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Abstract 14 
To fully characterize the activity patterns on the cerebral cortex as measured with fMRI, 15 
the spatial scale of the patterns must be ascertained. Here we address this problem by 16 
constructing steerable bandpass filters on the discrete, irregular cortical mesh, using an 17 
improved Gaussian smoothing in combination with differential operators of directional 18 
derivatives. We demonstrate the utility of the algorithm in two ways. First, using 19 
modelling we show that our algorithm yields superior results in numerical precision and 20 
spatial uniformity of filter kernels compared to the most widely adopted approach for 21 
cortical smoothing. An important interim insight hereby was that the effective scales of 22 
information differ from the nominal filter sizes applied to extract them, and thus need to 23 
be calculated separately to compare different algorithms on par. Second, we applied the 24 
algorithm to an fMRI dataset to assess the scale and pattern form of cortical encoding of 25 
information about visual objects in the ventral visual pathway. We found that filtering by 26 
our method improved the detection of discriminant information about experimental 27 
conditions over previous methods, that the level of categorization (subordinate versus 28 
superordinate) of objects was differentially related to the spatial scale of fMRI patterns, 29 
and that the spatial scale at which information was encoded increased along the ventral 30 
visual pathway. In sum, our results indicate that the proposed algorithm is particularly 31 
suited to assess and detect scale-specific information encoding in cortex, and promises 32 
further insight into the topography of cortical encoding in the human brain. 33 
  34 
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Introduction 35 
A major goal of human cognitive neuroimaging is to establish a mapping between mental 36 
representations and patterns of activity human cortex (van Essen et al. 2001; Logothetis 37 
& Wandell, 2004). The main description of this correspondence is functional localization, 38 
i.e. where on the two-dimensional cortical sheet neural representations reside (van Essen 39 
et al., 1998; Fischl et al. 1999; Brett et al., 2002). Neural representation in human cortex 40 
typically involves distributed neuronal populations. Thus, representations in 41 
neuroimaging are rarely restricted to single image points, but rather appear as patches of 42 
activation across the cortical sheet. Therefore, two further parameters of neural 43 
representations on the cortical beyond point location must be given: the spatial scale and 44 
the form of the pattern in the localized patch. Without information about spatial scale it 45 
remains impossible to correctly ascribe cognitive function to any of the multiple scales on 46 
which the brain is organized, ranging from single cells over cortical columns, patches and 47 
large-scale maps (Op de Beeck, 2008; Swisher et al., 2010; Brants et al., 2011; Misaki et 48 
al., 2013). Without a detailed characterization of the activation pattern, e.g. through the 49 
direction of a gradient, valuable and distinctive fine-grained information might be 50 
neglected (Portilla & Simoncelli, 2000). 51 

The methodological challenge in characterizing the spatial patterns of human 52 
brain activity is that analysis must observe the structure restriction of a highly convoluted 53 
cortical sheet, and be carried out with respect to the underlying differential geometry of 54 
the irregular two-dimensional cortical sheet (van Essen et al. 2007; Chen et al. 2011), 55 
rather than three-dimensional Euclidean space (Brants et al., 2011). For this, two key 56 
technical challenges need to be addressed: 1) how to assess spatial scale on an irregular 57 
mesh that captures the geometry of the cortical sheet (Hagler et al., 2006) correctly, and 58 
2) how to assess the directional components in the activation pattern (Simoncelli & 59 
Freeman, 1995).  60 

Here, we address both issues simultaneously with an algorithmic scheme for 61 
directional spatial filtering on the cortical sheet. We built steerable bandpass filters on the 62 
irregular cortical surface, constructing differential operators of directional derivatives, 63 
and combining them with Gaussian smoothing kernels. To achieve an infinite-impulse 64 
response filter (IIRF) for Gaussian smoothing, we adopted a geometrical discretization of 65 
the Laplace-Beltrami operator (Meyer et al., 2003), combined with a modified algorithm 66 
for computing the symmetric matrix exponential (Sidje, 1998). Importantly, we note that 67 
the effective scales of information differ from the nominal filter sizes applied to extract it, 68 
due to the underlying smoothness of the data. Thus, filtering approaches must take this 69 
into account, and only the effective scales of information can be compared across 70 
different approaches. 71 

We demonstrate the utility of the algorithm in comparison to previously proposed 72 
methods in two ways. First, using modelling we show that through improvement in the 73 
smoothing operations our proposed method yields superior results in numerical precision 74 
and spatial uniformity of filter kernels compared to the most widely adopted approach for 75 
cortical smoothing. Second, we apply the proposed method to an fMRI dataset to assess 76 
the cortical encoding of information about visual objects at the subordinate (exemplar) 77 
and superordinate (category) level and made several observations. We found that filtering 78 
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by our method improved the detection of discriminant information about experimental 79 
conditions. Further, it provided a novel quantitative description of the spatial organization 80 
of encoding of visual categories:  Information about ordinate level visual categories (e.g. 81 
distinguishing plane from car) was more prominent at a coarser scale than for subordinate 82 
categories (or exemplars, i.e. distinguishing one plane from another), and we observed a 83 
systematic increase in the spatial scale at which information was maximally explicit 84 
along the hierarchy of the ventral visual stream. 85 

Together, this indicates that the proposed implementation to be particularly suited 86 
to assess and detect scale specific information encoding on the cortical surface, promising 87 
further insight into the topography of cortical encoding in the human brain. 88 

1   Methods 89 

1.1   Heat diffusion and Gaussian smoothing 90 
Assessment of scale specific information relies crucially on the spatial smoothing 91 
operator and its implementation on the cortical surface. The smoothing operator must 92 
observe the geometry of the irregular mesh, and avoid introducing geometric distortions 93 
and inhomogeneity to allow for appropriate and unbiased assessment. Towards this aim 94 
we employed a Gaussian smoothing operator based on heat diffusion on irregular mesh. 95 

1.1.1   The relation of Gaussian smoothing to the heat diffusion equation 96 
The Gaussian smoothing operation in space is mathematically equivalent to a temporal 97 
physical process of heat diffusion with the input signal as initial condition (Koenderink, 98 
1984). The following partial differential equation characterizes this physical process: 99 

!"($,&)
!$

= −𝛥𝑓(𝑡, 𝑥) , ( 1 ) 100 

where Δ  is the spatial Laplacian, or Laplace-Beltrami operator in case the diffusion 101 
process is on a differentiable manifold. The general solution to this equation, with initial 102 
condition 𝑓 0, 𝑥 , can be given by: 103 

𝑓 𝑡, 𝑥 = 𝑒1$2𝑓 0, 𝑥 ,	
  	
  	
  𝑡 > 0 , ( 2 ) 104 

where 𝑒1$5, the diffusion operator, is the exponential of differential operator −𝑡Δ. From 105 
the viewpoint of spatial smoothing filter, it is convenient to write above solution as:  106 

𝑓$ 𝑥 = (𝐺$ ∗ 𝑓8) 𝑥 ,	
  	
  	
  𝑡 > 0 , ( 3 ) 107 

where 𝑓 𝑡,∙ = 𝑓$ and 𝐺$ = 𝑒1$5𝛿 𝑥 , the application of 𝑒1$5 to a Dirac delta function. 108 
The impulse function 𝐺$ is also called the heat kernel, and the time variable t acts as the 109 
size or scale parameter of Gaussian smoothing kernel exp	
  (−𝑥>/𝑡). 110 
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1.1.2   Discretization of geometrical Laplace-Beltrami operator on triangulated 111 
mesh 112 

When applied to a discrete surface mesh, the Laplace-Beltrami operator Δ needs to be 113 
discretized and expressed in matrix form. One of the most commonly adopted 114 
discretization of this differential operator is the so-called geometrical Laplacian: it takes 115 
the embedding geometry of the mesh into account and is given by (Meyer et al., 2003; 116 
Reuter, 2009; see Fig. 1A for a visualization of the parameters in the equations): 117 

𝑄A,B = −[𝑐𝑜𝑡(𝛽A,B) + 𝑐𝑜𝑡(𝛽′A,B)]/2

𝑄A,A = − 𝑄A,B
B∈!A

	
  119 

	
  𝐵A,B = 	
  
[𝑎𝑟𝑒𝑎(𝑡A,B) + 𝑎𝑟𝑒𝑎(𝑡′A,B)]/6

B∈!A

, 𝑖𝑓	
  𝑖 = 𝑗

0
	
  120 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝛥 = 	
  𝐵1R ∙ 𝑄 ( 4 ) 118 

 121 
  122 

Figure 1: Geometric Laplacian and directional gradient on surface mesh. (A): the parameters 123 
of the discrete Laplacian-Beltrami operator on a triangulated mesh for the i-th vertex, as in 124 
(4). (B): parameters for estimation of gradients for defining directional derivative operators 125 
as in (9). 126 

 127 
where 𝛽 and 𝛽′ are the angles subtended by each edge, 𝑡 and 𝑡′ the triangles at the two 128 
sides of each edge, and 𝜕A indicates the immediate neighbors of vertex i. In practice, the 129 
Laplacian is implemented as a sparse matrix in which non-zero items correspond to edges 130 
in the mesh and are given as in Fig. 1A. Intuitively, each row of the symmetric matrix 𝑄 131 
quantifies the conductivity relations between a vertex and its immediate neighboring 132 
vertices, whereas the diagonal matrix 𝐵, also called lumped mass matrix, specifies for 133 
each vertex a capacity factor, an integral measure for the vertex, so that the inner product 134 
of two functions on the underlying surface 𝑓&, 𝑓T = 𝑓& ∙ 𝑓T𝑑𝑠W  can be numerically 135 
computed by 𝑥, 𝑦 = 𝑥Y𝐵𝑦. 136 
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1.1.3   Calculating numerical solutions to the diffusion equation 137 
For a given input function 𝑓8 and a scale parameter 𝑡, we can substitute (4) into (2) and 138 
use a matrix exponential algorithm to compute the numerical solution 𝑓$ by:  139 

𝑓$ = 𝐸𝑥𝑝𝑀𝑉(−𝑡𝐵1R𝑄, 𝑓8),	
  	
  	
  𝑡 > 0. ( 5 ) 140 

where 𝐸𝑥𝑝𝑀𝑉 𝐴, 𝑣 	
   approximates exp	
  (𝐴) ∙ 𝑣  without computing exp	
  (𝐴)  explicitly 141 
(Sidje, 1998). See Supplementary Text for more detail about this algorithm and an 142 
efficient implementation for diagonal 𝐵 and symmetric 𝑄. 143 

1.1.4   Laplacian of Gaussian as bandpass filters 144 
As from (3), the solution 𝑓$ approximates the smoothing of input 𝑓8 by a Gaussian kernel 145 
of size 𝑡 . Applying the Laplacian 𝐵1R𝑄  to 𝑓$ , we can immediately get the bandpass 146 
filtered detail of 𝑓8  at scale of parameter 𝑡 , with respect to the symmetric, second 147 
derivative of Gaussian:  148 

𝑑$ = −𝐵1R𝑄 ∙ 𝑓$. ( 6 ) 149 

We note (6) is the ubiquitous feature detector in computer vision algorithms (Marr and 150 
Hildreth, 1980), Laplacian of Gaussian (LoG), in form of a discrete differential operator 151 
on discrete surface. Notice the equivalence of the right sides of (6) and (1): From the 152 
perspective of scale space representation, LoG simply acts as the partial derivative of a 153 
multiscale function with respect to its scale parameter.  154 

1.2   Steerable filters of directional derivatives of Gaussian 155 

1.2.1   Local directions are necessary for defining directional derivative operators 156 
To construct steerable bandpass filters at specific scales, we first note the differential 157 
property of convolution: 158 

!`
!&
∗ 𝑓 = !

!&
(𝐺 ∗ 𝑓) . ( 7 ) 159 

Therefore, if we have already computed 𝑓$ by applying a Gaussian kernel 𝐺$ to an input 160 
function 𝑓8 , we can simply apply a differential operator to 𝑓$  to get the scale-specific 161 
details of 𝑓8 , equivalent to the outputs from bandpass filters of Gaussian derivatives. 162 
Particularly, as we are concerned with functions defined on a 2D manifold, we would like 163 
to have differential operators for partial derivatives in orthogonal directions on the 164 
surface, so that the linear combinations of them could be “steered” to any possible 165 
direction in the tangent bundle of the surface. This property of orthogonal directional 166 
derivatives is called steerability (Freeman and Adelson, 1991; Simoncelli & Freeman, 167 
1995) 168 
To construct such differential operators for directional derivatives, we need to define a 169 
system of directions at every vertex on the surface mesh. These directions should be 170 
uniformly consistent: The directions over neighboring vertices being parallel to each 171 
other. Geometrically, this is equivalent to planar parameterization of the surface, and is 172 
only possible for surfaces with zero Gaussian curvature everywhere. For our application, 173 
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however, it may suffice to define such directions that are parallel to each other over flat 174 
area and change smoothly and consistently over a curved area.  175 

1.2.2   Gradients of Fiedler vector field as local directions 176 
We choose to define these directions by using the discrete gradients of the Fiedler vector 177 
𝐹∆ (Biyikoglu et al. 2007), defined as the generalized eigenvector corresponding to the 178 
2nd smallest eigenvalue 𝜆 of the discrete Laplace-Beltrami operator ∆: 179 

𝐹∆ ≜ 𝑄 ∙ 𝐹∆ = 𝜆𝐵 ∙ 𝐹∆ . ( 8 ) 180 

When the underlying surface is sufficiently smooth, the Fiedler vector is the smoothest 181 
bi-modal function defined on the vertices and its gradient field ∇𝐹∆	
  is consistent almost 182 
everywhere (except at very few modal and saddle vertices). 183 

1.2.3   Approximation of Fiedler vector gradients on mesh and directional 184 
derivative operators 185 

To calculate the gradient of Fiedler vector 𝐹 at the vertices on a triangulated mesh, we 186 
assume piece-wise linearity of the underlying Fiedler function on the triangle faces so 187 
that the gradient on a triangle is constant and can be computed by linear fitting: 188 

𝜵𝐹$ = [𝑬hi; 	
  𝑬hk]1 ∙ [𝛻𝐸AB	
  𝛻𝐸Ak]Y, ( 9 ) 189 

where 𝑖, 𝑗, 𝑘 are the vertices of the triangle face 𝑡, 𝑬hi	
   and 	
  𝑬hk are the normalized edge 190 
vectors, ∇𝐸AB, ∇𝐸Ak the gradients of 𝐹 along the two edges and [	
  ]1 the pseudo inversion 191 
of matrix (See Fig. 1B for the parameters in the equation).  192 
Note that the above procedure for calculating the gradient of 𝐹  is applicable to any 193 
smooth function 𝑓  defined on the surface, thus on each triangle face, the partial 194 
derivatives of a given function 𝑓 along the direction of the gradient of Fiedler vector can 195 
be calculated via the inner product of the two gradients: 196 

!"
!n$

= 𝜵𝑓$, 𝜵𝐹$ / 𝜵𝐹$  ( 10 ) 197 

The directional derivative of 𝑓 at vertex 𝑖 is then estimated by the area-weighted average 198 
of the partial derivatives on all the triangles containing vertex 𝑖: 199 

!"
!nA

= 𝑎𝑟𝑒𝑎(𝑡) ∙ !"
!n$$∈!A / 𝑎𝑟𝑒𝑎(𝑡)$∈!A . ( 11 ) 200 

Furthermore, by defining the orthogonal direction of the Fiedler gradients as the cross 201 
products of them and the face normal vectors: 202 

𝑽𝒕 = 𝜵𝐹$×𝑵𝒕,  ( 12 ) 203 

where 𝑵𝒕  is the normal vector of the triangle face, we can compute the directional 204 
derivatives on this orthogonal direction in the same way as on the direction of Fiedler 205 
gradients. It is important to note that these two orthogonal directions (hereafter referred 206 
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as primary and secondary directions) thus allow us to construct directional derivative 207 
operator for each vertex, on any local direction in the plane tangent to the vertex, by 208 
simply taking a proper linear combination of them. 209 
Fig. 2A shows the Fiedler vector on a cortical surface mesh with a zoomed-in portion 210 
showing the locally defined primary directions. In Fig. 2B, filters of directional 211 
derivatives of Gaussian are visualized with their impulse response functions.  212 

 213 
 214 

Figure 2. Directional derivatives of Gaussian based on directions defined by Fiedler vector. (A) 215 
Visualization of Fiedler vector of the discrete Laplacian-Beltrami operator on a patch of cortex 216 
(indicted by black arrows). Colors indicate position in space along the posterior-anterior 217 
direction. (B) Impulse responses of the filters based on directional derivatives of Gaussian, 218 
normalized to unit numerical range (left: primary direction; right: secondary direction). Colors in 219 
arbitrary units indicate filter weights. 220 

1.3   Effective filter size and effective scale 221 

1.3.1   Effective filter size is estimated from the smoothness of its action on Gaussian 222 
random field 223 

In order to build a pyramidal representation with linearly growing spatial scale, we need 224 
to determine the scale parameters t of the heat diffusion kernel to relate its value to 225 
smoothing filter size. Here we followed the practice in Hagler et al. (2006) by estimating 226 
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the overall smoothness of filtered Gaussian random noises as the equivalent full-width-at-227 
half-magnitude (FWHM) size of these filters. Specifically, we generated independent, 228 
uniformly distributed random noise on the surface, applied the filters to it and estimated 229 
the smoothness according to random field theory (RFT): 230 

𝐹𝑊𝐻𝑀$ = 𝑑𝜈 1> vw >

vw	
  (R1xyz {|
}	
  xyz | )

 , ( 13 ) 231 

where 𝑑𝜈  is the average edge length, var(𝑑𝑠)  the variance of difference between 232 
neighboring vertices, and var(𝑠) the total variance over all the vertices. Note the FWHM 233 
for Gaussian smoothing kernel exp	
  (−𝑥>/𝑡), is proportional to the square root of the 234 
scale parameter t. Therefore, we calculated the FWHM for each cortical surface mesh on 235 
a range of parameters t, and took the linear fitting of it and 𝑡 to extrapolate for other 236 
filter size regarding parameter t. The FWHM calculated in this way is taken as the 237 
effective filter size. 238 

1.3.2   Effective scale is estimated from the smoothness of residual data 239 
While the effective filter size can be a valid estimation of spatial scale for functions that 240 
are smoothed from independent Gaussian random noise, the surface images mapped from 241 
volume data may often violate the independence assumption. To estimate the effective 242 
scales of the results, we opted to adopt a post hoc estimation, by calculating the ratio 243 
between the cortical surface area and the number of resels computed by SurfStat from the 244 
residuals:  245 

𝐹𝑊𝐻𝑀$ =
����(�)

w��(����v�)
 . ( 14 )  246 

Note the resels returned from SurfStat are multi-dimensional and only that of 2D, or areal 247 
resel number, is used in (14).  248 

1.4   Evaluation of Gaussian smoothing algorithms 249 
In order to evaluate the numerical precision and spatial uniformity of the proposed heat 250 
diffusion smoothing algorithm, we applied it to impulse functions on a sphere mesh, on 251 
which Gaussian kernels can be calculated analytically and then sampled for reference. We 252 
created sphere meshes by iteratively subdividing a regular tetrahedron and projecting new 253 
vertices to the sphere. In doing so, we constructed a topologically almost-everywhere 254 
regular mesh: All except the initial 4 vertices have the same connectivity of 6. On the 255 
other hand, geometric irregularity of variable areal measures is introduced by the 256 
spherical projection. An elastic regularization was applied in each of the iteration to 257 
control this areal variability. We repeated this iterative procedure for 7 times to generate a 258 
sphere mesh of about 32,000 vertices (radius: 10 mm, average edge length: 0.1385 mm). 259 
Impulse functions at random locations on the sphere are then generated and filtered by 260 
different smoothing algorithms for comparison. 261 
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1.5   FMRI experiment and data preprocessing 262 
To demonstrate the approach used here we re-analysed data from an fMRI experiment on 263 
categorical-level and exemplar-level representation of visual objects (published 264 
previously in Cichy et al., 2011). We only give a briefly summary here. 13 healthy 265 
subjects (1 subject’s data were not included in this analysis due to poor T1/EPI volume 266 
alignment) participated in a mini-block (duration: 6s) design. Stimuli were 3 different 267 
exemplars from 4 different categories (animal, chair, car and airplane), yielding a total of 268 
12 different images. In each mini-block, a single object was rendered in 3D (6 renderings 269 
presented for 800 ms with 200 ms gap) at a position either 4° right or left of the screen 270 
center, subtending ~4.6° of visual angle. Each rendering either repeated the previous 271 
viewpoint, or displayed with a random viewpoint at least 30° difference in rotation in 272 
depth compared to the previous rendering. The number of repetitions of viewpoints was 273 
counterbalanced across objects. Subjects were instructed to fixate at the center of the 274 
screen and perform a one-back viewpoint judgment task.  275 

Functional images were acquired with a gradient-echo EPI sequence (TR = 2000 276 
ms, TE = 30 ms, flip angle = 70°, FOV = 256 mm, matrix = 128 × 96, interleaved 277 
acquisition, no gap, 2mm isotropic voxels, 24 slices). Slices were positioned along the 278 
slope of the temporal lobe to cover the ventral visual cortex. Each run of the main 279 
experiment has 412 volumes; in total 5 experiment runs were collected for each subject. 280 
In addition, a whole brain EPI volume was also acquired in a separate run to facilitate the 281 
T1/EPI alignment. All functional volumes were motion corrected using SPM8, and 282 
aligned to the whole brain EPI volume, which was coregistered to the structural volume. 283 
Realignment parameters were later used in hemodynamic modeling to eliminate motion-284 
induced artifacts.  285 

1.6   Cortical surface mesh generation and volume-surface data 286 

mapping 287 
Cortical surface meshes were generated for each subject from high-resolution structural 288 
MRI scans (192 sagittal slices, TR = 1900 ms, TE = 2.52 ms, flip angle = 9°, FOV = 256 289 
mm, 1 mm isotropic voxels) with FreeSurfer version 5.1 (Dale et al., 1999; Fischl et al., 290 
1999). A gray-mid layer lying half the distance between white matter surface and pial 291 
surface was created for volume-surface data mapping, as it has optimal uniformity of 292 
surface curvature and offers good balance between spatial specificity and sensitivity of 293 
information extraction (Chen et al. 2011). To avoid oversampling in data mapping, we 294 
further simplified the generated mesh using CGAL library (www.cgal.org), to make sure 295 
that all the length of the mesh edges are between 1 and 2mm. This simplification also 296 
reduced the number of vertices up to 50% and speeded subsequent analyses remarkably. 297 
The raw volume data were then tri-linearly sampled with the vertex coordinates to 298 
complete the volume-surface mapping, so for each volume we had a discrete function 299 
defined on the vertices, which is called surface image hereafter. 300 
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1.7   Multivariate statistical analysis of discriminant information 301 

1.7.1   Temporal and spatial filtering on surface images 302 
For each vertex, the values from all the surface images constitute a time series. We first 303 
applied temporal highpass filtering and pre-whitening to these time series, vertex-by-304 
vertex, using SPM8. Heat diffusion smoothing was then applied to the surface images, 305 
time point by time point, with pre-computed scale parameters. At each scale and to each 306 
smoothed surface image, differential operators of directional derivatives and symmetric 307 
Laplacian were applied to extract the scale-specific details. This procedure made 308 
available for us both the pyramidal representation and the scale-specific details. Note that 309 
while the outputs from smoothing and symmetric Laplacian of Gaussian filtering are 310 
univariate, the outputs from the directional derivative filtering are bivariate.  311 

1.7.2   GLM estimation 312 
Next, we modeled the cortical response to the 24 experimental conditions (12 objects 313 
presented either in the left or the right hemifield). To estimate the overall smoothness of 314 
residuals, all the five runs in the experiment were modeled together for each subject. The 315 
onsets of the mini-blocks were entered into the general linear model (GLM) as regressors 316 
of interest and convolved with a canonical hemodynamic response function (HRF). All 317 
these regressors of interest, together with that of the motion parameters and default 318 
baseline, were also preprocessed with temporal highpass filtering and pre-whitening. We 319 
then fitted the preprocessed GLM to the spatially filtered data, at each scale and vertex by 320 
vertex, to estimate the model parameters and residuals, which were later used for 321 
calculating the effective scales.  322 

1.7.3   Using SurfStat for multivariate analysis and smoothness estimation 323 
To investigate the scale-specific information that differentiates the categories of objects, 324 
particularly for the bivariate details extracted by the directional derivative filters, we used 325 
the SurfStat toolbox (Worseley et al., 2009) to compute the F-statistics on two categorical 326 
levels: On the subordinate level, the null hypothesis assumes that all the 3 exemplar 327 
objects within the same category have the same mean over runs; at the ordinate level, the 328 
null hypothesis assumes that all the 4 categories have the same mean, where the 3 objects 329 
within each category were treated as repeated observations. In both cases, we treat the 330 
presentations in different hemifields as repeated observations of the same object. Note for 331 
multivariate parameters, SurfStat computes the Roy’s greatest root as the F-statistic, 332 
which is the largest F-value over all possible linear combinations of the input variables. 333 
The statistical significance of the results and the respective significance thresholds 334 
regarding surface-based multiple comparison correction, is also derived by the routines in 335 
SurfStat.  336 
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2   Results 337 

2.1   Comparison of smoothing quality by heat diffusion smoothing 338 

versus smoothing through iterative averaging 339 
To evaluate the quality of the heat diffusion smoothing operator, we applied it in a model 340 
case for which analytic solutions are readily available, and compared the results to the 341 
smoothing operator based on iterative averaging, i.e. the current standard procedure as 342 
implemented in Freesurfer. 343 
In detail, we generated 100 impulse functions at random locations on a sphere mesh. For 344 
each location, a Gaussian kernel with unit sigma was calculated and sampled to the 345 
vertices as a discretized Gaussian for reference. We then applied the heat diffusion and 346 
the iterative averaging algorithms to the impulse functions and calculated the mean 347 
squared errors (MSE) with respect to the discretized Gaussians. Note that for comparison 348 
across smoothing approaches, the smoothing parameters, i.e. the effective filter sizes, 349 
have to be the same, which were determined with RFT-based estimation of smoothness 350 
before the comparison.  351 
We made two observations. First, we found that the MSE between heat diffusion 352 
smoothing and the reference discretized Gaussian in both absolute and relative terms was 353 
~30 times smaller than iterative averaging (Table 1A). Fig. 3 displays representative 354 
results of iterative and heat diffusion smoothing, demonstrating this point visually. 355 
Second, we observed that for heat diffusion smoothing the variance of filter sizes was 356 
comparable to the reference discretized Gaussian, while it was ~10 times larger for 357 
iterative averaging (Table 1B). In Figure 3, this is expressed visually by the fact that the 358 
smoothing results from heat diffusion converge not only more geometrically to the 359 
discretized Gaussians, but also more uniformly over regions of different triangulation 360 
density. In contrast, the iterative averaging introduced remarkable geometric distortion 361 
and inhomogeneity.  362 
Together, our results show that heat diffusion smoothing provides higher numerical 363 
precision and geometric uniformity than iterative averaging. Thus, for further filtering 364 
analyses on the cortical surface we used only heat diffusion smoothing. 365 
 366 

 (A) (B) 
 Abs. Error Rel. Error Filter Size Var. of Size 

Sampled Gaussian   2.1089 0.0357 
Heat Diffusion Smoothing 0.0003 0.0054 2.0980 0.0411 
Iterative Averaging 0.0109 0.1816 2.1321 0.3257 

Table 1: Approximating precision of smoothing algorithms with respect to (A) error and (B) filter 367 
size. Filter parameters were first determined by matching the RFT smoothness to the FWHM of 368 
sampled Gaussian. Mean squared errors are averages over 100 smoothing results regarding the 369 
respective sampled Gaussian. Filter sizes were then empirically estimated by the square root of the 370 
area of vertices with value greater than half of the maximum, the variance of size is calculated over 371 
100 instances. 372 
 373 
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 374 
Figure 3: Gaussian smoothing on a sphere mesh at regions with different triangulation density. Left: 375 
Discretized Gaussian; Middle: Heat diffusion smoothing; Right: Iterative averaging. Results from an input 376 
of impulse function located at regions of high (A) and low (B) density of triangulation. Compared to heat 377 
diffusion smoothing, iterative averaging introduces density-dependent size inhomogeneity and geometric 378 
deviation from discretized Gaussian. 379 

2.2   Comparison of different filtering operations on the cortical surface 380 

in revealing discriminative information 381 
To assess the spatial scale at which information is encoded on the cortical sheet, 382 
activation patterns must be filtered at different spatial scales. Here, we evaluated three 383 
types of smoothing filters. First, we used Gaussian smoothing (SM) in the heat diffusion 384 
implementation at different scales, resulting in low-pass filtered activation patterns. 385 
Second, to isolate a specific spatial scale beyond simple low-pass filtering, we used 386 
Laplacian of Gaussians (LoG) as a band-pass filter. The result of LoG filtering are band-387 
passed activation patterns. Third, to also take into account that spatial patterns on the 388 
cortical surface have gradients and orientations, we used directional derivatives of 389 
Gaussians (dDG). The result of dDG filtering are band-passed and direction-specific 390 
activation patterns.  391 

2.2.1   Matching effective filter size is a crucial precondition for comparing results 392 
of filtering approaches on the cortical surface 393 

A precondition for a proper comparison of the results of the proposed filtering methods is 394 
that results are compared when the same filter sizes are compared. However, as the 395 
effective size is estimated by the pattern smoothness with RFT-theory (see 1.3), effective 396 
filter sizes might differ from nominal filter sizes when the elements of the smoothed 397 
patterns are spatially correlated. More specifically, spatially correlated patterns would 398 
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decrease the variance of neighbouring difference 𝑑𝑠 in (13), thus increase the overall 399 
estimation. As fMRI voxels that make up activation patterns do show strong dependence, 400 
it cannot be assumed that effective and nominal filter sizes are identical. To determine the 401 
relation between the diffusion parameter and the resultant effective filter size on cortical 402 
surfaces, we generated 100 normally distributed random functions on each surface, and 403 
applied heat diffusion smoothing with parameter t ranging from 2 to 36. Fig. 4A shows 404 
the effective filter size in relation to the square root of t, as estimated from RFT-based 405 
smoothness. We observe that, compared to the application of Gaussian smoothing 406 
operator, the application of differential operators of either geometric Laplacian or 407 
directional derivatives decreases the RFT-based smoothness estimation of the effective 408 
filter size.  409 
Thus, we equated effective filter sizes before comparing results from different filtering 410 
methods based on a post-hoc estimation of smoothness of fMRI data (Fig 4B). For the 411 
analysis of the spatial scale at which information is encoded on the cortical sheet, we 412 
used a linear range of effective filter sizes of SM from 0 to 46 mm (size 0 for no 413 
smoothing), in 2 mm steps. In Fig. 4B we plotted the effective scales estimated from the 414 
resel numbers of residuals computed by SurfStat toolbox, against the effective filter sizes 415 
of Gaussian smoothing (SM). Corroborating the results of modeling, we observed that the 416 
effective scales of residual were noticeably greater than the effective sizes of the 417 
smoothing filters (Hagler et al. 2006), but smaller than that of the differential operators 418 
being applied.  419 

    420 
Figure 4: Effective filter size and effective scale. (a): Effective filter sizes as estimated from RFT 421 
smoothness, plotted against the square root of diffusion parameter t, for Gaussian smoothing (SM), 422 
Laplacian of Gaussian (LoG) and directional derivatives of Gaussian (dDG). Application of Laplacian of 423 
Gaussian or directional derivatives of Gaussian decreases the RFT-based smoothness estimation of the 424 
effective filter size, requiring correction. b): Effective scales of the residuals from the three different kinds 425 
of filtering of fMRI data on the cortical surface, plotted against the effective size of SM filter. The dash line 426 
shows the equality line of the effective scales and the effective filter sizes. In both plotting, the shaded area 427 
indicates the range of standard error across 12 subjects. 428 

 429 
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2.3   The distribution of information on the cortical sheet as resolved by 430 

different filtering operators 431 
We compared the ability of SM, LoG and dDG to reveal the nature of fMRI activation 432 
patterns underlying information encoding in human visual cortex. For this, we used an 433 
fMRI data set mapping activity in ventral visual cortex while participants viewed 3 434 
different object exemplars in 4 different categories (cars, chairs, planes and animals), i.e. 435 
in total 12 different objects presented to the left and right of fixation. This allowed us to 436 
determine the spatial scale at which information about objects is encoded at two levels of 437 
abstraction: the ordinate category level (e.g. car vs. plane) and the sub-ordinate level (e.g. 438 
one car vs. another car). To determine information encoding, we used multivariate pattern 439 
classification.  440 
First, we assessed the spatial distribution of information about objects in a spatially 441 
unbiased analysis. That is, we determined discriminant information between objects on 442 
the cortical sheet detected by multivariate analysis for the three different filtering 443 
methods (SM, loG, dDG) at two levels of abstraction (sub-ordinate and ordinate category 444 
level). Representative results for a single subject at two different spatial scales (equalized 445 
effective scales) are plotted in Fig. 5.  446 
For all filtering operations, the regions containing significant discriminant information 447 
about objects include occipito-temporal cortex on the lateral and ventral surface of the 448 
brain, in line with previous studies reporting the location of object representations (Cichy 449 
et al. 2011; Chen et al. 2011). However, we also note three qualitative differences 450 
between filtering operations: overall the results from LoG appear stronger (i.e., yield 451 
higher statistical values and effects of larger extent) than for SM, and stronger for dDG 452 
than for LoG, suggesting that bandpass filters outperform high-pass filters in revealing 453 
discriminant information, and so directional over symmetric filters. Second, while in 454 
general discriminative information seems to be higher for coarser filtering (16mm) 455 
compared to finer (4mm) filtering, the results of the filtering operations differ in the 456 
relative strength depending on whether information pertains to sub-ordinate and ordinate 457 
level. Thus, the filtering methods might be differentially sensitive in detecting differences 458 
in spatial scales at which discriminative information for ordinate vs. sub-ordinate 459 
category distinction is encoded in the brain. Third, results from filtering at 4mm appear 460 
more prominent in posterior portions of the visual brain compared to filtering at 16mm. 461 
This suggests that the spatial scale at which object information is encoded in ventral 462 
visual cortex might increase from posterior to anterior. For quantitative assessment across 463 
subjects, we investigated each of those three observations further in a region of interest 464 
analysis below. 465 
 466 
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 467 
Figure 5: Map of discriminant information about ordinate and subordinate categories at two different scales 468 
(fine: 4mm; coarse: 16mm). F-statistics (thresholded at P < 0.01, FWE corrected) from one subject are 469 
rendered on inflated cortical surface and the lateral-occipital portion of the ventral visual cortex is 470 
highlighted by the zoomed-ins. For comparison, results from SM (left), LoG (middle) and dDG (right) are 471 
presented side by side, with colors normalized to the same range for each row. We make three qualitative 472 
observations: First, SM, LoG and dDG yield increasingly statistically significant results, suggesting the 473 
bandpass filters and directional filters outperform highpass and symmetric filters in revealing encoded 474 
information in cortex. Second, while coarser (16mm) filtering yields stronger results that finer (4mm) 475 
filtering, the relative difference depends on the level of categorization. Third, filtering at 4mm yields more 476 
posterior results than filtering at 16mm, suggesting that spatial scale at which objects are encoded in ventral 477 
visual cortex might increase from anterior to posterior.  478 

2.3.1   Bandpass filtering improves discriminant analysis power of multivariate 479 
fMRI analysis 480 

We investigated quantitatively whether LoG, dDG and SM differ in the strength of 481 
discriminant effects across subjects in a region-of-interest (ROI) analysis. We defined 482 
ROIs anatomically based on Freesurfer parcellation covering the lateral and ventral 483 
surface of occipito-temporal cortex from the occipital pole to inferior temporal cortex 484 
(Fig. 6A). To assess possible posterior-to-anterior gradients in information encoding 485 
along the ventral visual pathway, we split three parcellations (lingual, lateral-occipital 486 
and fusiform gyrus) into anterior and posterior parts. This resulted in 8 ROIs in total, 487 
ordered in posterior-to-anterior direction: pericalcatrine cortex (PC), anterior and 488 
posterior lingual cortex (aLN, pLN), anterior and posterior lateral-occipital cortex (aLO 489 
and pLO), anterior and posterior fusiform cortex (aFF, pFF), and inferior temporal cortex 490 
(IT).  491 
Figure 6 shows the maximal F-statistics for object discrimination at the ordinate (Fig. 6b) 492 
and the subordinate (Fig. 6c) level across subjects for each filtering operation for each 493 
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ROI. Concurrent with the qualitative observation from information maps as reported in 494 
Fig. 5, we found significantly higher F-statistics (Wilcoxon signed-rank tests) from 495 
bandpass filtering (LoG, dDG) over smoothing (SM) in many ROIs, and for directional 496 
(dDG) over symmetric (Log) filtering (for details see Table 2). Together, these results 497 
demonstrate the increased power of bandpass filters over simple smoothing to reveal 498 
discriminant information in spatial activation pattern on the cortical sheet. Please note 499 
that these peak F-statistics are maximal over all the scales, implying that bandpass 500 
filtering as a discriminant information detector can outperform any size of smoothing. 501 
Further, our results highlight the additional value of assessing the direction of gradients in 502 
activation patterns for increased discrimination performance. 503 
 504 
 505 

 506 
Figure 6: Regional maximal F-statistics. Maximal F-statistics across scales are shown here for discriminant 507 
information on ordinate (left) and subordinate categories. Medians instead of means across subjects are 508 
plotted, due to the fact that F-statistics are ratios of Chi-square statistics and not subject to direct 509 
summation. Inset: Anatomical regions for the analysis. Medial (left) and lateral (right) view of the ventral 510 
visual area anatomically parcellated by Freesurfer. Three regions were further split into anterior and 511 
posterior part as indicated by the green arrows. In total 8 regions were used in subsequent regional 512 
analyses: Pericalcarine cortex (PC), anterior and posterior lingual cortex (LNa, LNp), anterior and posterior 513 
lateral-occipital cortex (LOa, LOp), anterior and posterior fusiform cortex (FFa, FFp) and inferior temporal 514 
cortex (IT) (B) Group results (mean scales over subjects) from three different filtering methods: Gaussian 515 
smoothing (SM, left); Laplacian of Gaussian (LoG, middle) and directional derivatives of Gaussian (dDG, 516 
right). Corroborating the qualitative observation, we found significantly higher F-statistics from bandpass 517 
filtering (LoG, dDG) over smoothing (SM) in many ROIs, and for directional (dDG) over symmetric (Log) 518 
filtering (for details see Table 2). 519 
 520 
 521 

(A) Ordinate level 
Comparison PC LNp LNa LOp LOa FFp FFa IT All 

dDG >SM 0.0024 0.0007 0.0046 0.0549 0.0002 0.0002 0.0002 0.0002 0.0002 
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LoG>SM 0.5750 0.1902 0.0171 0.0017 0.0007 0.0002 0.0007 0.0002 0.0002 
dDG>LoG 0.0046 0.0002 0.4548 0.6614 0.0002 0.0002 0.0005 0.2598 0.0881 
(A) Sub-ordinate level 
Comparison PC LNp LNa LOp LOa FFp FFa IT All 
dDG >SM 0.0386 0.0320 0.0061 0.0061 0.0007 0.0007 0.0024 0.0002 0.0002 
LoG>SM 0.2593 0.4548 0.4250 0.0212 0.0081 0.0757 0.3110 0.0034 0.0034 
dDG>LoG 0.0171 0.0757 0.0046 0.0647 0.0171 0.0012 0.0002 0.0881 0.0881 

Table 2: Tests of F-value differences between different filtering methods (P-values, Wilcoxon signed-rank 522 
tests on maximal F-statistics). Significant differences (P < 0.05 FDR correction for multiple comparisons; 523 
corrected P = 0.0171 in (A) and 0.0212 in (B)) are indicated by shading. 524 

2.3.2   Only directional derivatives of Gaussian uncovers differences in spatial scale 525 
of cortical information encoding for different levels of abstraction 526 

Qualitative inspection of the information maps suggested that filtering methods might be 527 
differentially sensitive in detecting differences in spatial scales at which discriminative 528 
information for the ordinate vs. sub-ordinate category distinction is encoded in the brain.  529 
Here we further investigated this observation quantitatively, assessing the propensity of 530 
high-pass smoothing (SM), Laplacian of Gaussian (LoG) and directional derivatives of 531 
Gaussian (dDG) to reveal those differences. For this we determined the effective scales 532 
for which the F-value distinguishing conditions at the sub-ordinate or ordinate level was 533 
maximal for each ROI and each filtering method (Fig. 7a for SM, 7b for LoG and 7c for 534 
dDG). To evaluate significance of differences in the spatial scale at which information is 535 
encoded at the sub-ordinate vs. the ordinate level, we conducted a 3´8 two-way ANOVA 536 
with factors filtering method (SM, DDG, LoG) and ROI (PC, pLN, aPL, pLO, aLO, pFF, 537 
aFF, IT). We found that the main effect for method was significant (F = 7.70, P = 538 
0.0006), but not the main effect of ROI (F = 1.65, P = 0.1215), and the there was no 539 
interaction (F = 1.62, p = 0.0749) between the method and the region factors. We thus 540 
collapsed data across ROIs, and tested for differences in effective scale by method in 541 
two-sample t-tests (FDR corrected for multiple comparisons). We found that only dDG (P 542 
= 0.001), but neither SM (P = 0.99) nor LoG (P = 0.40) revealed a significant difference 543 
between categorical levels. Further direct comparison of filtering methods by paired t-544 
tests (P < 0.05, FDR corrected) revealed an order with respect to the differences in 545 
resolving spatial scale differences effective scale differences were significantly larger for 546 
dDG compared to SM (P < 0.001) and to LoG (P < 0.034) and for LoG compared to SM 547 
(P < 0.032). 548 
Together, these results show that dDG resolves differences in the spatial scale at which 549 
information is encoded in cortex where other methods fail, demonstrating the improved 550 
resolution of spatial scale of the dDG approach. 551 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224873doi: bioRxiv preprint 

https://doi.org/10.1101/224873


 552 
Figure 7: Effective scales at which the maximal F-statistics of ROIs is maximal for sub-ordinate and 553 
ordinate level distinctions among visual objects for (A) SM, (B) LoG and (C) dDG filtering. Only dDG, but 554 
neither SM nor LoG revealed a significant difference between categorical levels. Further, the effective scale 555 
at which information was encoded in ventral visual cortex increased with a posterior to interior gradient. 556 
Error bars indicate the standard error across subjects. Regions are ordered to approximately reflect the 557 
hierarchy in ventral visual cortex from posterior to anterior. 558 
 559 

2.3.3   The effective scale at which information is encoded in ventral visual cortex 560 
increases with a posterior-to-interior gradient 561 

Visual inspection of the information map in Fig. 4 had suggested that the spatial scale at 562 
which information is encoded in ventral visual cortex might increase from posterior to 563 
anterior. The ROI analysis reinforced this observation (Fig. 7) the spatial scale at which 564 
classification was maximal at both the sub- and the supra-ordinate level increased along 565 
the processing path of the ventral visual stream from posterior to anterior 566 
We thus quantified this observation by calculating Kendall’s tau rank correlation between 567 
the preferred scales and the ordinate position of the ROIs on the posterior-to-anterior axis 568 
of ventral visual cortex (ordered as the x-axis in Fig. 7). All filtering methods showed a 569 
positive correlation for both sub-ordinate and super-ordinate information encoding (Table 570 
4). This result was ascertained statistically by one sided t-tests, revealing significant 571 
results for both levels of abstraction and all filtering methods (Table 4, all P < 0.05, FDR-572 
corrected). Together, our results demonstrate a gradual increase in the spatial scale at 573 
which discriminant information is encoded along the cortical sheet of ventral visual 574 
cortex.  575 
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 576 
 Ordinate level  Sub-ordinate level 
 SM LoG dDG SM LoG dDG 

Kendall’s tau 0.2354 0.3000 0.2872 0.2635 0.2482 0.4215 
p-value 0.0013 <0.0001 <0.0001 0.0003 0.0007 <0.0001 

Table 4: Kendall rank correlation of scales across regions in ventral visual pathway at the basic and the 577 
sub-ordinate level. 578 

3   Discussion 579 

3.1   Summary 580 
Here we present a novel analysis to determine the spatial scale and direction of activation 581 
patterns on the cortical sheet. Using an efficient algorithm for accurately computing 582 
Gaussian smoothing on cortical surfaces and discrete differential operators, we 583 
constructed wavelet-like bandpass filters with directionality and steerability for scale-584 
specific analysis of cortical activity measurements. Evaluating the algorithm through 585 
modelling, we found increased precision compared to previous approaches. Applying the 586 
analysis to an fMRI data set of visual activation during object vision, we found that our 587 
analysis improved detection of discriminative information between experimental 588 
conditions, and provided novel insight into the cortical representations of objects: the 589 
spatial scale at which objects information is preferentially encoded depends on the level 590 
of categorization, and increase along the ventral visual pathway.  591 

3.2   Smoothing and bandpass filtering on the irregular cortical sheet 592 

3.2.1   All algorithms for Gaussian smoothing are related, but differ in precision 593 
and complexity 594 

What is the algorithmic nature of the proposed smoothing operator here, and how does it 595 
relate to the approaches compared? Note that all algorithms for Gaussian smoothing on 596 
the surface evaluated here can be formulated as the solution of the diffusion equation (1). 597 
They differ merely the choice of the discrete Laplace operator Δ or the respective heat 598 
kernel 𝑒1$5𝛿 𝑥 , and the numerical algorithm for implementing its application to the 599 
initial condition or input function 𝑓8.  600 
In particular, iterative averaging (Hagler et al., 2006) is a linear approximation of the 601 
exponential operator applied to the input function, with the choice of normalized graph 602 
Laplacian (for proof see Supplementary Text II). While being the most popular choice for 603 
a smoothing operator, and one to two orders of magnitude smaller than the matrix 604 
exponential algorithm in computational complexity, the trade-off is inhomogeneity of 605 
smoothness and geometric deviation from Gaussian kernel. Thus, for detailed analyses of 606 
the spatial scale on irregular meshes a more sophisticated geometric discretization of the 607 
underlying Laplacian operator – as used here– is to be preferred. 608 

3.2.2    Choice of implementation of the exponential of Laplacian 609 
In our approach, we adopt the geometrical Laplacian (4) and matrix exponential 610 
algorithm (Sidje, 1998) to implement the exponential of Laplacian. An alternative would 611 
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have been to compute the exponential of Laplacian by explicitly solving the general 612 
eigen-decomposition of Δ  (Seo et al. 2010). However, in practice the eigen-613 
decomposition would have to be truncated and thus likely suffer from the rippling effects 614 
of spectral truncation and very high computational cost for explicit eigen-decomposition. 615 
Our approach avoids both of these shortcomings, improving both approximation 616 
precision and computational efficiency. 617 

3.2.3    The advantage and caveats of implementing bandpass filters by differential 618 
of smoothing 619 

It is common practice in computer vision to implement isotropic bandpass filters like 620 
LoG by difference of Gaussians (DoG, Marr and Hildreth, 1980). Here, however, we 621 
instead adopted a direct approach to compute bandpass filtering by exploiting the 622 
differential property of convolution for two reasons. First, it is computationally more 623 
efficient when large support of filters is wanted, as it avoids calculating a much (typically 624 
1.6-2x) larger Gaussian smoothing for DoG. Second, and more importantly, it allows 625 
combining first-order partial differential operators with the smoothed function to 626 
construct directional filters of derivatives of Gaussian. Note also that on a domain lacking 627 
a properly defined Fourier transform, such as an irregular mesh, multidimensional 628 
derivative filters cannot be designed directly as in Simoncelli (1994).  629 
 630 
However, our approach has the caveat that precision relies heavily on the approximation 631 
quality of the discrete differential operator. Particularly, higher order partial differential 632 
operators cannot be constructed straightforwardly by recursive application of first-order 633 
partial differential operators, as differential of gradient vector field would have to deal 634 
with parallel transportation on the surface. 635 

3.3   Effective filter size and effective spatial scale need to be assessed 636 

carefully 637 

3.3.1   The effective scale of results should be distinguished from the effective size of 638 
filters applied. 639 

Most previous studies analyzing fMRI data at multiple spatial scales relied on filter size 640 
as an indicator of the spatial scale of cortical patterns assessed (Swisher et al., 2010; 641 
Brants et al., 2011; Misaki et al., 2013). That is, they equated the effective scale of results 642 
with the effective size of the filters applied. Contrary to the appealing intuition 643 
underlying this interpretation, we argue that the effective scale of results needs to be 644 
determined independently by estimating the smoothness of residuals based on random 645 
field theory (Hagler et al., 2006).  646 
 647 
The rationale behind this argument is straightforward: Whereas the effective filter size is 648 
estimated by using spatially independent Gaussian random noise as input functions, in 649 
neuroimaging data intrinsic spatial correlations are omnipresent at multiple scales due to 650 
various physiological and physical sources during the imaging procedure, and contribute 651 
to a noticeable increase of the effective scale of residuals compared to the effective filter 652 
size.  653 
 654 
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One particular observation in this regard is that bandpass filters have smaller effective 655 
sizes than smoothing filters of corresponding size. This might appear counter-intuitive at 656 
first sight, as the application of a discrete differential operator to a smoothing kernel 657 
should rather increase than decrease the support of the actual filter. However, a bandpass 658 
filter from a Gaussian family can be thought as a superimposition of its positive and 659 
negative parts, each of which has a support slightly bigger than half of the smoothing 660 
kernel. When calculated by RFT-based smoothness estimation, the effective filter size of 661 
such filters would approximately be the same as that of the parts (see the almost fixed 662 
ratio between the slopes in Fig. 4).  663 
 664 
In sum, particular care needs to be taken when estimating the effective scale of results 665 
from neuroimaging data. 666 

3.4   The role of bandpass filtering and steerability of the filters 667 

3.4.1   Steerability is necessary to fully characterize the scale property of 668 
discriminant information in cortex 669 

Our results indicate that bandpass filters play an important role in characterizing the 670 
spatial scale properties of discriminant information encoded in cortex. The application of 671 
LoG and dDG not only showed an improved performance in discriminant analysis, but 672 
also revealed a systematic increase of scale along the ventral visual pathway. Concerning 673 
the further differentiation of LoG and dDG, the difference of characteristic scale between 674 
ordinate and subordinate categorization was only significant when dDG was applied, not 675 
LoG. This suggests that the improved characterization is more likely due to the 676 
steerability of the directional filters, rather than the bandpassing nature of these filters.  677 
 678 
How is superior ability to detect information to be explained? Looking at steerable 679 
bandpass filters from different perspectives elucidates this issue. From the perspective of 680 
geometry, the optimal linear combination of directional derivative filters, as computed by 681 
the multivariate analysis in SurfStat, indicates a local direction along which the steepest 682 
change is statistically detected. From the perspective of wavelet analysis, steerable 683 
wavelets can be regarded as a special kind of matching pursuits (Bergeaud & Mallat, 684 
1994), which achieve an optimal representation of the underlying discriminant 685 
information pattern in the space spanned by these wavelets. Finally, we may take the 686 
perspective of multivariate pattern analysis (MVPA) while changing the level of 687 
regularization. Spatial filters with specific shape may be considered as MVPA with very 688 
strong regularization. The strongest regularization, as in Gaussian smoothing kernels, 689 
permits only non-negative coefficients. Relaxing the regularization, such as LoG does by 690 
permitting negative coefficients and steerable filters with additional linear weights, 691 
allows better model fits. Interestingly, the very small number of parameters makes this 692 
approach far less likely to overfit than other common approaches of MVPA. 693 
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3.5   Implications for the understanding of the functional organization 694 

of ventral visual cortex 695 

3.5.1   Information differentiating objects at different levels of categorization is 696 
preferentially decodable at different scales 697 

Our finding that discriminative information for ordinate categories is decodable 698 
preferentially at a coarser scale than that for sub-ordinate categories concurs with 699 
previous studies, both using fMRI in humans end electrophysiology in monkey (Tanaka 700 
et al., 2003; Op de Beeck et al., 2008; Brants et al., 2011). This further strengthens the 701 
idea that there is an ordered relationship between the topography of high-level ventral 702 
visual cortex and the hierarchy of visual object knowledge. 703 
Note that the spatial scales reported here are much coarser than recently reported by joint 704 
analyses of neurophysiological and brain imaging data (Issa et al., 2013) in monkey. We 705 
believe that this discrepancy can be explained by the limited resolution of fMRI 706 
measurement investigated here, and that due to low SNR the analysis is most sensitive 707 
when pooling over a large number of voxels, and thus large spatial scales. Future studies, 708 
using ultra-high field fMRI and higher spatial resolutions will be necessary to resolve this 709 
open issue.  710 

3.5.2   Differences in preferential scale at which information is encoded across 711 
regions suggests different representational schemes 712 

We observed an increase in the preferential scale at which object categorical information 713 
was decodable in regions along the ventral visual stream. This indicates a systematic 714 
change in functional organization at different stages of object processing hierarchy. The 715 
relatively fine scale in early visual cortex (e.g., PC, ~10mm; LNp, ~15mm) suggests a 716 
fine-tuned, retinotopically local encoding of similar object features in small cortical 717 
patches. In contrast, the relatively coarse scale in down-stream regions (e.g., 718 
LOa, >20mm; FFp, ~20mm) points to global and categorical organizing principles, such 719 
as gradients or topological maps indicating category (Grill-Spector & Weiner, 2014). 720 
 721 
Our results inform about the nature of visual representations beyond the mere spatial 722 
scale in two ways. First, we observed that bandpass filtering outperforms any size of 723 
smoothing in determining the most discriminative information. This speaks against the 724 
idea that discriminant information is encoded in simple activated blobs such as inherent 725 
in the idea of univariate analysis of fMRI data, but is rather represented in inherent 726 
patterning with both positive and negative values, coupled geometrically over the cortical 727 
space. Second, we found that in discriminant analysis steerable filters outperformed 728 
symmetric filters across all regions and scales. This suggests that an intrinsic geometry in 729 
such patterning exists throughout from fine scale in clustering structures in early visual 730 
regions, to large scale topological map-like organization of high-level ventral visual 731 
cortex. 732 
 733 
Future experiments investigating the detailed nature of representations of visual attributes 734 
other than object identity are necessary to establish the generality of these observations, 735 
and might benefit from the analysis framework proposed here. 736 
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 737 

3.6   SUMMARY 738 
Together, our results indicate that the proposed analysis of activation patterns in 739 

scale and direction to be particularly suited to assess and detect scale specific information 740 
encoded by the cortical activity patterns, promising further insight into the topography of 741 
cortical functioning in the human brain.  742 

4   Acknowledgements 743 
This work was funded by the Bernstein Computational Neuroscience Program of the 744 
German Federal Ministry of Education and Research BMBF Grant 01GQ0411, the 745 
Excellence Initiative of the German Federal Ministry of Education and Research DFG 746 
Grants GSC86/1-2009, KFO247, HA 5336/1-1 and JA 945/3-1 / SL 185/1-1, and the 747 
Emmy Noether award CI 241-1/1. 748 

5   References 749 

Bergeaud, F., & Mallat, S. (1994). Matching pursuit of images. In Time-Frequency and 750 
Time-Scale Analysis, 1994. Proceedings of the IEEE-SP International Symposium on (pp. 751 
330-333). IEEE. 752 

Bıyıkoglu, T., Leydold, J., & Stadler, P. F. (2007). Laplacian eigenvectors of graphs. 753 
Springer Lecture notes in mathematics, 1915. 754 

Brants M, Baeck A, Wagemans J, Op de Beeck HP. (2011). Multiple scales of 755 
organization for object selectivity in ventral visual cortex. NeuroImage, 56(3), 1372-756 
1381.  757 

Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization 758 
in the human brain. Nature reviews neuroscience, 3(3), 243-249. 759 

Chaimow, D., Yacoub, E., Ugurbil, K., & Shmuel, A. (2011). Modeling and analysis of 760 
mechanisms underlying fMRI-based decoding of information conveyed in cortical 761 
columns. Neuroimage, 56(2), 627-642.  762 

Chen, Y., Namburi, P., Elliott, L. T., Heinzle, J., Soon, C. S., Chee, M. W., & Haynes, J. 763 
D. (2011). Cortical surface-based searchlight decoding. Neuroimage, 56(2), 582-592. 764 

Chung, M. K., Robbins, S. M., Dalton, K. M., Davidson, R. J., Alexander, A. L., & 765 
Evans, A. C. (2005). Cortical thickness analysis in autism with heat kernel smoothing. 766 
NeuroImage, 25(4), 1256-1265. 767 

Cichy, R. M., Chen, Y., & Haynes, J. D. (2011). Encoding the identity and location of 768 
objects in human LOC. Neuroimage, 54(3), 2297-2307. 769 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224873doi: bioRxiv preprint 

https://doi.org/10.1101/224873


Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. 770 
Segmentation and surface reconstruction. Neuroimage, 9(2), 179-194. 771 

Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal 772 
analysis. Information Theory, IEEE Transactions on, 36(5), 961-1005. 773 

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, 774 
E., Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B. & 775 
Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral 776 
cortex, 14(1), 11-22. 777 

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis: II: 778 
Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195-207. 779 

Freeman, W. T. and Adelson, E. H. (1991). The design and use of steerable filters. IEEE 780 
Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906. 781 

Freeman, J., Brouwer, G. J., Heeger, D. J., & Merriam, E. P. (2011). Orientation decoding 782 
depends on maps, not columns. The Journal of Neuroscience, 31(13), 4792-4804.  783 

Freeman, J., Heeger, D. J., & Merriam, E. P. (2013). Coarse-scale biases for spirals and 784 
orientation in human visual cortex. The Journal of Neuroscience, 33(50), 19695-19703. 785 

Goesaert, E., & de Beeck, H. P. O. (2010). Continuous mapping of the cortical object 786 
vision pathway using traveling waves in object space. Neuroimage, 49(4), 3248-3256. 787 

Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral 788 
temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536-789 
548. 790 

Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., & Wiesel, T. N. (1986). Functional 791 
architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 324(6095), 792 
361-364. 793 

Haynes, J. D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from 794 
activity in human primary visual cortex. Nature neuroscience, 8(5), 686-691. 795 

Hagler, D. J., Saygin, A. P., & Sereno, M. I. (2006). Smoothing and cluster thresholding 796 
for cortical surface-based group analysis of fMRI data. Neuroimage, 33(4), 1093-1103. 797 

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). 798 
Distributed and overlapping representations of faces and objects in ventral temporal 799 
cortex. Science, 293(5539), 2425-2430. 800 

Hubel, D. H., & Wiesel, T. N. (1963). Shape and arrangement of columns in cat's striate 801 
cortex. The Journal of physiology, 165(3), 559-568. 802 

Issa, E. B., Papanastassiou, A. M., & DiCarlo, J. J. (2013). Large-scale, high-resolution 803 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224873doi: bioRxiv preprint 

https://doi.org/10.1101/224873


neurophysiological maps underlying fMRI of macaque temporal lobe. The Journal of 804 
Neuroscience, 33(38), 15207-15219. 805 

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the 806 
human brain. Nature neuroscience, 8(5), 679-685. 807 

Koenderink, J. J. (1984). The structure of images. Biological cybernetics, 50(5), 363-370. 808 

Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized 809 
for the perception of faces. Philosophical Transactions of the Royal Society B: Biological 810 
Sciences, 361(1476), 2109-2128. 811 

Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD signal. Annu. Rev. 812 
Physiol., 66, 735-769. 813 

Maldonado, P. E., Gödecke, I., Gray, C. M., & Bonhoeffer, T. (1997). Orientation 814 
selectivity in pinwheel centers in cat striate cortex. Science, 276(5318), 1551-1555. 815 

Mallat, S. (2008). A wavelet tour of signal processing: the sparse way. Academic press. 816 

Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal 817 
Society of London. Series B. Biological Sciences, 207(1167), 187-217. 818 

Meyer, M., Desbrun, M., Schröder, P., & Barr, A. H. (2003). Discrete differential-819 
geometry operators for triangulated 2-manifolds. Visualization and mathematics III 35-820 
57. Springer. 821 

Misaki, M., Luh, W. M., & Bandettini, P. A. (2013). The effect of spatial smoothing on 822 
fMRI decoding of columnar-level organization with linear support vector machine. 823 
Journal of neuroscience methods, 212(2), 355-361. 824 

Op de Beeck, H. P., DiCarlo, J. J., Goense, J. B., Grill-Spector, K., Papanastassiou, A., 825 
Tanifuji, M., & Tsao, D. Y. (2008). Fine-scale spatial organization of face and object 826 
selectivity in the temporal lobe: do functional magnetic resonance imaging, optical 827 
imaging, and electrophysiology agree?. The Journal of Neuroscience, 28(46), 11796-828 
11801. 829 

Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint 830 
statistics of complex wavelet coefficients. International Journal of Computer Vision, 831 
40(1), 49-70. 832 

Ramírez, F. M., Cichy, R. M., Allefeld, C., & Haynes, J. D. (2014). The Neural Code for 833 
Face Orientation in the Human Fusiform Face Area. The Journal of Neuroscience, 834 
34(36), 12155-12167. 835 

Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., & Spagnuolo, M. (2009). Discrete 836 
Laplace–Beltrami operators for shape analysis and segmentation. Computers & Graphics, 837 
33(3), 381-390. 838 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224873doi: bioRxiv preprint 

https://doi.org/10.1101/224873


Rust, N. C., & DiCarlo, J. J. (2010). Selectivity and tolerance (“invariance”) both 839 
increase as visual information propagates from cortical area V4 to IT. The Journal of 840 
Neuroscience, 30(39), 12978-12995. 841 

Seo, S., Chung, M. K., & Vorperian, H. K. (2010). Heat kernel smoothing using Laplace-842 
Beltrami eigenfunctions. In Medical Image Computing and Computer-Assisted 843 
Intervention–MICCAI 2010 (pp. 505-512). Springer Berlin Heidelberg. 844 

Shmuel, A., Chaimow, D., Raddatz, G., Ugurbil, K., & Yacoub, E. (2010). Mechanisms 845 
underlying decoding at 7 T: ocular dominance columns, broad structures, and 846 
macroscopic blood vessels in V1 convey information on the stimulated eye. Neuroimage, 847 
49(3), 1957-1964. 848 

Simoncelli, E. P., & Freeman, W. T. (1995). The steerable pyramid: A flexible 849 
architecture for multi-scale derivative computation. International Conference on Image 850 
Processing, (Vol. 3, 3444-3444). IEEE Computer Society. 851 

Sidje, R. B. (1998). Expokit: a software package for computing matrix exponentials. 852 
ACM Transactions on Mathematical Software (TOMS), 24(1), 130-156. 853 

Swisher, J. D., Gatenby, J. C., Gore, J. C., Wolfe, B. A., Moon, C. H., Kim, S. G., & 854 
Tong, F. (2010). Multiscale pattern analysis of orientation-selective activity in the 855 
primary visual cortex. The Journal of Neuroscience, 30(1), 325-330. 856 

Unser, M., Chenouard, N., & Van De Ville, D. (2011). Steerable Pyramids and Tight 857 
Wavelet Frames. IEEE Transactions on Image Processing, 20(10), 2705-2721. 858 

Van Essen, D. C., Drury, H. A., Joshi, S., & Miller, M. I. (1998). Functional and structural 859 
mapping of human cerebral cortex: solutions are in the surfaces. Proceedings of the 860 
National Academy of Sciences, 95(3), 788-795. 861 

Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B., Bakircioglu, 862 
M., & Miller, M. I. (2001). Mapping visual cortex in monkeys and humans using surface-863 
based atlases. Vision research, 41(10), 1359-1378. 864 

Van Essen, David C., and Donna L. Dierker. "Surface-based and probabilistic atlases of 865 
primate cerebral cortex." Neuron 56.2 (2007): 209-225. 866 

Wang, B., Hikino, Y., Imajyo, S., Ohno, S., Kanazawa, S., & Wu, J. (2012). Effect of 867 
spatial smoothing on regions of interested analysis basing on general linear model. 868 
International Conference on Mechatronics and Automation (ICMA) (1399-1404). IEEE. 869 

Worsley, K. J., Jonathan E. Taylor, F. Carbonell, M. K. Chung, E. Duerden, B. Bernhardt, 870 
O. Lyttelton, M. Boucher, and A. C. Evans. (2009) SurfStat: A Matlab toolbox for the 871 
statistical analysis of univariate and multivariate surface and volumetric data using linear 872 
mixed effects models and random field theory. Neuroimage (47). (software package 873 
available at www.math.mcgill.ca/keith/surfstat) 874 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224873doi: bioRxiv preprint 

https://doi.org/10.1101/224873

