the tumour BAM 545 

mapped to a genomic region containing the window defined by the breakpoint position 546 

+/- 1 bp. The bridging read count was defined as the number of identified reads. Note 547 

that a bridging read does not necessarily have a secondary mapping for part of the read, 548 

as one might expect for a split read. 549 

B. Distance to nearest germline INDEL. Germline calls were obtained as previously 550 

described [10] and INDELs were parsed out. The distance of a breakpoint to the nearest 551 

germline INDEL was computed using BEDTools closest v2.18.2. 552 

C. Nucleotide complexity. The sequence for the window defined by the breakpoint 553 

position +/- 50 bp was extracted from the reference fasta file. The nucleotide complexity 554 

was defined as the entropy of the sequence: -Σpxlog2(px) over x ∈ {A, G, C, T} where px 555 

is the proportion of the sequence with x (case-insensitive). 556 
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D. Strand bias. We used samtools v0.1.19 to identify reads in the tumour BAM mapped to 557 

a genomic region containing the breakpoint position. The strand bias was defined as the 558 

proportion of these reads mapped to the + strand. 559 

Univariate analysis. To assess the relationship between each non-categorical variable and 560 

prediction error rates, we computed the Pearson correlation coefficient between the variable 561 

values and the proportion of teams with a FN/FP at the breakpoints, as well as the 562 

corresponding P value. Reference and alternative allele counts, base quality, tumour and 563 

normal coverages, bridging reads counts and distances to the germline SNP and INDEL were 564 

logged (base 10) prior to computing correlations (zeros were replaced with -1 instead of 565 

logged). For the categorical variables, trinucleotide and genomic location, the P value measured 566 

the significance of the variable in a fitted binomial model predicting the FN/FP rate at a 567 

breakpoint. A binomial model was fitted because it is a relatively simple model (and thus less 568 

prone to overfitting) to test the relationship between a categorical variable and a proportion 569 

variable (i.e. an error rate). 570 

Multivariate analysis. Random Forests were generated as previously described [10] with a few 571 

alterations. Here, a total of 16 genomic variables (Fig. 4) were used to build: i) a classifier to 572 

distinguish FN and TP breakpoints, and ii) a classifier to distinguish FP and TN breakpoints. A 573 

FP classifier was not generated for Team 7 with respect to IS1 since the team produced only 574 

one FP, and thus there was insufficient data to generate an accurate model. Conversely, a FP 575 

classifier was not generated for Team 14 with respect to IS2 since the team produced a very 576 

large number of FPs (17,806) that caused a failure to converge. Computation of the directional 577 

effect of variables was also as previously described [10]. 578 

Non-parametric tests (i.e. Wilcoxon and Mann-Whitney tests) were used throughout to avoid 579 

assumptions about the distributions of the tested populations; all tested populations had n ≥ 7. 580 
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The BEDTools suite (v2.18.2 [34]) was used with the bedR R package (v0.5.3 [35]) throughout. 581 

Plots were generated with the BPG (v5.3.9), lattice (v0.20-33) and latticeExtra (v0.6-26) R 582 

packages and R (v3.2.1) was used throughout. 583 
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Table 1 | Caller scoring schemes. 648 

Basis of 

comparison 

Region Overlap 

(Additional file 1: Figure S2a) 

Breakpoint Closeness 

(Additional file 1: Figure S2b) 

Description SVs match if there is sufficient 

overlap, determined with a Jaccard 

threshold parameter, between the 

genomic region associated with the 

called SV and that of the known SV 

SVs match if the breakpoints of the 

called SV are sufficiently close to the 

those of the known SV, i.e. 

breakpoints are within f bp of one 

another where f is a flank parameter 

Strengths ● identifies genomic regions 

affected by the known SVs 

● suited to all types of SVs 

● evaluates precision of breakpoint 

predictions, facilitating 

subsequent breakpoint validation 

Weaknesses ● some SVs are not accurately 

defined by genomic regions, 

e.g. an insertion may be 

characterized by a single 

breakpoint 

● need criteria to define 

sufficient overlap 

● need criteria to define sufficient 

closeness 

 649 

650 
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Figure Legends 651 

Fig. 1 | BAMSurgeon simulates SVs in genome sequences. 652 

Method for adding SVs to existing BAM alignments. a Overview of SV (e.g. deletion) spike-in: 653 

Starting with an original BAM (i), a region (ii) is selected where a deletion is desired. iii) Contigs 654 

are assembled from reads in the selected region, and the contig is rearranged by deleting the 655 

middle. The amount of contig deleted is a user-definable parameter. Read coverage is 656 

generated over the contig using wgsim to match the number of reads per base in the original 657 

BAM. Since the deletion contig is shorter than the original, fewer reads will be required to 658 

achieve the equivalent coverage. iv) Generated read pairs include discordant pairs (i.e. paired 659 

reads that do not align to the reference genome with the expected relative orientation and inner 660 

distance) spanning the deletion and clipped reads (i.e. reads that are only partially aligned to the 661 

reference). Reads mapping to the deleted region of the contig are not included in the final BAM. 662 

b,c To test the robustness of BAMSurgeon with respect to changes in (b) aligner and (c) cell 663 

line, we compared the ranks of CREST, Delly, Manta and novoBreak on two new tumour-normal 664 

data sets: one with an alternative aligner, NovoAlign, and the other on an alternative cell line, 665 

HCC1954 BL. Callers were scored with f = 100 bp (Additional file 1: Figure S2b); Manta retained 666 

the top position, independent of aligner and cell line. d Summary of the three in silico (IS) 667 

tumours described here. Abbreviations: DEL, deletion; DUP, duplication; INV, inversion; INS, 668 

insertion. 669 

Fig. 2 | Overview of the SV Calling Challenge submissions. 670 

a Precision-recall plot of IS1 submissions. Each point represents a submission, each colour 671 

represent a team and the best submission from each team (top F-score) is circled. The 672 

“Standard” point corresponds to the reference point submission provided by Challenge 673 
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organizers. b The F-scores of submissions on the training and testing sets are highly correlated 674 

for IS1 (Spearman’s ρ = 0.98), falling near the plotted y = x line. 675 

Fig. 3 | Performance optimization by parameterization and ensembles. 676 

a Recall, precision and F-score of all IS1 submissions plotted by team, then submission order. 677 

Teams were ranked by the F-score of their best submission, colour coding (top bar) as in Fig. 2. 678 

The “Standard’” lines correspond to the reference point submission provided by Challenge 679 

organizers. b For each tumour, the improvement in F-score from the initial (“naive”) to the best 680 

(“optimized”) submissions of each team. Darker shades of blue indicate greater improvement. c 681 

For each tumour, team rankings based on their naive or optimized submissions. Larger dot 682 

sizes indicate better ranks by F-score. b,c An “X” indicates that the team did not make a 683 

submission for the specific tumour (or changed team name). d Recall, precision and F-score of 684 

ensembles versus individual submissions for IS1. At the kth rank, the triangles indicate 685 

performance of the ensemble of the top k submissions, and the circles indicate performance of 686 

the kth ranked submission. The ensemble analysis focused on the best submission from each 687 

team. 688 

Fig. 4 | Characteristics of prediction errors. 689 

Random Forests assess the importance of 16 sequence-based variables for each caller’s FN 690 

(a,c,e,g,i) and FP (b,d,f,h,j) breakpoints. Each panel shows variable importance on the left, 691 

where each row represents the best performing set of predictions by the given team/caller (on 692 

the given in silico tumour), and each column represents the indicated variable. Dot size reflects 693 

variable importance, i.e. the mean change in accuracy caused by removing the variable from 694 

the model (generated to predict erroneous breakpoints). Colour reflects the directional effect of 695 

each variable (red and blue for greater and lower variable values, respectively, associated with 696 

erroneous breakpoints; black for categorical variables or insignificant directional associations, 697 
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two-sided Mann-Whitney P > 0.01). Background shading indicates the accuracy of the model 698 

(see colour bar). Variable importance for FN and FP breakpoints in each of the three tumours is 699 

shown for the following SV callers: CREST (a,b), Delly (c,d) and Manta (e,f). Manta only called 700 

two FPs in IS1; thus, variable importance for FP breakpoints could not be computed (indicated 701 

by Xs in the plot). Variable importance for FN and FP breakpoints in IS2 (g,h) and IS3 (i,j) is 702 

shown for each team. In the right plot (g-j), the first four columns indicate usage of the indicated 703 

algorithmic approaches by each team, and the last column indicates the aligner used. Grey 704 

indicates that algorithmic approaches and aligner are unknown for the given team. 705 

Abbreviations: Algm, algorithm; SNP, single-nucleotide polymorphism; INDEL, short insertion or 706 

deletion.  707 
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