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Abstract 28 

Background 29 

The phenotypes of cancer cells are driven in part by somatic structural variants. Structural 30 

variants can initiate tumors, enhance their aggressiveness and provide unique therapeutic 31 

opportunities. Whole-genome sequencing of tumors can allow exhaustive identification of the 32 

specific structural variants present in an individual cancer, facilitating both clinical diagnostics 33 

and the discovery of novel mutagenic mechanisms. A plethora of somatic structural variant 34 

detection algorithms have been created to enable these discoveries, however there are no 35 

systematic benchmarks of them. Rigorous performance evaluation of somatic structural variant 36 

detection methods has been challenged by the lack of gold-standards, extensive resource 37 

requirements and difficulties arising from the need to share personal genomic information. 38 

Results 39 

To facilitate structural variant detection algorithm evaluations, we create a robust simulation 40 

framework for somatic structural variants by extending the BAMSurgeon algorithm. We then 41 

organize and enable a crowd-sourced benchmarking within the ICGC-TCGA DREAM Somatic 42 

Mutation Calling Challenge (SMC-DNA). We report here the results of structural variant 43 

benchmarking on three different tumors, comprising 204 submissions from 15 teams. In addition 44 

to ranking methods, we identify characteristic error-profiles of individual algorithms and general 45 
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trends across them. Surprisingly, we find that ensembles of analysis pipelines do not always 46 

outperform the best individual method, indicating a need for new ways to aggregate somatic 47 

structural variant detection approaches. 48 

Conclusions 49 

The synthetic tumors and somatic structural variant detection leaderboards remain available as 50 

a community benchmarking resource, and BAMSurgeon is available at 51 

https://github.com/adamewing/bamsurgeon. 52 

Keywords 53 

somatic mutations, simulation, structural variants, benchmarking, cancer genomics, whole-54 

genome sequencing, crowd-sourcing 55 

 56 

Background 57 

Somatic structural variants (SVs) are mutations that arise in tumours involving rearrangements, 58 

duplications or deletions of large segments of DNA. SVs are often defined to be events larger 59 

than 100 bp in size, although with significant variability in this definition. Somatic SVs are critical 60 

in driving and regulating tumour biology. They can initiate tumours [1,2] and because they are 61 

unique to the cancer, can serve as highly-selective avenues for therapeutic intervention [3]. The 62 

overall mutation load of somatic SVs serves as a proxy for genomic instability, and can robustly 63 

predict tumour aggressiveness in multiple tumour types [4,5]. 64 

While somatic SVs that alter copy-number can be detected using microarray assays, the 65 

resolution of such studies is limited, and many other important types of SVs cannot be detected. 66 

As a result, high-throughput DNA sequencing is now a standard approach for detecting SVs in 67 
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cancer genomes. Although RNA-based assays are useful for detecting SVs that alter protein-68 

structure, DNA-based assays are required for most others. As a result, a broad range of 69 

algorithms has been developed to detect SVs from short-read sequencing data using read 70 

depth analysis, split read (i.e. a read that maps to multiple different parts of the reference 71 

sequence) alignment, paired end mapping and de novo assembly techniques [6–9]. However, 72 

the accuracy of existing methods is poorly described. There are no comprehensive benchmarks 73 

of somatic SV detection approaches. Most comparison results are reported by the developers of 74 

newly published methods. These developer-run benchmarks are potentially subject to several 75 

types of selection biases. For example, the developers of one tool may be experts in 76 

parameterizing and tuning it, but may lack the same skill in tuning methods developed by 77 

others. Further, evaluating the accuracy of somatic SV detection is more challenging than 78 

evaluating the accuracy of somatic single nucleotide variant (SNV) detection as validation data 79 

is more difficult to generate for SVs. Even the metrics of measuring accuracy are not agreed 80 

upon, with no community-accepted standards on how SV prediction accuracy should be 81 

assessed, especially when predictions are close to, but not exactly at, the actual sequence 82 

breakpoints. As a result, there are no robust estimates of the false positive and false negative 83 

rates of somatic SV prediction tools on tumours of different characteristics. 84 

To fill this gap, we created an open challenge-based assessment of somatic SV prediction tools 85 

as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge (the Challenge). The 86 

lack of fully-characterized tumour genomes for building gold standard sets of SVs motivated our 87 

simulation approach. Specifically, we first extended BAMSurgeon [10], a tool for adding 88 

simulated mutations to existing reads, to generate somatic SVs. This approach is advantageous 89 

because it permits flexibility with the added mutations while also capturing sequencing 90 

technology biases through the use of existing reads. We created and distributed in silico 91 

tumours (IS1-IS3), on which 204 submissions were made by 15 teams. 92 
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Results 93 

Simulation of SVs with BAMSurgeon 94 

In addition to point mutations [SNVs and short insertions or deletions (INDELs)], BAMSurgeon is 95 

capable of creating simple SVs through read selection, local sequence assembly, manipulation 96 

of assembled contigs, and simulation of sequence coverage over the altered contigs (Fig. 1a, 97 

Additional file 1: Figure S1). This, combined with careful tracking of read depth, yields 98 

approximations of SVs including insertions, deletions, duplication, and inversions into pre-99 

existing backgrounds of real sequence data. Here we present results based on simulations of 100 

those SV types. Subsequent to the Challenge, BAMSurgeon was extended to support 101 

translocations and more complex rearrangements. The BAMSurgeon manual, available online, 102 

contains a full description of input formatting and available parameters. The input regions define 103 

where local assembly will be attempted via Velvet [11]. For each region, the largest assembled 104 

contig is selected and re-aligned to the reference genome using Exonerate [12]. The contig is 105 

then trimmed to the length of its longest contiguous alignment and the alignment is used to 106 

accurately track breakpoint locations within the contig in terms of reference coordinate space. 107 

The location and identity of reads from the original BAM file in the assembled contig are tracked 108 

via parsing of the AMOS [13] file output by Velvet [14], which also enables tracking of reads 109 

included or excluded after contig trimming. If a suitable contig (i.e. sufficiently long, with a 110 

sufficiently low number of discordant read pairs) is not available for a given input region, no 111 

mutation is made for that region. For each segment where contig assembly succeeds, the contig 112 

is rearranged according to the user specification (e.g. insertion, deletion, duplication, or 113 

inversion of sequence). Then paired reads are simulated from the rearranged contig using 114 

wgsim [15], with specific parameters controllable by the user. Because reads are simulated 115 
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using the rearranged contig, breakpoint-spanning reads and reads that will be discordant versus 116 

the reference genome assembly will be created. The number of reads simulated (final coverage, 117 

Cf) depends on the original coverage Co, the difference in length between the original contig Lo 118 

and the rearranged contig Lf, and a user-specified parameter controlling variant allele fraction 119 

(VAF). Thus, Cf = VAF*Co*(Lf/Lo). Duplications and insertions result in larger contigs and require 120 

new reads to be added to the final BAM, and deletions yielding a smaller contig require reads to 121 

be removed from the final BAM. In the latter case, a list of reads to be deleted is maintained, 122 

which correspond to reads covering the deleted region in the original BAM. BAMSurgeon 123 

requires approximately 4GB of memory per thread if using the Burrows-Wheeler Aligner (BWA). 124 

Its runtime varies depending on the number, variety and locations of the mutations, as well as 125 

the depth of the original BAM. On average, runtime is about 2-3 minutes per SV per thread 126 

followed by several hours to integrate all mutations into the output BAM, for a deeply sequenced 127 

(e.g. 60x) genome. These are wallclock times, with the majority being spent in writing reads into 128 

the BAM file. 129 

Validation of simulated somatic SVs 130 

To validate SVs simulated by BAMSurgeon, we performed a series of quality-control 131 

experiments analogous to those performed to validate simulated SNVs [10]. Briefly, we used 132 

BAMSurgeon to generate synthetic tumour-normal pairs, with the same set of target mutations, 133 

that differ by the division of reads into tumour and normal sequence sets, aligner or cell line. 134 

The target mutation set was designed to generate a synthetic tumour with a baseline level of 135 

complexity and thus did not include insertions. We ran four SV callers using default parameters 136 

on each pair: two widely used callers, CREST [16] and Delly [9], and two callers developed over 137 

the course of the Challenge, Manta [17] and novoBreak [18]. We did not optimize parameters 138 
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for the callers since the goal of this validation was not to identify the best caller, but instead to 139 

verify that the caller ranking is maintained across analogous datasets. 140 

The definition of a SV suggests different scoring schemes for measuring the performance of a 141 

caller. All SVs can be defined by at least one breakpoint; deletions, duplications and inversions 142 

are SVs defined by a pair of breakpoints that in turn defines a genomic region. Thus, we 143 

compared called SVs to gold-standard SVs based on i) region overlap or ii) breakpoint 144 

closeness (Table 1, Additional file 1: Figure S2). The Challenge initially used a scoring scheme 145 

based on region overlap (at least one or more bases in common; Additional file 1: Figure S2a). 146 

Here we focus on the breakpoint closeness scheme since it is well suited for all types of SVs. A 147 

called SV that is sufficiently similar to a known SV based on such criteria was considered a true 148 

positive; otherwise, a false positive. We used such annotations to assess the performance of a 149 

caller in terms of precision (fraction of calls that are true), recall (fraction of known SVs called) 150 

and F-score (harmonic mean of precision and recall).  151 

We performed several quality-control experiments. First, the caller ranking (by F-score) was 152 

independent of the random division of reads: Manta > novoBreak > CREST > Delly (Additional 153 

file 1: Figure S3a,b). Second, the same ranking was observed when alignments were generated 154 

either using the BWA or NovoAlign with and without INDEL realignment (i.e. local realignment to 155 

minimize mismatches across reads due to INDELs relative to the reference genome), indicating 156 

that the ranking was independent of the aligner used (Fig. 1b, Additional file 1: Figure S3c). 157 

Lastly, when the genomic background was varied by using HCC1143 BL or HCC1954 BL 158 

sequence data, the caller ranking was largely independent of the cell line: Manta and novoBreak 159 

retained first and second place, respectively, while CREST and Delly swapped places, although 160 

their F-scores were very similar to each other when HCC1954 BL was used (Fig. 1c, Additional 161 

file 1: Figure S3d). Overall, these results show that simulated SVs are robust to changes in the 162 

read division, aligner and genomic background. 163 
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Crowd-sourced benchmarking of somatic SV calling 164 

The SV component of the Challenge consisted of the same three synthetic tumour-normal data 165 

sets used in the SNV component [10]. Briefly, the data sets were derived from existing cell line 166 

sequence data (thus minimizing data access restrictions) and in silico tumours 1-3 (IS1-IS3) 167 

were generated with increasing complexity (Fig. 1d). In terms of SVs, breakpoint locations were 168 

randomly selected and the tumours had increasing mutation rates (371 vs. 2,886 somatic SVs in 169 

IS1 and IS3, respectively). Moreover, IS1 contained deletions, duplications and inversions while 170 

IS2 and IS3 additionally contained insertions. Like the SNV component, the SV component of 171 

the Challenge was implemented using the Dialogue for Reverse Engineering Assessments and 172 

Methods (DREAM) framework. Briefly, information about the Challenge was shared on its 173 

website [19], participants registered online, downloaded a data set, applied their SV calling 174 

pipelines to the data set and submitted the results in Variant Call Format (VCF) v4.1. IS1-IS3 175 

were released sequentially, each data set had its own competition phase and participants could 176 

make multiple submissions for each data set. Each tumour genome was divided into a training 177 

set and a testing set by holding out a portion of the genome. During the competition phase, 178 

leaderboards showed performance measures on the training set. After the competition closed, 179 

leaderboards also showed performance measures on the whole genome (training + testing 180 

sets).  181 

The Challenge administration team prepopulated the leaderboards with two submissions and 182 

the community provided 204 submissions from 15 teams (Table 2, Additional file 2). A list of all 183 

submissions, and descriptions of pipelines used to generate them, can be found in Additional 184 

files 3 and 4, respectively. The submissions were surprisingly discordant in format. For example, 185 

between 5.5-11% of all submissions specified SV types that are not in the VCF controlled 186 

vocabulary for types (Additional file 5). For this reason, and the ambiguity of specifying SV types 187 
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(i.e. the same SV can be specified with a specific type, or by specifying the breakpoints and 188 

break-end adjacencies), type specifications were ignored when scoring submissions. Team 189 

ranking varied with the stringency of the scoring (Additional file 1: Figure S2d-i). For simplicity, 190 

we focused on scoring with f = 100 bp due to the balance between the median and variance of 191 

the resulting F-scores (Additional file 1: Figure S4). While the top-performing teams achieved 192 

near maximal precision on the simplest tumour, IS1, their recall remained less than 0.9 (Fig. 193 

2a), and decreased further on the other tumours (Additional file 1: Figure S5a,b). On all three 194 

tumours, F-scores on the training and testing sets were highly correlated (Spearman’s rank 195 

correlation coefficient (ρ) ≥ 0.98; Fig. 2b, Additional file 1: Figure S5c,d). However, the slightly 196 

elevated F-scores in the training sets observed for IS1 and IS2 may reflect minor overfitting; 197 

overfitting occurs when a statistical model is tuned to the training set, limiting generalizability. 198 

Notably, the total number of somatic SV mutations in IS3 is >4x that for IS1 and IS2 (Fig. 1d). 199 

Conversely, the percentage of mutations used for training is greater for IS1 (93%) and IS2 200 

(92%) vs. IS3 (89%). Sampling from the IS3 mutations, we simulated training and testing sets of 201 

different sizes, and computed the differences between the F-scores on the training sets and the 202 

F-scores on the testing sets. We found that that the differences tend to be greater when the 203 

percentage of mutations used for training is greater (Additional file 1: Figure S5e). This suggests 204 

that the F-score differences observed for IS1 and IS2 are at least in part an artefact of training 205 

set size. 206 

Pipeline optimization 207 

The within-team variability in F-scores accounts for 21-43% of the total per-tumour variance in 208 

F-scores. The large variability in submissions by certain teams highlights the impact of tuning 209 

parameters during the Challenge (Fig. 3a, Additional file 1: Figure S6a,b). In comparing the 210 

initial (“naive”) and best (“optimized”) submissions of each team, for each tumour, the maximum 211 
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F-score improvement was 0.75 (from 0.12 to 0.87 by Team 5 for IS1), and the median 212 

improvements were 0.20, 0.01, and 0.07 for IS1, IS2 and IS3, respectively (Fig. 3b). At least 213 

33% of teams improved their F-score by at least 0.05 and at least 25% of teams improved it by 214 

more than 0.20, depending on the tumour. Despite these improvements by parameterization, 215 

team rankings were only moderately changed: if a team’s naive submission ranked in the top 216 

three, their optimized submission remained in the top three 66% of the time (Fig. 3c). 217 

Given the crowd-sourced nature of the Challenge, we explored “wisdom of the crowds” as an 218 

approach to optimize performance [20,21]. Specifically, we aggregated SV calls into an 219 

ensemble by first identifying sufficiently similar calls in the majority of the top k submissions. 220 

Pairwise distances between calls from different submissions were computed (i.e. a breakpoint-221 

length distance that incorporates distances between breakpoints and differences in SV length, 222 

Additional file 1: Figure S2c), and those calls with distances less than a selected threshold 223 

(equal to f, for consistency) were considered to represent an equivalent called SV event. The 224 

chromosome together with the median start and end positions of a set of similar calls would 225 

then define a single ensemble SV prediction. We considered two variations of this approach: i) a 226 

baseline approach with ensembles of the best submission from each team, and ii) a 227 

conservative approach with ensembles of all submissions (where the top k may include multiple 228 

submissions from the same team) and more stringent aggregation of called SVs (see Methods). 229 

The baseline ensembles were found to have F-scores comparable to that of the best 230 

submission (e.g. for IS1, the best ensemble and submission have F-scores of 0.92 and 0.91, 231 

respectively; Fig. 3d, Additional file 1: Figure S7b). However, the ensembles had lower F-scores 232 

than the best submission for IS2 (Additional file 1: Figure S7a). When k > 15, we found that the 233 

conservative ensemble F-scores drop further below that of the best submission (Additional file 234 

1: Figure S7c-e; e.g. for IS1, the best ensemble with k > 15 and the best submission have F-235 

scores of 0.83 and 0.91, respectively); these ensembles incorporate submissions from the top 236 
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three teams, at least. In contrast, the precision of all ensembles (range: 0.993-1.00) was similar 237 

or slightly improved compared to that of the best submission. Thus, any changes in the 238 

ensemble F-scores were mostly influenced by the changes in recall as k varied. 239 

Error characteristics 240 

We next exploited the large number of independent analyses to identify characteristics 241 

associated with false negatives (FNs) and false positives (FPs). For example, error profiles 242 

differed significantly between subclonal populations in IS3, with greater FN rates for mutations 243 

present at lower VAFs (Additional file 1: Figure S8; one-sided Wilcoxon signed rank P = 0.02 for 244 

VAF = 0.2 vs. 0.33, P = 0.04 for VAF = 0.33 vs. 0.5, n = 7). We also selected the best 245 

submission from each team (by F-score) and focused on 14 variables associated with 246 

breakpoint positions, representing factors like coverage and mapping quality (Additional file 6). 247 

Several of these variables were associated with false-positive rates; in particular, tumour 248 

coverage (R > 0.24), bridging reads count (the number of reads that bridge a putative 249 

breakpoint, R > 0.21) and mapping quality (R < -0.29), have stronger associations with FPs for 250 

both IS2 and IS3, compared to other variables (Additional file 1: Figure S9a, S10-S25). By 251 

contrast, few were associated directly with false-negative rates (0 ≤ |R| ≤ 0.15; Additional file 1: 252 

Figure S9b, S10-S25). 253 

To evaluate whether these variables, and additional categorical variables, contribute 254 

simultaneously to somatic SV prediction error, we generated two Random Forests (non-255 

parametric learning models that can trivially merge multiple data types) [22] for each team to 256 

assess variable importance for FN and FP breakpoints separately. FN breakpoints are 257 

associated with variables such as high bridging reads count and strand bias (Fig. 4a,c,e,g,i; 258 

Additional file 1: Figure S26a). FP breakpoints are generally associated with variables such as 259 

low mapping quality (Fig. 4b,d,f,h,j; Additional file 1: Figure S26b). 260 
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By executing specific SV callers, CREST (Fig. 4a,b), Delly (Fig. 4c,d) and Manta (Fig. 4e,f), with 261 

the same parameters on all three tumours, we identified tumour-specific error profiles. For 262 

example, the distance to the nearest germline INDEL tends to have stronger associations with 263 

errors in IS2 and IS3 compared to IS1 (Fig. 4a-e). Team-specific error profiles are more 264 

apparent with the FP breakpoint analysis. For example, Teams 8 and 10 have distinct FP 265 

profiles for the same tumour, IS2 (Fig. 4h); FPs by Teams 8 and 10 are negatively and positively 266 

associated with tumour coverage, respectively. Algorithmic approaches to SV calling from 267 

sequencing data include i) read depth analysis, ii) paired end mapping, iii) split read alignment, 268 

and iv) de novo assembly [23]. Some teams submitted sufficient algorithm details to determine 269 

the general approaches used, as well as the choice of aligner (Fig. 4g-j). Based on the available 270 

annotations, teams using the same aligner do not have error profiles that tightly cluster for all 271 

three tumours, suggesting that the aligner is not as strong a driver of those profiles, compared 272 

to the caller algorithm. 273 

 274 

Discussion 275 

Crowd-sourced benchmarking challenges are ideal for questions where significant diversity in 276 

algorithmic approaches exists, particularly where individual methods are highly parameterized 277 

or computationally intensive [24,25]. The detection of variants from high-throughput sequencing 278 

data fits these criteria well: dozens of algorithms are in common use, many with complicated 279 

sets of parameters to tune and most requiring tens to hundreds of CPU hours to execute. We 280 

have quantified the critical importance of parameterization: it accounts for 21-43% of the 281 

variability in performance across the 204 submissions evaluated. This is comparable to the 26% 282 

of variability observed in somatic SNV detection benchmarking [10], and highlights the need for 283 
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algorithm developers to continue to optimize parameters, provide guidance for their tuning and 284 

work toward automating their selection to make their software easier to use. 285 

Scoring SV detection is complicated by the diversity of SVs. While some SV types may be well-286 

characterized by overlap-based scoring methods, others benefit more from breakpoint-based 287 

scoring, and the choice of scoring metric and stringency parameters must be tuned to specific 288 

biological questions of interest. For example, breakpoint identification is critical when 289 

considering translocations -- especially those generating candidate fusion proteins -- while 290 

overlap of the called and known regions is much more important for copy-number analyses. 291 

Moreover, it may be useful to adapt scoring (e.g. by using a range of stringency parameter 292 

values) to identify SVs in certain contexts (e.g. with breakpoints in repetitive regions) that are 293 

still detectable by given tools, but with less precision. Taken together, SV diversity is an 294 

important consideration for the development of standards for scoring SV detection. 295 

The “wisdom of the crowds” is the idea that an ensemble of multiple algorithms can significantly 296 

outperform any individual method. Several crowd-sourced benchmarking competitions from 297 

diverse fields have shown great success in combining submissions from contestants to achieve 298 

a high-performing meta-predictor including challenges for somatic SNV detection [10], gene 299 

regulatory network inference [21] and mRNA-based prognostic signatures for breast cancer 300 

[20]. By contrast, in somatic SV detection, we do not have clear evidence that an ensemble 301 

improves on the best individual method consistently across different tumours. Specifically, the 302 

majority vote approach works very well for somatic SNV detection, yet it appears to fail for 303 

somatic SV detection. This may reflect the large diversity in the biases of each individual 304 

algorithm (Fig. 4). Rather than focus on commonalities through a majority vote, it may be more 305 

beneficial to leverage the strengths of individual algorithms. This might be achieved by using 306 

machine learning to optimize the weighting of the algorithms for specific input patterns. For 307 

example, an aggregating classifier could learn, if there is a sizable difference in coverage in the 308 
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tumour versus normal samples near given candidate breakpoints, the calling algorithms that use 309 

read depth analysis should have more weight. The overall approach could involve the following 310 

general steps: 1) apply all algorithms of interest to a given tumour-normal dataset and take the 311 

union of all resulting call sets to define a list of candidate SVs; then for each candidate, 2) 312 

compute sequence features (e.g. coverage) around the candidate breakpoints, and 3) provide 313 

computed features and confidence scores from individual algorithms as input to an aggregating 314 

classifier that will indicate whether or not the candidate is likely to be a true SV. In fact, a similar 315 

approach is behind the SMC-DNA Meta-pipeline Challenge [26] for benchmarking pipelines that 316 

aggregate calls from different SNV detection algorithms. In practise, analogous efforts for SV 317 

detection would require additional considerations such as the identification of i) an optimal 318 

method for merging similar yet different calls (due to imprecise breakpoint calling) when 319 

compiling the list of candidate SVs, ii) the most informative sequence features for guiding the 320 

relative weighting of individual algorithms (e.g. variables in Figure 4), and iii) an optimal scoring 321 

method (as mentioned above). Thus there is a need for continued development of new, more 322 

complex ways to integrate multiple somatic SV detection methods [27]. 323 

Given the paucity of gold-standard benchmarking data for somatic SVs, the creation of the 324 

simulated datasets and the associated leaderboards constitutes a major contribution of this 325 

Challenge. Ideally, a simulated dataset depicts realistic mutations through realistic sequence 326 

reads. The synthetic tumours generated for the Challenge only represent straightforward SV 327 

types (duplication, deletion, insertion, inversion) and cover relatively small regions. Subsequent 328 

enhancements to BAMSurgeon have added support for additional SV types including 329 

translocations and complex SV combinations, enabling simulations to more completely capture 330 

the complexity of tumour genomes and by extension, challenge SV callers in different ways. For 331 

each SV, simulated reads are generated (via wgsim) from a re-arranged contig, where the 332 

original contig is constructed from real reads. Despite the basis on real reads, the simulated 333 
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reads do not necessarily reflect the non-uniform coverage that may arise during preparation of 334 

real samples, for example [28]. There are other read simulators that learn biased-coverage 335 

trends from real data and use them to generate reads (e.g. [29]) that could be used by 336 

BAMSurgeon; however, it is an on-going challenge to simulate biases of real sequencing data 337 

as sample preparation methods and sequencing technologies vary and/or advance. In fact, one 338 

could sequence the same ‘normal’ sample twice to capture inter-sample variability, with one 339 

replicate converted into a synthetic tumour sample using BAMSurgeon. Nevertheless, there are 340 

distinct advantages to benchmarking on simulated datasets. It is dramatically easier to simulate 341 

large numbers of tumours, or to create tumours with highly divergent mutational properties, 342 

leading to well-supported estimates of per-tumour caller accuracy. This enables our strategy of 343 

generating synthetic tumours of increasing complexity (e.g. with other SV types and/or 344 

haplotype structure by using phased sequence data) whereby the impact of the complexity 345 

introduced at each step can be assessed. With the three synthetic tumours described here, we 346 

observed that caller ranking varied across tumours and we expect it to vary with a broad range 347 

of tumour characteristics including coverage, normal contamination, complexity of the SVs, the 348 

number of mutations adjacent to breakpoints and others, as they each present different 349 

challenges. It is possible to identify strengths and weaknesses of an individual caller by 350 

comparing its tumour-specific error profiles. Moreover, synthetic tumours can be designed to 351 

test the limits of callers. These advantages highlight the usefulness of synthetic datasets for 352 

benchmarking callers, and until synthetic datasets are completely realistic, they will serve as 353 

important complements to real datasets. 354 

While 15 teams participated in the actual competitive phase of the Challenge, 8 teams have 355 

exploited the IS1-3 benchmarking resources since the competition, making 73 submissions to 356 

benchmark their methods for pipeline evaluation and development. Evaluations based on the 357 

first synthetic tumours, the simplest by design, provide lower-bounds on the error rates. As 358 
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subsequent updates to BAMSurgeon enable the generation of more complex and realistic 359 

tumours, the corresponding error rates using these simulations will approach their upper-360 

bounds. We hope that journals and developers will begin to plan for benchmarking on these 361 

standard datasets, including simulated ones, as a standard part of manuscripts reporting new 362 

somatic SV detection algorithms. 363 

 364 

Conclusions 365 

Analysis of the error profiles of the Challenge submissions showed that somatic SV calling is a 366 

distinctly harder problem than somatic SNV calling even given a relatively simple set of SVs, 367 

with individual pipelines having complex and unique error profiles. Parameterization was a 368 

critical factor in determining the performance of teams. Finally, we demonstrate that, unlike 369 

almost every past DREAM Challenge, somatic SV prediction does not benefit from the “wisdom 370 

of the crowds” -- simple voting of multiple prediction pipelines does not yield improved 371 

predictions in this instance. The synthetic tumours and somatic SV detection leaderboards 372 

remain available as a community benchmarking resource. 373 

 374 

Methods 375 

Simulation of SVs by BAMSurgeon 376 

SV support in BAMSurgeon has evolved throughout the Challenge, largely as a result of 377 

constructive feedback from participants. Our descriptions of BAMSurgeon's method for 378 

simulating SVs is current as of commit (i.e., version) b851573474 of the code available at [30].  379 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/224733doi: bioRxiv preprint 

https://doi.org/10.1101/224733
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 17 of 40 

As input, BAMSurgeon (addsv.py) requires an indexed reference genome, a pre-existing BAM 380 

file (Additional file 1: Figure S1a), and a list of intervals (Additional file 1: Figure S1b) along with 381 

the SV type and parameters (see manual [31]). The intervals should be wide enough that local 382 

sequence assembly is successful in generating a contig that spans at least 2x the expected 383 

library size in the input BAM file. Intervals for which a sufficiently long contig cannot be 384 

generated are rejected, where the exact definition of 'sufficiently long' is an optional parameter. 385 

Note that it may be less likely to obtain long contigs from genomic regions that are more difficult 386 

to sequence, and by extension, less likely to simulate SVs in such regions. Intervals which 387 

contain too many discordant read pairs (again, potentially indicating regions that are difficult to 388 

sequence) are also rejected, subject to a parameter. Following local assembly, the contig is re-389 

arranged: the specific rearrangements for each supported SV type are illustrated in Fig. 1a (step 390 

iii) and Additional file 1: Figure S1c,e,g. The assembled contig is then re-aligned to the target 391 

interval in the reference genome (exonerate --bestn 1 -m ungapped) and is trimmed based on 392 

the start and end coordinates of this alignment. Read pairs corresponding to trimmed contig 393 

sequence are removed from further consideration. 394 

Read coverage is generated over the rearranged contig using a read simulator (wgsim -e 0 -R 0 395 

-r 0), to achieve the same average depth as the input BAM file, which has the effect of creating 396 

split reads relative to the reference genome supporting SV detection. For a deletion, the number 397 

of reads required to achieve (e.g.) 30x coverage is fewer than the number of reads required to 398 

reach 30x coverage prior to the deletion, so reads must be removed from the original BAM (Fig. 399 

1a, step iv). Inversely, for duplications and insertions additional reads need to be added to the 400 

original BAM (Additional file 1: Figure S1d,h). Inversions generally do not affect coverage 401 

(Additional file 1: Figure S1f). To ensure any reads removed actually correspond to the deleted 402 

region of the contig, the locations of reads in the assembled contig are tracked. The number of 403 

reads to be replaced, added, or deleted is scaled with the desired allele fraction. Finally, any 404 
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read pairs in the original BAM corresponding to reads altered in the simulated SV are replaced, 405 

any read pairs marked for deletion are removed from the original BAM, and any additional read 406 

pairs generated are added. It is recommended that the resulting altered BAM be post-processed 407 

(with postprocess.py) to ensure compliance with the SAM format specification (see manual 408 

[31]). 409 

Synthetic tumour generation 410 

Synthetic tumours were prepared by partitioning high-coverage BAMs from 'normal' cell lines 411 

into two groups of reads, picking read pairs at random as described previously [10]. 412 

Alternatively, one could sequence the same ‘normal’ sample twice to capture inter-sample 413 

variability, with one replicate converted into a synthetic tumour sample using BAMSurgeon. For 414 

the three in silico challenges, non-overlapping regions were selected at random for SV addition, 415 

resulting in 371 variants added for IS1, 655 for IS2, and 2,886 for IS3 (Fig. 1d). Variant input 416 

files are available in Additional file 7. SVs were added using addsv.py with assembly 417 

GRCh37/hg19 as the reference genome and default parameters except where noted. For IS3, 418 

to simulate subclones a file specifying CNV fractions over SV regions was input via option -c to 419 

specify the variant allele frequency (VAF) of the spiked-in variants at either 0.5, 0.33, or 0.2 420 

(Additional file 7). The output BAMs were post-processed to account for any inconsistencies 421 

introduced due to remapping and merging of reads supporting SVs using the script 422 

postprocess.py included with BAMSurgeon. The BAMs were further adjusted with 423 

RealignerTargetCreator and IndelRealigner from the Genome Analysis Toolkit (v.2.4.9). All 424 

tumour-normal pairs generated via BAMSurgeon are verified for adherence to the SAM/BAM 425 

format specification using the ValidateSamFile tool included in the Picard tool set [32]. Truth 426 

VCF files, i.e. files specifying simulated mutations, for SVs were generated using the script 427 

etc/makevcf_sv.py and merged with truth files for SNP and INDEL locations, where applicable. 428 
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SAMtools was used throughout to split, merge, sort, and index BAMs, and also index FASTA 429 

files. Details on the specific BAMSurgeon commits used for generating each tumour, as well as 430 

other tumour details are given at [33]. 431 

Validation of BAMSurgeon 432 

To validate BAMSurgeon’s ability to simulate somatic SVs, we compared the output of four 433 

algorithms -- two widely used SV callers, CREST [16] and Delly [9], and two callers developed 434 

over the course of the Challenge, Manta [17] and novoBreak [18] -- on the IS1 tumour-normal 435 

data set, and analogous datasets generated with the same spike-in set of mutations, but with an 436 

alternate aligner (NovoAlign v.3.00.05 [34]), cell line (HCC1954 BL) or read division. We did not 437 

optimize parameters for the callers since the goal of this validation was not to identify the best 438 

caller, but instead to verify that the caller ranking is maintained across analogous datasets. 439 

Each tumour-normal pair was processed by CREST (v1.0) to extract soft clipping positions for 440 

each chromosome separately, using default parameters. This data was then used by CREST to 441 

call somatic SVs using the default protocol, and we converted the output into VCF v4.1 format. 442 

Somatic SVs were called from each tumour-normal pair using Delly (v0.5.5) with default 443 

parameters. Calling was performed on each chromosome separately for all supported SV types 444 

except for translocations, and we converted the translocation output into VCFv4.1 format. Calls 445 

with MAPQ < 20, PE < 5, or labeled as “LowQual” or “IMPRECISE” were filtered out. Somatic 446 

SVs were called from each tumour-normal pair using Manta (v0.26.3) with the following 447 

parameters: -m local -j 4 -g 10. Lastly, somatics SVs were called from each dataset using 448 

novoBreak (v1.04) with a modification to ensure that sequence windows around breakpoints 449 

never go beyond the start of the chromosome. All sets of SV calls were scored with f = 100 bp 450 

and j > 0, callers were ranked based on F-score for each tumour-normal pair, and rankings were 451 

compared across pairs (Fig. 1b,c and Additional file 1: Figure S3). 452 
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Preprocessing VCF files 453 

We preprocess VCF files to parse out the SV-relevant details (e.g. the END coordinate in the 454 

INFO value or from the length of the REF sequence; if the END coordinate cannot be 455 

determined from those values, it is set to the POS coordinate), remove SVs that did not pass 456 

filters (as indicated by the FILTER values) and ensure consistent formatting between files. To 457 

ensure consistent formatting in accordance with the VCFv4.1 specification [35] we: 458 

1. Add row entries to ensure that each MATEID specification has a corresponding pair of 459 

entries, where only a single entry is provided 460 

2. Re-assign IDs and MATEIDs to ensure unambiguous references to entries 461 

3. Where possible, replace SVTYPE = BND entries with entries specifying SVTYPE = 462 

{CNV, DEL, DUP, INS, INV} in accordance with REF, ALT and EVENT values 463 

Testing set SVs are indicated in the truth VCF file with the addition of masked genomic regions 464 

specified with CHROM, POS and END values indicating the chromosome, start and end 465 

coordinates, and SVTYPE = MSK. Specifically, a SV where ≥ 50% of the corresponding region 466 

overlaps a masked region is allocated to the testing set; otherwise, it is in the training set. 467 

Structural variant scoring 468 

Our scoring approaches evaluate the accuracy of a set of called SVs and requires input VCF 469 

files specifying: i) called SVs, and ii) true/known SVs. Generally, a called SV that is sufficiently 470 

similar to a known SV based on specific criteria (Table 1) is considered a true positive (TP); 471 

otherwise, a false positive (FP). Also, a known SV that is sufficiently similar to a called SV is 472 

considered a TP; otherwise, a false negative (FN). Our scoring supports two ways of quantifying 473 

similarity: 474 
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A. Region overlap. The Jaccard coefficient (j) is computed from the lengths (in bp) of 475 

intersection and union regions (Additional file 1: Figure S2a). 476 

B. Breakpoint closeness. The distance (Δ, in bp) between called and known breakpoints 477 

is computed (Additional file 1: Figure S2b). If Δ ≤ f (where f is a flank threshold 478 

parameter), a relative closeness is computed, c’ = 1 - Δ/f. The overall closeness (c) is 479 

defined as the geometric mean of the c’ values for the start and end breakpoints. If only 480 

one of the start and end breakpoints has Δ ≤ f, the called and known SVs are annotated 481 

as partially matching. 482 

Unless otherwise specified, we scored with f = 100 bp. If there is an ambiguous matching of 483 

called SVs to known SVs by sufficient similarity, the similarity values (j/c) are used to identify an 484 

optimal one-to-one matching. First, we restrict the matching to the best match(es) for each 485 

called and known SV. If a SV has multiple best matches by similarity, we attempt to break the 486 

tie by favouring SVs with the same SVTYPE, and/or test/training set membership. If the best 487 

matching is still ambiguous, we then use corresponding similarity values together with the 488 

Hungarian algorithm to obtain a one-to-one matching (with the clue v0.3-48 R package [36]). 489 

Finally, SVs are annotated based on this matching. SVs that have sufficient similarity but are not 490 

in the final matching are annotated as partially matching. Mated breakpoints are initially 491 

annotated separately. If one is annotated as partially matching or as a TP, and the other is a FP, 492 

the FP annotation is replaced by a partial match annotation. Subsequently, each set of mated 493 

breakpoints is treated as a single SV. 494 

These annotations are used to assess the performance of a SV caller in terms of precision = 495 

nTP/(nTP + nFP), recall = nTP/(nTP + nFN) and F-score (specifically, F1-score) = 2 x precision x 496 

recall/(precision + recall), where nTP, nFP and nFN represent the numbers of TPs, FPs and 497 

FNs, respectively. Partial matches are not counted in these computations. Unless otherwise 498 
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specified, the precision, recall and F-score values presented here were computed on the testing 499 

and training sets combined. The best submission of a given team is defined as the team’s 500 

submission with the greatest F-score computed against all known SVs. 501 

Execution of challenge-based benchmarking 502 

The SV component of the Challenge was executed concurrently with the SNV component, and 503 

the procedure has been described previously [10]. It was implemented using the Dialogue for 504 

Reverse Engineering Assessments and Methods (DREAM) framework. Briefly, information 505 

about the Challenge was shared on its website [19], participants registered online, downloaded 506 

a data set, applied their SV calling pipelines to the data set and submitted the results in 507 

VCFv4.1 format. IS1-IS3 were released sequentially, each data set had its own competition 508 

phase and participants could make multiple submissions for each data set. Each tumour 509 

genome was divided into a training set and a testing set. During the competition phase, 510 

leaderboards showed performance measures on the training set. After the competition closed, 511 

leaderboards also showed performance measures on the whole genome (training + testing 512 

sets), thus benchmarking the SV calling pipelines. The SV leaderboards for IS1 and IS2 were 513 

pre-populated with results from BreakDancer (v1.1.2_2013_03_08 [7]) run with default 514 

parameters; a reference point submission indicated labeled as “Standard” in figures and tables. 515 

Due to our exploration of multiple SV scoring methods in this manuscript, the leaderboard 516 

results are not completely consistent with the results presented here, but all raw and 517 

leaderboard data are available.  518 

Overfitting artefact analysis  519 

Due to the order of magnitude greater number of SVs spiked into IS3, we simulated training and 520 

testing sets of different sizes by sampling from the IS3 training set. Specifically, we assessed 521 

mutation totals of 100 to 1000 (by increments of 100), and training sets that were 80-95% (by 522 
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increments of 1%) of the total, by sampling each {mutation-total, training-set%} combination 100 523 

times. For each sample, we computed Ftrain - Ftest for each IS3 submission where Ftrain and Ftest 524 

are F-scores computed on the simulated training and testing sets, respectively. We then 525 

computed the median difference across samples to obtain a summary value for each 526 

submission, and finally show the median across submissions in Additional file 1: Figure S5e. 527 

(Ftrain - Ftest) > 0 suggests overfitting but such values are an artefact of testing set size since no 528 

fitting/training was done in this analysis. 529 

Team variation 530 

For each tumour-normal pair, we computed the percentage of variation in F-score, across all 531 

submissions, that is accounted for by within-team variation. Specifically, we computed the 532 

within-team sum of squares as a percentage of the total sum of squares. 533 

Definition of ensembles 534 

We aggregated SV calls from k submissions into an ensemble set with the following general 535 

approach: 536 

1. BND filter. Calls defined with SVTYPE = BND were excluded for simplicity. 537 

2. Compute call distances. Pairwise distances (d, in bp) between remaining predictions 538 

were computed (i.e. a breakpoint-length distance that incorporates distances between 539 

breakpoints and differences in predicted SV length, Additional file 1: Figure S2c). 540 

Distances were only computed between predictions from different submissions. 541 

3. Generate sets of similar calls. A distance less than a selected threshold (100 for 542 

consistency with f, see Structural variant scoring) indicated sufficiently similar calls. 543 

We assessed two variations: 544 
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a. Baseline. We defined a graph such that vertices represented calls and edges 545 

connected sufficiently similar calls. We identified the connected components to 546 

define the sets of similar calls. Sets with median intra-set distances > f were 547 

refined. Specifically, the call with the greatest median distance to the other set 548 

members was iteratively removed until the median intra-set distance dropped 549 

below f, or the set became empty. 550 

b. Conservative. We used the added constraint that called SVs overlap by ≥ 1 bp 551 

to be treated as sufficiently similar. Sets of similar calls were constructed by 552 

iterating over the sufficient similarity pairs from least to most distant. If a pair did 553 

not contain a call in an existing call set, the pair was used to define a new call 554 

set. Otherwise, one call was already in a set, and the other was a candidate for 555 

addition to the same set via guilt-by-association. If the candidate came from a 556 

submission that was not already covered by the set, and its median distance to 557 

the existing set members ≤ f, it was added to the set. Any unprocessed pairs 558 

within or between the prediction sets at that stage were excluded from 559 

consideration.  560 

4. Majority vote filter. Sets with calls from ≤ k/2 submissions were excluded; each 561 

remaining set covered the majority of submissions.  562 

5. Aggregate sets to define ensemble calls. The chromosome together with the median 563 

start and end positions of each set of calls defined a single ensemble SV call. 564 
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An additional distinction between the baseline and conservative approaches is that the baseline 565 

approach only involved the best submission from each team whereas all submissions were 566 

used with the conservative approach. To investigate different ensembles of N submissions for 567 

the same tumour-normal pair, we first ordered the submissions by overall F-score, computed 568 

after excluding calls with SVTYPE = BND. We then generated an ensemble call set with the top 569 

k submissions, for k = 2..N. The performance of ensembles was compared to that of the 570 

individual submissions, after excluding calls with SVTYPE = BND (e.g. Fig. 3d).  571 

Error characterization 572 

To characterize the errors made by a team, we assessed the team’s best submission for a given 573 

tumour-normal pair. We also assessed errors made by CREST, Delly and Manta when run, with 574 

the same protocols described in the Validation of BAMSurgeon section, on all three tumour-575 

normal pairs. Characterizing FNs and FPs involved comparisons to TPs and true negatives 576 

(TNs), respectively. Moreover, we characterized errors at the level of breakpoints. 577 

Sampling true negatives. Given a set of submissions for the same tumour-normal pair, we 578 

identified the maximum number of FPs from a single submission, m. We then sampled ≥ m TNs 579 

for each submission, by sampling regions from the reference genome that satisfied these 580 

criteria: 581 

1. length sampled from a log-normal distribution with mean and standard deviation equal to 582 

that of the logged lengths of the known SVs 583 

2. start position is not in known gap and repeat regions 584 

3. region does not overlap with any known SVs 585 

4. region does not overlap with any SVs called in the submission 586 
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Some sampled regions qualified as TNs for multiple submissions. For IS2, we excluded Team 587 

14’s submission because it had a very large number (17,806) of FPs, and thus was 588 

computationally problematic for the subsequent Random Forest analysis. 589 

Breakpoint annotations based on scoring. A single breakpoint may be associated with 590 

multiple (called/known) SVs, and therefore may be associated with multiple annotations 591 

depending on the scoring approach used, i.e. > 1 of {TP, FN, FP}. To remove ambiguity, we 592 

choose a single annotation for each breakpoint by prioritizing as follows: TP > FN > FP. This 593 

prioritization favours good performance (i.e. TP has highest priority) and then recall (i.e. FN > 594 

FP) since it appears to be a greater challenge than precision for SV calling (Fig. 2a, Additional 595 

file 1: Figure S5a,b). TN breakpoints should be unambiguous due to the way in which they were 596 

sampled (see above).  597 

Genomic variables. For each breakpoint position, we computed 16 genomic factors, 12 of 598 

which were previously described [10]. The additional genomic variables were computed as 599 

follows: 600 

A. Bridging reads count. We used samtools v0.1.19 to identify reads in the tumour BAM 601 

mapped to a genomic region containing the window defined by the breakpoint position 602 

+/- 1 bp. The bridging read count was defined as the number of identified reads. Note 603 

that a bridging read does not necessarily have a secondary mapping for part of the read, 604 

as one might expect for a split read. 605 

B. Distance to nearest germline INDEL. Germline calls were obtained as previously 606 

described [10] and INDELs were parsed out. The distance of a breakpoint to the nearest 607 

germline INDEL was computed using BEDTools closest v2.18.2. 608 

C. Nucleotide complexity. The sequence for the window defined by the breakpoint 609 

position +/- 50 bp was extracted from the reference fasta file. The nucleotide complexity 610 
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was defined as the entropy of the sequence: -Σpxlog2(px) over x ∈ {A, G, C, T} where px 611 

is the proportion of the sequence with x (case-insensitive). 612 

D. Strand bias. We used samtools v0.1.19 to identify reads in the tumour BAM mapped to 613 

a genomic region containing the breakpoint position. The strand bias was defined as the 614 

proportion of these reads mapped to the + strand. 615 

Univariate analysis. To assess the relationship between each non-categorical variable and 616 

prediction error rates, we computed the Pearson correlation coefficient between the variable 617 

values and the proportion of teams with a FN/FP at the breakpoints, as well as the 618 

corresponding P value. Reference and alternative allele counts, base quality, tumour and 619 

normal coverages, bridging reads counts and distances to the germline SNP and INDEL were 620 

logged (base 10) prior to computing correlations (zeros were replaced with -1 instead of 621 

logged). For the categorical variables, trinucleotide and genomic location, the P value measured 622 

the significance of the variable in a fitted binomial model predicting the FN/FP rate at a 623 

breakpoint. A binomial model was fitted because it is a relatively simple model (and thus less 624 

prone to overfitting) to test the relationship between a categorical variable and a proportion 625 

variable (i.e. an error rate). 626 

Multivariate analysis. Random Forests were generated as previously described [10] with a few 627 

alterations. Here, a total of 16 genomic variables (Fig. 4) were used to build: i) a classifier to 628 

distinguish FN and TP breakpoints, and ii) a classifier to distinguish FP and TN breakpoints. A 629 

FP classifier was not generated for Team 7 with respect to IS1 since the team produced only 630 

one FP, and thus there was insufficient data to generate an accurate model. Conversely, a FP 631 

classifier was not generated for Team 14 with respect to IS2 since the team produced a very 632 

large number of FPs (17,806) that caused a failure to converge. Computation of the directional 633 

effect of variables was also as previously described [10]. 634 
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Non-parametric tests (i.e. Wilcoxon and Mann-Whitney tests) were used throughout to avoid 635 

assumptions about the distributions of the tested populations; all tested populations had n ≥ 7. 636 

The BEDTools suite (v2.18.2 [37]) was used with the bedR R package (v0.5.3 [38]) throughout. 637 

Plots were generated with the BPG (v5.3.9), lattice (v0.20-33) and latticeExtra (v0.6-26) R 638 

packages and R (v3.2.1) was used throughout. 639 
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Table 1 | Caller scoring schemes. 805 

Basis of 

comparison 

Region Overlap 

(Additional file 1: Figure S2a) 

Breakpoint Closeness 

(Additional file 1: Figure S2b) 

Description SVs match if there is sufficient 

overlap, determined with a Jaccard 

threshold parameter, between the 

genomic region associated with the 

called SV and that of the known SV 

SVs match if the breakpoints of the 

called SV are sufficiently close to the 

those of the known SV, i.e. 

breakpoints are within f bp of one 

another where f is a flank parameter 

Strengths ● identifies genomic regions 

affected by the known SVs 

● suited to all types of SVs 

● evaluates precision of breakpoint 

predictions, facilitating 

subsequent breakpoint validation 

Weaknesses ● some SVs are not accurately 

defined by genomic regions, 

e.g. an insertion may be 

characterized by a single 

breakpoint 

● need criteria to define 

sufficient overlap 

● need criteria to define sufficient 

closeness 

 806 
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Table 2 | Teams. 807 

Team ID Method name Institute 

Standard BreakDancer Challenge Administrators 

Team 1* Delly1 European Molecular Biology Laboratory (EMBL) 

Team 2 Manta Illumina, Inc. 

Team 3 Meerkat Harvard Medical School 

Team 4 novoBreak MD Anderson Cancer Center 

Team 5 deStruct2 BC Cancer Agency Research Centre 

Team 6 SWAN Wharton School 

Team 7 SmuFin Barcelona Supercomputing Center 

Team 8 not available Peking University 

Team 9* deStruct2 Simon Fraser University 

Team 10 GROM Rutgers University 

Team 11 Pindel McDonnell Genome Institute 

Team 12 PAVFinder Canada's Michael Smith Genome Sciences Centre 

Team 13 Delly1 Georgetown University Medical Center, 

National Cancer Institute 

Team 14 Subread Walter and Eliza Hall Institute of Medical Research 

Team 15 CX Wharton School 

Teams that made submissions for IS1, IS2 and/or IS3, the names of the SV detection methods 808 

they used and the institutes to which they belong. 809 
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1Delly was developed by Team 1 and also used by Team 13. 810 

2deStruct was developed by Team 9 and also used by Team 5. 811 

 812 

Figure Legends 813 

Fig. 1 | BAMSurgeon simulates SVs in genome sequences. 814 

Method for adding SVs to existing BAM alignments. a Overview of SV (e.g. deletion) spike-in: 815 

Starting with an original BAM (i), a region (ii) is selected where a deletion is desired. iii) Contigs 816 

are assembled from reads in the selected region, and the contig is rearranged by deleting the 817 

middle. The amount of contig deleted is a user-definable parameter. Read coverage is 818 

generated over the contig using wgsim to match the number of reads per base in the original 819 

BAM. Since the deletion contig is shorter than the original, fewer reads will be required to 820 

achieve the equivalent coverage. iv) Generated read pairs include discordant pairs (i.e. paired 821 

reads that do not align to the reference genome with the expected relative orientation and inner 822 

distance) spanning the deletion and clipped reads (i.e. reads that are only partially aligned to the 823 

reference). Reads mapping to the deleted region of the contig are not included in the final BAM. 824 

b,c To test the robustness of BAMSurgeon with respect to changes in (b) aligner and (c) cell 825 

line, we compared the ranks of CREST, Delly, Manta and novoBreak on two new tumour-normal 826 

data sets: one with an alternative aligner, NovoAlign, and the other on an alternative cell line, 827 

HCC1954 BL. Callers were scored with f = 100 bp (Additional file 1: Figure S2b); Manta retained 828 

the top position, independent of aligner and cell line. d Summary of the three in silico (IS) 829 

tumours described here. Abbreviations: DEL, deletion; DUP, duplication; INV, inversion; INS, 830 

insertion. 831 

 832 
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Fig. 2 | Overview of the SV Calling Challenge submissions. 833 

a Precision-recall plot of IS1 submissions. Each point represents a submission, each colour 834 

represent a team and the best submission from each team (top F-score) is circled. The 835 

“Standard” point corresponds to the reference point submission provided by Challenge 836 

organizers. b The F-scores of submissions on the training and testing sets are highly correlated 837 

for IS1 (Spearman’s ρ = 0.98), falling near the plotted y = x line. 838 

 839 

Fig. 3 | Performance optimization by parameterization and ensembles. 840 

a Recall, precision and F-score of all IS1 submissions plotted by team, then submission order. 841 

Teams were ranked by the F-score of their best submission, colour coding (top bar) as in Fig. 2. 842 

The “Standard’” lines correspond to the reference point submission provided by Challenge 843 

organizers. b For each tumour, the improvement in F-score from the initial (“naive”) to the best 844 

(“optimized”) submissions of each team. Darker shades of blue indicate greater improvement. c 845 

For each tumour, team rankings based on their naive or optimized submissions. Larger dot 846 

sizes indicate better ranks by F-score. b,c An “X” indicates that the team did not make a 847 

submission for the specific tumour (or changed team name). d Recall, precision and F-score of 848 

ensembles versus individual submissions for IS1. At the kth rank, the triangles indicate 849 

performance of the ensemble of the top k submissions, and the circles indicate performance of 850 

the kth ranked submission. The ensemble analysis focused on the best submission from each 851 

team. 852 

 853 

Fig. 4 | Characteristics of prediction errors. 854 

Random Forests assess the importance of 16 sequence-based variables for each caller’s FN 855 
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(a,c,e,g,i) and FP (b,d,f,h,j) breakpoints. Each panel shows variable importance on the left, 856 

where each row represents the best performing set of predictions by the given team/caller (on 857 

the given in silico tumour), and each column represents the indicated variable. Dot size reflects 858 

variable importance, i.e. the mean change in accuracy caused by removing the variable from 859 

the model (generated to predict erroneous breakpoints). Colour reflects the directional effect of 860 

each variable (red and blue for greater and lower variable values, respectively, associated with 861 

erroneous breakpoints; black for categorical variables or insignificant directional associations, 862 

two-sided Mann-Whitney P > 0.01). Background shading indicates the accuracy of the model 863 

(see colour bar). Variable importance for FN and FP breakpoints in each of the three tumours is 864 

shown for the following SV callers: CREST (a,b), Delly (c,d) and Manta (e,f). Manta only called 865 

two FPs in IS1; thus, variable importance for FP breakpoints could not be computed (indicated 866 

by Xs in the plot). Variable importance for FN and FP breakpoints in IS2 (g,h) and IS3 (i,j) is 867 

shown for each team. In the right plot (g-j), the first four columns indicate usage of the indicated 868 

algorithmic approaches by each team, and the last column indicates the aligner used. Grey 869 

indicates that algorithmic approaches and aligner are unknown for the given team. 870 

Abbreviations: Algm, algorithm; SNP, single-nucleotide polymorphism; INDEL, short insertion or 871 

deletion. 872 
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