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Abstract 
Predicting how transcription factors (TFs) interpret regulatory sequences to control gene 
expression remains a major challenge. Past studies have primarily focused on native or 
engineered sequences, and thus remained limited in scale. Here, we use random 
sequences as an alternative, measuring the expression output of nearly 100 million 
synthetic yeast promoters comprised of random DNA. Random sequences yield a broad 
range of reproducible expression levels, indicating that the fortuitous binding sites in 
random DNA are functional. From this data we learn ‘billboard’ models of transcriptional 
regulation that explain 93% of expression variation of test data, recapitulate the 
organization of native chromatin in yeast, and help refine cis-regulatory motifs. 
Analyzing the residual variation, we uncover more complex regulatory mechanisms, such 
as strand, position, and helical face preferences of TFs. Such high-throughput regulatory 
assays of random DNA provide the large-scale data necessary to learn complex models of 
cis-regulatory logic.  
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Introduction 
Cis-regulatory logic, the process by which transcription factors (TFs) interpret regulatory 
DNA sequence to control gene expression levels, is a key component of gene regulation. 
Understanding cis-regulatory logic would allow us to predict how gene expression is 
affected by changes to cis-regulatory sequences or regulatory proteins. This is important 
for both our basic understanding of this fundamental process and for determining the 
impact of genetic variants affecting common human traits and complex disease, most of 
which reside in regulatory sequences (reviewed in (1)). 

Modeling cis-regulation is a long-standing challenge (reviewed in (2, 3)). In general, 
learning such a model requires a training set of cis-regulatory sequences and the 
expression levels associated with them. One approach has been to use natural sequences 
in the genome and the related gene expression profiles. Such quantitative and semi-
quantitative models relating DNA sequence to gene expression level have met with some 
success when learning on native sequences (4, 5). However, the rules learned often fail to 
generalize (5) and it is easy to overfit when limited to the sequences present in the 
genome, in part due to the few examples of regulatory sequences (e.g., the ~6,000 
promoters in yeast) and their evolutionary origins. An alternative is to measure the 
expression output by synthetic promoters using either designed sequences (6) or designed 
elements (randomly-arranged; (7)). Although models learned from such data met some 
success, they are limited by available technologies for DNA synthesis, which currently 
allow the creation of at most ~100,000 sequences. In contrast, the space of possible 
sequences or of combinatorial of TF-TF interactions is vast. For example, approximately 
107 sequences would be required to individually test all pairwise interactions between TF 
binding sites (TFBSs) with specific spacing and orientation constraints. Learning such 
complex regulatory rules could require far more sequences than exist in the genome or 
have previously been assayed (3), such that predictive models of expression level from 
sequence alone remained elusive. 
An alternative approach would be to use random DNA sequence. Past experiments have 
used random DNA as a cheap source of highly diverse sequences with which to study 
some aspects of gene regulation. In vitro selection (or SELEX) relies on the fact that 
high-affinity TFBSs are present by chance in random DNA to select oligonucleotides 
from a random pool that are bound by a protein of interest (8) and, in combination with 
high-throughput sequencing, can define the specificities (9) and affinities (10) of TFs. 
Random DNA has also been used to diversify regions of promoters (11) or peptide 
sequences (12), which can then be selected for function. More recently, random DNA has 
been used to explore translational regulation (13), and to determine that ~10% of random 
100 bp sequences could serve as promoters in bacteria (14), presumably due to fortuitous 
inclusion of regulatory elements recognized by the endogenous transcription machinery. 
Using massive numbers of random sequences to study eukaryotic cis regulation in vivo is 
compelling because it could readily produce data at a large enough scale to learn complex 
models of gene regulation. However, one would first need to demonstrate that random 
DNA can indeed drive reproducible expression levels, at a sufficient dynamic range, and 
is indeed sufficient to uncover the rules of regulation. 
Here, we develop the Gigantic Parallel Reporter Assay (GPRA) to measure the 
expression level associated with each of tens or hundreds of millions of random DNA 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

sequences per experiment, and use these to learn models of cis-regulatory logic. We 
demonstrate that random sequences include abundant functional TFBSs, which, when 
included in a promoter-like context, direct diverse expression levels. We measure the 
expression levels driven by ~100 million synthetic yeast promoters, in three growth 
conditions. Using this data, we learned biochemically-inspired quantitative gene 
expression “billboard” models, which assume that TFs act independently and that the 
positions and orientations of TFBSs are irrelevant. These models successfully predicted 
known and novel chromatin-opening TFs, correctly determined DNA accessibility, and 
improved our knowledge of the DNA binding specificities of many TFs. Remarkably, 
these models explained nearly 93% of the variation in gene expression in random 
sequences, but only ~16% of native yeast genes, suggesting a large role for more 
complex (non-billboard) regulatory mechanisms. Analyzing the residual 7% of 
expression data that remained unexplained by the billboard models, we find that position, 
orientation, and helical face preferences are widespread among yeast TFs. Our approach 
enables cheap, precise, and accurate measurements of regulatory element libraries, 
providing the “big data” needed to learn much more complex modes of cis-regulatory 
logic. 

Results 

Random sequence contains abundant TFBSs 
To estimate the prevalence of yeast TFBSs in DNA randomly sampled from the four 
bases (hereafter referred to as “random DNA”), we calculated their expected frequency 
using the information contents (IC) of their motifs (Methods). Consistent with previous 
models (15), TF motifs are expected to occur very frequently in random DNA (Figure 
1B). For instance, the yeast Reb1 motif has a relatively high IC (14.59) and is predicted 
to occur once every 12,000 bp in random DNA. More generally, 58% of motifs are 
expected to occur at least once every 1,000 bp and 92% to occur at least once every 
100,000 bp. Thus, in a library of 107 promoter sequences, each with a different 80 bp 
random oligonucleotide (as we create below), we expect, on average, that at least 90% of 
yeast TFs will have over 10,000 distinct instances of their respective TFBSs included, 
and most yeast TFs will have far more TFBSs instances (Figure 1B). Consequently, a 
random 80 bp section of DNA is expected to have about 138 yeast TFBS instances, 
comprised of partly overlapping sites for ~68 distinct factors. As a result, any such 
random oligonucleotide cloned into a regulatory (i.e., promoter scaffold) context is likely 
to contain many potential yeast TFBSs by chance alone.  

Random DNA yields diverse expression levels 
We hypothesized that a library of random DNA, each sequence containing a random 
assortment of TFBSs, will be associated with diverse expression levels. To test this 
hypothesis, we designed a system to robustly quantify promoter activity (Methods, 
Figure 1A). Using a previously described episomal dual reporter system (6) expressing 
RFP and YFP, we cloned a random 80 bp oligonucleotide into a promoter scaffold 
sequence regulating YFP, whereas RFP is under the control of a constitutive TEF2 
promoter. We measured normalized expression levels as log(YFP/RFP) using flow 
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cytometry; this controls for sources of extrinsic noise, such as variation in plasmid copy 
number and cell size, similar to previously used strategies (16-18).  

We created ten synthetic promoter scaffolds and one based on a native promoter 
sequence (the ANP1 promoter) that each included 50-80 bp of constant sequence on 
either side of a cloning site into which we inserted 80 bp of random DNA (Figure 1C 
and Figure S1, Methods). Each tested library had a complexity of at least 105 different 
sequences. To allow TFs to access the random DNA, we designed the synthetic promoter 
scaffolds to prevent nucleosome formation with either nucleosome disfavoring sites 
(poly-dA:dT tracts) (19, 20) or binding sites for the General Regulatory Factors (Abf1, 
Reb1, Rap1) (21-23), and sometimes with a TATA box (Figure 1C, Figure S1). In each 
core promoter, the random 80 base pair oligonucleotide occupied the region from about –
170 to –90, relative to the TSS.   

In all instances, the random 80-mer libraries yielded diverse expression levels when 
measured by flow cytometry, and individual promoter clones from each library yielded 
distinct expression levels that fall within the range of the corresponding library (Figure 
1C and Figure S1). Each promoter scaffold had some specific characteristics. The 
libraries containing an upstream poly-T sequence or Abf1 binding site spanned a ~50-
fold range of expression levels, with a nearly uniform expression distribution. This 
indicates that random DNA contains functional TFBSs that modulate gene expression. 
Conversely, libraries based on the native pANP1 scaffold or on the synthetic scaffolds 
containing Rap1 or Reb1 sites were constitutively active, with the random DNA 
modulating the specific expression level (Figure S1). This suggests that the TFBSs 
present in these promoter scaffolds induce expression and dominate the transcriptional 
outcome, which the random 80-mers further modulate.  

High-throughput reproducible quantification of promoter activity 
We next designed a system to readily and robustly assay the regulatory activity of tens of 
millions of random sequences in a single experiment (Figure 2A, Methods). We created 
very diverse libraries of random promoters (~108), transformed them into yeast, and 
sorted the cells by the log(YFP:RFP) ratio into 18 bins of equal intervals. We regrew the 
yeast from each bin, and measured their expression distributions by flow cytometry, 
observing excellent reproducibility (Figure 2B, Methods). We sequenced the promoter 
libraries derived from each bin and collapsed related sequences that likely arose from 
errors in library amplification or sequencing (Methods). Because the complexity of each 
promoter library (>108) was greater than the number of sorted cells (<108), many 
promoters will appear in only one bin, often representing a single observation of a single 
cell containing that promoter and thus yielding a discrete expression level. For those that 
appear in more than one bin (~22% of promoters), expression level is estimated as the 
weighted average of bins in which the promoter was observed.  
We applied this strategy to the two promoter libraries (each complexity > 108) with the 
most diverse expression (Figure 1C, Figure S1) containing a random 80-mer with either: 
(1) an upstream poly-T sequence and downstream poly-A sequence (pTpA); or (2) an 
upstream Abf1 site and a downstream TATA box (Abf1TATA). We tested both libraries 
in glucose and the pTpA library also in galactose and glycerol, with 15-31 million 
sequenced promoters per experiment (<30% of the cells sorted; <21% of the theoretical 
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number of promoters present in the libraries). Each library was sequenced to a depth of 
50-155 million reads and did not reach saturation (Figure S2A); many promoters were 
observed from a single read. For example, the pTpA+glucose experiment was sequenced 
with 155 million reads, yielding 31 million promoters, but doubling the number of reads 
is projected to only have yielded a further 8.5 million promoters (30%; Figure S2A). 
Altogether, we measured the expression output of nearly 100,000,000 promoters. 

Learning a billboard model of TF action  
We formulated a computational model of cis-regulatory logic that takes as input DNA 
sequence and predicts expression level (Figure 2C). Our approach focused on the simple 
“billboard” model of TF regulation that stipulates that gene expression is a function of the 
total amount of TF binding (24), irrespective of the absolute or relative position or 
orientation of individual TFBSs and assuming no TF-TF interactions. The expression 
output is the sum of the predicted binding of each TF, weighted by its effect on 
transcriptional output (Figure 2D), and therefore assumes that TFs work independently 
and additively. We learned three parameters per TF: cellular concentration of active 
protein (which determines the amount of binding), the ability to potentiate activity of 
other factors (e.g. by chromatin opening), and transcriptional modulation. Framing the 
model in this way potentially captures two important aspects of cis-regulation: (1) 
chromatin can block TFs from binding, and (2) some TFs can open chromatin and allow 
other TFs to bind (potentiation).  

To learn the model (Figure 2C), we first scan the DNA sequences of each promoter 
(DNAP) with position weight matrices (PWMs) (25), given for each yeast TF (PWMTF), 
revealing potential binding sites and providing an estimate for the dissociation constant 
(Kd) for each site. We consider all TFBSs, such that weak sites can also be influential, 
creating an affinity landscape for each TF across the region (26). The predicted 
occupancy of each TFBS is determined by the learned TF-specific concentration 
parameters (ConcentrationTF), providing an initial estimate of TF occupancy of each 
promoter that does not yet consider chromatin state (RawBindingTF,P). We learn TF-
specific parameters for how much each TF can modulate the binding of other TFs 
(PotentiationTF), which we assume is primarily driven by chromatin opening, since a 
promoter must be accessible for TFs to bind (27). Using the learned potentiation 
parameters, we estimate the probability that each promoter is accessible to TF binding 
(OpennessP) and scale the initial occupancy estimates by this value, yielding the amount 
of binding of each TF to each promoter (BindingTF,B). Thus, the model learns which TFs 
may, for example, open and close chromatin by their ability to potentiate the activity of 
other TFs (i.e., TFBSs for TFs that affect transcription, but cannot open chromatin, only 
have an effect when “potentiated” by another factor, presumably by opening chromatin 
and allowing binding). We calculate each TF’s contribution to expression as the amount 
of binding for each TF multiplied by a TF-specific activity parameter, which can be 
either positive, for activation, or negative, for repression. To calculate expression, we 
sum the individual contributions to expression from each TF (Figure 2D). Once these 
parameters are learned, we also allow the model to optimize the PWMs representing the 
TF binding specificities and finally add a saturation parameter that bounds the maximal 
effect a TF can have on expression (Methods and below). 
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We learned a separate model for each of the four high-complexity promoter datasets: 
pTpA in glucose, galactose, and glycerol, and Abf1TATA in glucose, withholding, in 
each case, 500,000 promoters (1.5 – 3% of each library) from the training process to 
serve as initial test data. Performance on the withheld data ranged from 59.1% to 71.7% 
(Pearson r2). However, as we show next, this vastly underestimates model performance, 
likely due to the substantial experimental noise in the measurement of these test 
promoters (~24%, per estimate below), many of which are derived from a single 
observation of a single cell.  

The model explains >92% of expression in random DNA, but only 16% in yeast 
DNA 
Testing on independent, high quality data, the models predict >90% of the variation in 
expression in the same biological condition, and >80% of the variance even when testing 
on a different biological condition. To generate high quality test data, we assayed an 
independent pTpA library of limited complexity (~100,000) in glucose, sorted it into 
bins, and estimated the mean expression of only those ~10,000 promoters that had 
sufficient coverage (>100 reads each) (Methods). All models performed very well on this 
data, with the highest predictive value for the pTpA+glucose model (r2 = 0.922, Figure 
2E). The galactose- and glycerol-trained pTpA models performed nearly as well as the 
glucose-trained model on this glucose test data (r2 = 0.896 and 0.836, respectively), 
indicating that the primary contributors to gene expression in the context of random DNA 
sequence are not regulated by carbon source. A different promoter context led to weaker 
predictions: the Abf1TATA+glucose model had a lower predictive power (r2 = 0.776, 
Spearman ρ2 = 0.832) and a sigmoidal relation with the observed test data (Figure S2B). 
The models also predicted correctly which promoters are not expressed: although we 
sorted cells into each of the 18 bins, the lowest mean expression of the high-quality test 
data corresponds to bin 3, and, consistently, the models’ predictions were no lower than 
expression bin 4. Overall, a remarkably high proportion of the variance in expression of 
random promoters is explained by a billboard model. 
We also compared the models’ predictions to published expression measurements from 
another reporter system that used specific designed promoters based on modifications of 
native ones (6). Because this test data was measured in SC-Ura+Gal without most amino 
acids, we used the pTpA+galactose model (including TF activity saturation parameters; 
see below). There are many differences in the test system (Methods), including the core 
promoter sequence (pHIS3), the use of modified native promoters, and its design to test 
promoter features explicitly not captured by the billboard model, such as TFBS position, 
orientation, and relative arrangement. Nevertheless, our model predicted expression 
variation well within promoter contexts that share a common basal promoter sequence 
and test a similar variable (Figure S2C). Conversely, the model could not predict 
expression variation between promoter contexts (r2 = 0.01) or when the variation focused 
on the organization of TFBSs (Figure S2C), which are not captured by a “billboard” 
model. Thus, these modified native promoter sequences contain features that overwhelm 
our model’s ability to predict expression across promoter contexts, but, once these 
features are held constant, it can predict differences within a given context.   
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When using our models to predict expression from all native yeast promoters (Methods), 
they explain only up to 16% of variance in either mRNA synthesis (28) (Figure 2F,G) or 
RNA-seq levels (29) (data not shown). Several factors may contribute to this 
performance, including that our model is trained on short (80 bp) sequences compared to 
the longer yeast promoters (Discussion), and that the billboard model does not account 
for TF-TF interactions and position/orientation effects. Nonetheless, these models are 
useful for learning the relevant biochemical activities of each TF, as we show next. 

The model accurately captures biochemical activities of TFs 
We next assessed each of the key parameters and features learned by the models: (1) 
which TFs are activators and repressors; (2) which TFs can open chromatin; (3) DNA 
accessibility; and (4) refinement of TF binding motifs. Overall, the parameters learned 
are remarkably concordant between the models, with few notable exceptions, which 
correctly highlight biological distinctions in regulation across conditions.  
In all four models, TFs annotated as activators were predicted to have positive 
potentiation scores (e.g., may open chromatin) and TFs annotated as repressors had 
negative potentiation scores (e.g., may close it) (Methods; hypergeometric P-value: 10-3 

to  2x10-5; fig S3A), consistent with open chromatin being more active. The models 
predicted that, of all TFs, most opened rather than closed chromatin (i.e., had positive 
potentiation scores; 64-66%) and that most TFs were predicted activators rather than 
repressors (53-55%), although most TFs in all four experiments were predicted to have 
very little activity, consistent with many TFs being inactive in rich media (30). The 
model-predicted activity for each TF only weakly agreed with known activator/repressor 
status for models trained on glucose data (Figure S3B; hypergeometric P-values: 0.02 
and 0.04), while there was no association for either galactose (P=0.34) or glycerol 
(P=0.79). This could reflect environment-specific activity of TFs and the ascertainment 
bias for TFs in glucose (the most common carbon source used to study yeast).  

All models correctly identified factors known to open chromatin and predicted additional 
condition-specific chromatin-opening factors. The General Regulatory Factors (GRFs; 
Abf1, Reb1, and Rap1), which have known nucleosome displacing activity (21-23), were 
predicted by all models to open chromatin (positive potentiation scores) in all conditions 
tested (Figure 3A,B). In addition, only in galactose, the galactose-specific regulator Gal4 
was correctly (31, 32) predicted to open chromatin (Figure 3A). TFs predicted to open 
chromatin only in glycerol included Hap4, Stb4, Cat8, Tec1, and Tye7 (Figure 3B). 
There is strong support for these predictions: Hap4 was previously described as a global 
regulator of non-fermentative media like glycerol (33); Cat8 activates gluconeogenic 
genes in ethanol and during the diauxic shift (34, 35) and Tye7 regulates glycolysis (36), 
which are the two endpoints of glycerol metabolism (37); Tec1 is known to regulate 
pseudohyphal growth (38, 39), which occurs constitutively in glycerol (40); and although 
little is known about Stb4, its motif occurs preferentially in promoters of genes annotated 
for  “oxidoreductase activity” (25), consistent with a role in using non-fermentable 
carbon sources.  
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The model correctly predicts accessibility in the libraries and in the yeast genome 
There was a good correspondence between the model’s predicted occupancy and the 
occupancy we experimentally measured by MNase-seq. We quantified enrichment of 
promoter sequences from limited-complexity subsets of the pTpA library among 
nucleosome-sized DNA fragments that were protected from MNase digestion, and 
compared this to model predicted accessibility (Methods). The correlation between 
model predictions and individual experiments (Spearman ρ = 0.54-0.55; Figure 3C and 
Figure S3E) was similar to that between experimental replicates for pTpA promoters 
(Figure 3C), and was even higher when comparing to the average occupancy across 
experimental replicates (Spearman ρ = 0.80 and 0.67; Figure S3F).   
The pattern of nucleosome accessibility predicted by applying the models to the yeast 
genome also agrees well with previously measured endogenous nucleosome occupancy in 
yeast (Figure 3D). Specifically, we compared a predicted averaged meta-gene profile of 
chromatin openness by our model’s predictions across all yeast promoters to meta-gene 
profiles from DNase I-seq (41) or in vivo nucleosome occupancy (42) (Figure 3D, 
Methods). The model accurately predicts the nucleosome free region and -1 and +1 
nucleosomes, and even (weakly) predicts the array of nucleosomes within the first part of 
the gene body, indicating that this nucleosomal array is partly encoded in the DNA 
sequence, and read by TFs. This indicates that the models correctly learned aspects of 
how certain TFs regulate chromatin structure, even though they were trained to predict 
gene expression and were provided no prior information about chromatin state. 

The model substantially refined TF binding motifs  
The model is allowed to optimize the position weight matrices (PWMs) describing TF 
specificities (including by introducing additional bases of specificity), and doing so 
improved the predictive power (r2) of the models by 9-12 percentage points. Although in 
principle, the motifs could be altered to the point where they no longer represented the 
original TFBS, this was not generally the case: most motifs either (1) closely resemble 
the original ones, or (2) were not useful and so the PWMs were degraded to neutrality, 
such that they no longer specifically recognize any distinct sequence. The four models 
often made the same changes to the motif, suggesting that the revised motif may more 
faithfully represent the true specificity of the factor (Figure 3E).  
Many of the refined motifs performed better than the original ones at the independent 
tasks of predicting which targets are bound by the cognate TF in the yeast genome by 
ChIP (43) and which yeast genes would change in expression when the cognate TF is 
perturbed (44) (Figure 3F, Figure S3C,D, Methods). While many motifs were 
indistinguishable from the originals (Figure 3F), of those that differed, the model-
refinement improved the majority of motifs. For ChIP data, over twice as many motifs 
had improved as had worsened, even though many of the original motifs were learned 
from the same ChIP data (25). This suggests that the refined motifs often more closely 
represent their cognate TF specificities.  

The activity of most TFs is proportional to their binding 
We tested whether each TF’s activity is directly proportional to its binding, as assumed 
by the model (Figure 2D). We considered the relationship between predicted TF binding 
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and the measured expression level or the residual expression level (actual expression 
minus expression predicted by the model; Figure 4A; Methods). If a TF’s activity is 
correctly captured by the model, there should not be a lingering relationship with the 
residual because the model correctly incorporated the TF’s effect on expression (Figure 
4A, left). Alternatively, if a TF’s activity is not faithfully represented by the model, a 
lingering relationship will exist (Figure 4A, right), and will be reflected as a non-zero 
slope for the line of best fit between predicted binding and residual expression level.  
The activity of the vast majority of TFs was directly proportional to their binding (Figure 
4B), with the GRFs being notable exceptions, which had a strong negative relationship 
between binding strength and residual expression (Abf1, Reb1, and Rap1; Figure 4B, 
Figure S4A; Gal4 in galactose, Figure S4C). This reflects saturation in the impact of the 
factor’s binding on expression (Figure S4B,C) (Although all these factors are 
nucleosome displacing factors, other displacing factors, such as Rsc3 (Figure S4D) or 
Hap4 in glycerol (Figure S4E) did not share this behavior.) When we allowed the model 
to learn a saturation parameter on a TFs’ activity (Methods), the activity of the GRFs 
was predicted to saturate at relatively low occupancies (4%, 5%, and 11% for Abf1, 
Rap1, and Reb1), and the model’s predictive power improved by only 0.6% (on the high-
quality test pTpA+glucose data), but the residual relationship was eliminated. Since 
strong binding sites may be more likely to occur in vivo than in random sequence, this is 
an important addition to the model. 

CGG-related motifs explain 57% of variation in expression in random DNA 
Examining the effect of each TF motif across the libraries (considering both the number 
of promoters affected, and the effect size in each case; Methods), many monomeric 
motifs for zinc cluster TFs (CGG and related) had a large potentiation impact (e.g., 
WAR1 in Figure 3A,B; Figure S5A). Zinc cluster TFs are generally thought to bind as 
dimers (45), but our result highlighted a monomeric motif. To assess the specific impact 
of these monomeric motifs, we learned a model whose input motif features included only 
the zinc cluster monomeric consensus (CGG/CCG) and its one base pair variants, which 
were held constant, without further optimization. The resulting model explained 57% of 
the variance in expression of the high-quality pTpA glucose test data (Figure 5A,B). By 
several tests (Methods), this is unlikely to merely reflect lower-order features, such as 
G+C-content or dinucleotide frequencies (Figure S5B). The large impact of these motifs 
is likely attributed in part to their high frequency: CGG is expected to occur 
approximately once every 32 bases in random DNA (50% G+C), and every 73 bases in 
the yeast genome (38% G+C). The activity of these CGG-variants could be due to either 
one or a few TFs binding the monomeric motifs, or the combined action of many TFs.  
Further analysis suggests the paralogs Rsc3 and Rsc30 may be the main binders to these 
sites. To rank candidates among all zinc cluster TFs, we built models that predicted in 
vitro TF binding using protein binding microarray (PBM) data (46, 47) for each such TF 
by the occurrence of CGG-variant motifs in PBM probes (Methods), and then compared 
the CGG-variant weights for in vitro binding to those learned by our CGG-variant gene 
expression model (Methods). The highest correlation was for Rsc3 and Rsc30 (Figure 
5C-E), whose binding in the PBM assay was also best explained by CGG-variants. Rsc3 
and Rsc30 are part of the RSC chromatin remodeler, bind CG repeats (48) (like the 
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second ranking CGG-variant; Figure 5B), open chromatin (48), and RSC3 is essential 
(49). Thus, ~57% of the variation in expression from random sequence promoters may be 
due to Rsc3/Rsc30 binding, although we cannot fully rule out contributions from other 
factors.   

Widespread position, orientation, and helical face preferences  
Some regulatory mechanisms, including the effects of motif position and orientation are 
present in random DNA at some frequency, but are not captured by our billboard model. 
Even if motifs at specific positions of the promoter are relatively rare in random DNA, 
(and thus the billboard model fits the data well overall), there could still be a sufficient 
number of instances in our large dataset from which to study these mechanisms. We 
reasoned that the residuals, after the fit by the billboard model, should highlight these 
effects, since most of the variance attributable to other (possibly confounding) factors has 
been eliminated. To identify such effects, for each TF, we identified all promoters that 
contained a cognate TFBS predicted to be bound at least 5% of the time (Methods), 
partitioned these promoters into bins by the TFBS position and orientation, and examined 
the distribution of expression residuals for promoters with the TFBS at each position and 
orientation bin (Figure 6A). Finally, we clustered the median residuals for all TFs at 
every position within the promoter and for both orientations (Figure 6B). We focused the 
analysis on the pTpA glucose dataset, where we had the largest number of promoters. 
We found evidence for strong position and strand preferences (Figure 6B), as well as for 
helical face preference (Figure S6). Many TFBSs are associated with a higher-than-
expected expression level when the TFBS is distal within the promoter (e.g., ABF1, 
PHD1, RSC3). Many others are strand-specific in their activity, often with a lower-than-
expected activity distally, but for only one motif orientation (e.g., AZF1). Some TFBSs 
showed strong periodicity along the length of the promoter (e.g., MCM1, PHD1, RSC3). 
We hypothesized these could reflect preference for a DNA helical face. To test this, we 
first removed large-scale preferences using loess regression, leaving only short-scale 
trends (Figure S6), and calculated the Spearman correlation to a 10.5 bp sine wave 
(Methods). The correlations were significantly higher than with randomized data (Figure 
6C, rank sum p<2x10-16; AUROC=0.82), suggesting that helical face preferences are 
commonplace.  
The observed helical preference (periodicity) in TF activity tends to be proximal to the 
TSS (downstream of -150, relative the TSS), while the region that is most active when 
TFBSs are included is distal within the promoter (upstream of -150, relative to the TSS). 
Interestingly, 150 bp is the approximate persistence length of dsDNA (50), and so this 
could indicate physical constraints of the promoter sequence, where a TF bound close to 
the TSS can only contact the transcriptional pre-initiation complex when bound to a 
particular helical face. Conversely, after a distance of ~150 bp, the DNA is flexible 
enough that TFs can regulate transcription efficiently regardless of the helical face on 
which they bind. 
One notable exception to the proximal periodicity preference is the poly-A motif, 
recognized by the chromatin remodeler RSC (51, 52), which has a higher activity when 
minus strand motifs (i.e., poly-Ts) are located distally within the promoter and when plus 
strand motifs (i.e., poly-As) are proximal (Figure 6B, bottom left – green curve). Only 
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the distal poly-T motifs (-170 to -130) have a strong periodicity in activity (Figure 6B, 
bottom left – blue curve). These preferences are consistent with the proximal poly-A 
positioning the -1 nucleosome (and hence having little helical preference in our 
expression assay) and the distal poly-T positioning the +1 nucleosome (which may affect 
the transcriptional pre-initiation complex) (53). 

Discussion 
Here, we used a massive-throughput approach to measure the expression output of nearly 
100 million sequences, a radically different scale than prior studies, relying on random 
DNA. Through a regulatory “billboard” model, we explained the vast majority of 
expression variance of random DNA, helped refine TFBSs, correctly predicted chromatin 
organization, and identified factors that can remodel chromatin, including condition-
specific regulators. By analysis of the model’s residuals we also uncovered regulatory 
features present in the data – but not captured in a “billboard” model – including strand, 
orientation and helical face preferences.  
Random DNA has several key advantages for the study of cis-regulatory logic. The ease 
of generating very large libraries allows measurements of unprecedented scale, important 
for learning complex models from many independent examples of TFBSs in a variety of 
contexts and of diverse binding strengths. Conversely, the traditional approach of 
introducing the feature for study into a common background sequence can inadvertently 
affect binding sites for other TFs that partly overlap the one studied; indeed, such 
fortuitous introduction or destruction of secondary TFBSs is highly likely in designed 
studies.  
Since our billboard model explained the vast majority (93%) of the expression variance 
of random sequence, it provided strong support for the hypothesis that many weak sites 
can impact transcription additively (strong sites are less likely to occur in random DNA). 
The activities of most individual TFs were fit well by having a single parameter for their 
effect on transcription and a second for their effect on chromatin. The major exceptions 
to this were the GRFs, whose activity saturated, potentially reflecting the way in which 
they open chromatin (21-23, 31, 32, 54), since once the chromatin is open in all cells at 
all times, it cannot be opened further. While we aimed to capture specific biochemistry 
by including TF potentiation scores (which we generally have interpreted as chromatin 
opening), the TF activity scores learned by the model do not correspond to specific 
biochemical processes. There are many pathways through which TFs can affect 
transcription (55) and it is likely that incorporating these into future models will help 
glean further insights. 

The prevalence of functional TFBSs in random DNA and its demonstrated ability to 
modulate gene expression has implications for the ways in which genes evolve. When a 
new gene is created by a mechanism like retroposition of an existing gene, the regulatory 
program, encoded by the DNA, must arise de novo. In bacteria, where there are no 
nucleosomes, random sequences have been shown to yield functioning promoters about 
10% of the time (14). Here, we show that yeast promoter sequences also occur very 
frequently by chance: over 80% of promoter sequences appeared to be at least minimally 
active in glucose, in the context of the pTpA promoter scaffold. Therefore, it may not be 
difficult to evolve basal gene regulatory sequences from previously non-regulatory DNA 
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when a new gene is formed. Creating new enhancers in mammals may be similarly likely 
since mammalian TFs have, on average, even less specificity than those of yeast (15). 
This is also consistent with the observed fast evolutionary turnover of regulatory DNA, 
while overall expression programs are conserved (56). According to this hypothesis, 
newborn evolutionarily naive sequences will be primarily comprised of many weak 
TFBSs that have a comparatively weak effect on expression, potentially dominated by 
constitutive TFs with low specificity, like we show for Rsc3/30. Over evolutionary time, 
further mutations can optimize the specificity and effect of these new regulatory 
sequences. 
Several known features of gene regulation were not incorporated in our modeling 
framework. We represented TFBSs by traditional position weight matrices, which assume 
independence between adjacent positions of the motif, and did not consider possible 
contributions from DNA shape features (e.g. (57, 58)). We also did not allow a TF to 
simultaneously act as an activator and repressor in the same condition. Thus, our results 
suggest that cases where a TF has seemingly different functions in different contexts 
result from interactions with other factors that alter, block, or render redundant the 
activity of the TF (59-61). Since binding sites for individual TFs are common in our 
dataset and only 7% of the data remain unexplained by the model, it is unlikely that these 
regulatory mechanisms contribute significantly to expression level in the context of 
independent TF action. 

In contrast to the billboard model’s successful predictions in random DNA, it explained 
less than 16% of the mRNA synthesis rates of native genes from their promoter 
sequences. We consider three possible reasons for the discrepancy. First, there are 
substantial limitations in the experimental techniques used to infer RNA synthesis rates, 
and different techniques for measuring mRNA decay rates (used to infer synthesis rates) 
correlate very poorly (r ranges from -0.14 to 0.56) (62). Second, we only analyzed a 
portion of the promoter (from -170 to -90, relative to the TSS), and our model did not 
capture contributions to expression from the proximal promoter and upstream (distal) 
activating sequences. Third, the billboard model does not capture certain features that 
might particularly affect endogenous gene regulation, as these sequences have been 
selected by evolution. These include genomic context (63-65), which is held constant in 
our promoter assay, TF-TF interactions (61), which are expected to occur comparatively 
infrequently in random DNA (and so have little impact on model performance), and 
TFBS position and orientation preferences (6). Indeed, position and orientation-specific 
activity were commonplace according to our analysis of residuals.  
In using GPRA, researchers will have to consider the scale needed for their question of 
interest. First, signal-to-noise increases as data quantity increases, but in a manner that 
depends on each TFBS’s frequency (e.g., Figure 1B). Second, some parameters can be 
learned with relatively little data: in particular, activity and potentiation parameters 
converge in models within the first 10% of the data. Conversely, an increase in data is 
important for learning motifs and for finding position and orientation-specific activities. 
As noted above, since pairs of TFBSs are inherently rare in random DNA, learning all 
possible TF-TF interactions with GPRA, especially when considering competition (where 
both binding sites must be high-affinity), will require much bigger datasets. Such truly 
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“big data” will allow learning more elaborate models to address all facets of gene 
regulation. 
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Figures 
Figure 1. GPRA. (A) Overview. From top: A library of random DNA sequences (N80 
here, blue) is inserted within a promoter scaffold (orange) in front of a reporter (yellow 
arrow). By chance, the random sequences include many instances of TFBSs (purple). 
When grown in yeast, the library would yield a broad distribution of expression levels 
(grey, bottom) as measured by flow cytometry, whereas each promoter clone would have 
a distinctive expression distribution (red, orange, yellow). (B) TFBSs are common in 
random DNA. Shown is the cumulative distribution function (CDF; black) and density 
(purple) of the expected frequency of yeast TF motifs in random DNA. The expected 
number of TFBSs in a library of 107 random 80 bp promoters corresponding to each 
frequency is also indicated on the x axis. (C) Random DNA yields diverse expression 
levels. For each promoter scaffold (right) shown are the expression distributions 
measured by flow cytometry (left) for the entire library (gray filled curves) and for a few 
selected clones, each from a different single promoter from the library (colored line 
curves).  
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Figure 2. Learning an expression model from a GPRA of 108 random promoters. 
(A) Experimental strategy. Yeast GPRA library is sorted into 18 bins by the YFP/RFP 
ratio of the reporter (top) and the GPRA promoters in each bin are sequenced. (B) 
Reproducibility of expression levels. Shown are the expression distributions 
(log2(YFP/RFP)) for cells from each bin after sorting as in (A) (color code, top) which 
were regrown, and reassayed by flow cytometry. Expression distribution maintains the 
initial bin ranking, showing reproducibility. (C) Computational “billboard” model. Model 
relates observed promoter DNA sequence (DNAp) to expression (Expressionp) based on 
TF binding and activity. TF motifs (PWMTF) are provided as input to the model, but can 
later be refined (Methods) and are used to calculate Kds for each potential TFBSs. Three 
parameters are learned per TF (orange): ConcentrationTF determines the amount of 
binding to each TFBS given its Kd, PotentiationTF captures each TF’s ability to 
open/close chromatin, and ActivityTF captures how each TF impacts transcription. Latent 
variables (blue) are calculated directly from the inputs and learned parameters. (D) Model 
of TF activation. The model assumes linear activation of TFs, so an increase in binding of 
a TF (Bindingx,p) results in a proportional change in expression (ELp), scaled by the 
activity of that factor (Actx). (E) The model accurately predicts the expression from new 
random DNA promoter sequences. Scatter plots show actual expression level (y-axis) for 
high-quality test data in the pTpA promoter scaffold grown in glucose vs. the predicted 
expression of the sequences by the pTpA+Glu model (x axis). (F,G) Weaker predictions 
of endogenous mRNA synthesis rates. Scatter plots shows inferred mRNA synthesis rates 
of yeast promoters (from (28)) (y axis) vs. the predicted expression of those promoters by 
the pTpA+Glu model (F) and the Abf1TATA model (G). Red lines: GAM lines of best fit 
(Methods). 
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Figure 3. Billboard models learn biochemical activities of TFs. (A,B) Prediction of 
chromatin opening ability. Shown is the predicted chromatin opening ability for each TF 
(dot) for pTpA models trained in glucose (x axis) vs. either galactose (A) or glycerol (B) 
(y axis). The GRFs, with known chromatin opening ability in all conditions, are indicated 
in blue, and known and putative carbon source-specific regulators are marked in red. 
(C,D) Prediction of chromatin accessibility. (C) Heatmap shows the pairwise Spearman 
correlations (color) between model-predicted nucleosome occupancy (1- predicted 
accessibility), and in vivo nucleosome occupancy measured by MNase (four 
replicates/conditions). (D) Metagene profile surrounding the TSS, based on in vivo 
nucleosome occupancy (Zhang (42)), DNase I hypersensitivity (representing 
accessibility; Hesselberth (41)), and model-predicted accessibility for each of the four 
billboard models. Each dataset is scaled. +1 and -1 nucleosome positions, and promoter 
Nucleosome Free Region (NFR) are indicated. (E,F) TFBS motif refinement by the 
model. (E) Similar refinement in independent models. Comparison of the original TFBS 
motif (top) and model-refined motifs from each of the four models for two example 
motifs. (F) Motif refinement improves experimental predictions. The number of TFBS 
motifs (y axis) for which the model-refined motif predicted gene expression changes (TF 
mutant, top) or TF binding (ChIP, bottom) better (red), worse (green), or equally well 
(blue) as the original motif, for each of the four models (x axis). 
  

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


●●●

●

●●●●●●●●●●●●

●

●
●●●●●●●●●●●
●
●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●

CAT8

HAP4

TYE7
●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●
●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●●
●

300

400
TF potentiation score (pTpA+Glu)

TF
 p

ot
en

tia
tio

n 
sc

or
e 

(p
Tp

A+
G

al
)

2000 400
TF potentiation score (pTpA+Glu)

2000

200

100

0

300

TF
 p

ot
en

tia
tio

n 
sc

or
e 

(p
Tp

A+
G

ly)

200

100

0

Abf1TATA
+Glu

pTpA
+Gal

pTpA
+Glu

pTpA
+Gly

Reb1 polyA

Original

Rep. A1

Rep. A2

Rep. B1

Rep. B2

Pred. occupancy

M
Na

se

Re
p.

 A
1

Re
p.

 A
2

Re
p.

 B
1

Re
p.

 B
2

Pr
ed

. o
cc

up
an

cy

MNase

A

C

E F

D

B

FIGURE 3

0

0.8
Spearman r{

{
WAR1

ABF1

REB1

RAP1

GAL4 STB4
WAR1

ABF1

REB1

TEC1

RAP1

TF m
utant expression

TF ChIP

Abf1TATA
+Glu

pTpA
+Glu

pTpA
+Gal

pTpA
+Gly

0

50

100

0

20

40

60

80

Nu
m

be
r o

f m
ot

ifs Learned
motif is

better
equal
worse

0
0–250 250 500 750

1

Distance to TSS

Sc
al

ed
 s

ig
na

l

Zhang in vivo nucl.
Hesselberth DNase I
Abf1TATA+Glu
pTpA+Glu
pTpA+Gal
pTpA+Gly

-1

+1

NFR

21

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


22 
 

Figure 4. Only GRFs show nonlinear transcriptional activity. (A) Lingering 
expression relationships for well- and poorly-fit TFs. Shown are simulated relationships 
between predicted TF binding (x axis) and measured expression level (top, y axis) or 
residual expression level not explained by the model fit (bottom, y axis) for an example 
TF that is fit well (left) and another that is fit poorly (right). Blue: the true relationship 
between TF binding and expression; red: the model’s learned linear fit; purple: 
Generalized Additive Model (GAM) line of best fit to residual and its slope. (B) Most 
TFs binding is captured well, with the notable exception of the GRFs. Distribution of 
maximal absolute slopes for the GAM lines of best fit between TF binding vs. residual 
expression (as in (A), bottom, purple curves) for the TFs in the pTpA+glucose model. 
The three GRFs have particularly poor fits.  
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Figure 5. Rsc3/30 explain much of the variation in expression in random sequence. 
(A) A billboard model with only CGG variants explains a large portion of the variation in 
expression. Shown are measured expression levels (y axis) for each random sequence in 
the high-quality pTpA test data vs. the corresponding predictions (x axis) for these 
sequences based on a billboard model that can use only the consensus zinc cluster 
monomeric motif (CGG) and its 1 bp variants as motif features. (B) Potentiation and 
activity scores for CGG-variant motifs. Shown are the potentiation (y axis) and activity (x 
axis) scores for each of the CGG variants, learned by the CGG-variant model. (C-E) The 
role of Rsc3/30 is supported by comparison to protein binding microarrays (PBMs). (C) 
Predicting Rsc3 in vitro DNA binding only from CGG-variant motif abundance in DNA. 
Shown is the measured binding of RSC3 to different sequences in a PBM (y axis), vs. the 
model-predicted binding for a linear model trained on the same data, including only the 
abundance of CGG variants within each PBM probe as features (Pearson r = 0.78). (D) 
Agreement between model-predicted activity and Rsc3 in vitro binding weights. Shown 
is a comparison between the CGG-variant model’s feature weights (as in B; x axis) for 
activity (blue) and potentiation (green), and the DNA binding weights learned for each 
CGG variant by a model trained to predict in vitro Rsc3 binding using only these CGG 
variants (y-axis) (the model as in the x axis of C). Pearson r = 0.87 and 0.96 for activity 
and potentiation, respectively. (E) Rsc3/30 best explain the activity of CGG-variants. 
CDFs show, for all zinc cluster TFs with PBM data in UniPROBE (46), the Pearson 
correlation coefficient r (x axis) for how well binding can be explained by CGG variants 
(as in C, red), and how well in vitro CGG-variant binding weights match activity (blue) 
and potentiation (green) scores (as in D) performed for each TF. Rsc3 and Rsc30 are 
marked within each distribution.  
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Figure 6. Position, orientation, and helical face preferences among yeast TFs. (A) 
Identifying position and orientation-specific activities for TFs. A subset of promoters is 
identified by a specific TFBS at a specific position (horizontal arrows, top). The residuals 
from the model fit are calculated separately when the motif is on the plus or minus strand, 
and their medians are determined. (B) Motif position and orientation effects on 
expression. Left: The median residual (y axis, units are expressed in expression bins) for 
promoters with indicated motifs in each position (x axis) and orientation (green/blue: +/- 
strand). Right: Median residual (color) for each TFBS (rows) at each position (columns) 
for minus (left) and plus (right) strand orientation. (C) Helical face preferences. Shown is 
the distribution of Spearman ρs between a 10.5 bp sine wave with the median residual of 
TFBSs per position (as in Figure S6B) along the minus strand (blue line) and plus strand 
(green line) or with corresponding randomized data (blue and green shaded areas). 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


A

B

C

FIGURE 6

0

2

4

Spearman ρ to 10.5-bp sine wave

D
en

si
ty

Actual
Randomized

+ strand– strand

5

6 9 12 15 6 9 12 15 6 9 12 15

10

15

Predicted expression level

M
ea

su
re

d 
ex

pr
es

si
on

 le
ve

l

Predicted expression level

E
xp

re
ss

io
n 

re
si

du
al

Predicted expression level
+ –

Strand

+–
Motif strand

–+
Motif strand

Calculate
residuals

All promoters ... At position –152With binding site for TFx ...

Residual
distriburion

... ... ...

0.0 0.2 0.4 0.6

+ strand

Motif position (relative to TSS)

– strand

M
ed

ia
n 

re
si

du
al

 e
xp

re
ss

io
n 

le
ve

l

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

1

–160 –140 –120

0.0

2.5

–2.5

−160 −140 −120 −160 −140 −120

ABF1

MCM1

polyA

MSN4

AZF1

PHD1

RSC3

Motif position (relative to TSS)

−0.4

0.0

0.4

Median
residual

≥0.75

≤-0.75

27

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

References 
1. Albert FW & Kruglyak L (2015) The role of regulatory variation in complex traits 

and disease. Nat Rev Genet 16(4):197-212. 

2. Bussemaker HJ, Foat BC, & Ward LD (2007) Predictive modeling of genome-

wide mRNA expression: from modules to molecules. Annu Rev Biophys Biomol 
Struct 36:329-347. 

3. Hughes TR & de Boer CG (2013) Mapping yeast transcriptional networks. 

Genetics 195(1):9-36. 

4. Beer MA & Tavazoie S (2004) Predicting gene expression from sequence. Cell 
117(2):185-198. 

5. Yuan Y, Guo L, Shen L, & Liu JS (2007) Predicting gene expression from 

sequence: a reexamination. PLoS computational biology 3(11):e243. 

6. Sharon E, et al. (2012) Inferring gene regulatory logic from high-throughput 

measurements of thousands of systematically designed promoters. Nature 
biotechnology 30(6):521-530. 

7. Gertz J, Siggia ED, & Cohen BA (2009) Analysis of combinatorial cis-regulation 

in synthetic and genomic promoters. Nature 457(7226):215-218. 

8. Oliphant AR, Brandl CJ, & Struhl K (1989) Defining the sequence specificity of 

DNA-binding proteins by selecting binding sites from random-sequence 

oligonucleotides: analysis of yeast GCN4 protein. Molecular and cellular biology 

9(7):2944-2949. 

9. Jolma A, et al. (2013) DNA-binding specificities of human transcription factors. 

Cell 152(1-2):327-339. 

10. Nutiu R, et al. (2011) Direct measurement of DNA affinity landscapes on a high-

throughput sequencing instrument. Nature biotechnology 29(7):659-664. 

11. Horwitz MS & Loeb LA (1986) Promoters selected from random DNA sequences. 

Proceedings of the National Academy of Sciences of the United States of 
America 83(19):7405-7409. 

12. Winter G, Griffiths AD, Hawkins RE, & Hoogenboom HR (1994) Making 

antibodies by phage display technology. Annu Rev Immunol 12:433-455. 

13. Cuperus JT, et al. (2017) Deep learning of the regulatory grammar of yeast 5' 

untranslated regions from 500,000 random sequences. Genome research. 

14. Yona AH, Alm EJ, & Gore J (2017) Random Sequences Rapidly Evolve Into De 

Novo Promoters. bioRxiv. 

15. Wunderlich Z & Mirny LA (2009) Different gene regulation strategies revealed by 

analysis of binding motifs. Trends in genetics : TIG 25(10):434-440. 

16. Kosuri S, et al. (2013) Composability of regulatory sequences controlling 

transcription and translation in Escherichia coli. Proceedings of the National 
Academy of Sciences of the United States of America 110(34):14024-14029. 

17. Kinney JB, Murugan A, Callan CG, Jr., & Cox EC (2010) Using deep sequencing 

to characterize the biophysical mechanism of a transcriptional regulatory 

sequence. Proceedings of the National Academy of Sciences of the United 
States of America 107(20):9158-9163. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

18. Shalem O, et al. (2015) Systematic dissection of the sequence determinants of 

gene 3' end mediated expression control. PLoS Genet 11(4):e1005147. 

19. Iyer V & Struhl K (1995) Poly(dA:dT), a ubiquitous promoter element that 

stimulates transcription via its intrinsic DNA structure. EMBO J 14(11):2570-

2579. 

20. de Boer CG & Hughes TR (2014) Poly-dA:dT tracts form an in vivo nucleosomal 

turnstile. PLoS One 9(10):e110479. 

21. Ganapathi M, et al. (2011) Extensive role of the general regulatory factors, Abf1 

and Rap1, in determining genome-wide chromatin structure in budding yeast. 

Nucleic acids research 39(6):2032-2044. 

22. Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, & Schreiber SL (2004) Global 

nucleosome occupancy in yeast. Genome biology 5(9):R62. 

23. Hartley PD & Madhani HD (2009) Mechanisms that specify promoter nucleosome 

location and identity. Cell 137(3):445-458. 

24. Kulkarni MM & Arnosti DN (2003) Information display by transcriptional 

enhancers. Development 130(26):6569-6575. 

25. de Boer CG & Hughes TR (2012) YeTFaSCo: a database of evaluated yeast 

transcription factor sequence specificities. Nucleic acids research 40(Database 

issue):D169-179. 

26. Segal E & Widom J (2009) From DNA sequence to transcriptional behaviour: a 

quantitative approach. Nat Rev Genet 10(7):443-456. 

27. Liu X, Lee CK, Granek JA, Clarke ND, & Lieb JD (2006) Whole-genome 

comparison of Leu3 binding in vitro and in vivo reveals the importance of 

nucleosome occupancy in target site selection. Genome research 16(12):1517-

1528. 

28. Miller C, et al. (2011) Dynamic transcriptome analysis measures rates of mRNA 

synthesis and decay in yeast. Mol Syst Biol 7:458. 

29. Lipson D, et al. (2009) Quantification of the yeast transcriptome by single-

molecule sequencing. Nature biotechnology 27(7):652-658. 

30. Chua G, et al. (2006) Identifying transcription factor functions and targets by 

phenotypic activation. Proceedings of the National Academy of Sciences of the 
United States of America 103(32):12045-12050. 

31. Axelrod JD, Reagan MS, & Majors J (1993) GAL4 disrupts a repressing 

nucleosome during activation of GAL1 transcription in vivo. Genes Dev 7(5):857-

869. 

32. Morse RH (1993) Nucleosome disruption by transcription factor binding in yeast. 

Science 262(5139):1563-1566. 

33. Forsburg SL & Guarente L (1989) Identification and characterization of HAP4: a 

third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 

3(8):1166-1178. 

34. Hedges D, Proft M, & Entian KD (1995) CAT8, a new zinc cluster-encoding gene 

necessary for derepression of gluconeogenic enzymes in the yeast 

Saccharomyces cerevisiae. Molecular and cellular biology 15(4):1915-1922. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


30 
 

35. Haurie V, et al. (2001) The transcriptional activator Cat8p provides a major 

contribution to the reprogramming of carbon metabolism during the diauxic shift 

in Saccharomyces cerevisiae. The Journal of biological chemistry 276(1):76-85. 

36. Sato T, et al. (1999) The E-box DNA binding protein Sgc1p suppresses the gcr2 

mutation, which is involved in transcriptional activation of glycolytic genes in 

Saccharomyces cerevisiae. FEBS Lett 463(3):307-311. 

37. Grauslund M & Ronnow B (2000) Carbon source-dependent transcriptional 

regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, 

GUT2, from Saccharomyces cerevisiae. Can J Microbiol 46(12):1096-1100. 

38. Madhani HD & Fink GR (1997) Combinatorial control required for the specificity 

of yeast MAPK signaling. Science 275(5304):1314-1317. 

39. Gavrias V, Andrianopoulos A, Gimeno CJ, & Timberlake WE (1996) 

Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol 
Microbiol 19(6):1255-1263. 

40. Cullen PJ & Sprague GF, Jr. (2000) Glucose depletion causes haploid invasive 

growth in yeast. Proceedings of the National Academy of Sciences of the United 
States of America 97(25):13619-13624. 

41. Hesselberth JR, et al. (2009) Global mapping of protein-DNA interactions in vivo 

by digital genomic footprinting. Nature methods 6(4):283-289. 

42. Zhang Z, et al. (2011) A packing mechanism for nucleosome organization 

reconstituted across a eukaryotic genome. Science 332(6032):977-980. 

43. Harbison CT, et al. (2004) Transcriptional regulatory code of a eukaryotic 

genome. Nature 431(7004):99-104. 

44. Hibbs MA, et al. (2007) Exploring the functional landscape of gene expression: 

directed search of large microarray compendia. Bioinformatics 23(20):2692-2699. 

45. Todd RB & Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: 

the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 
21(3):388-405. 

46. Hume MA, Barrera LA, Gisselbrecht SS, & Bulyk ML (2015) UniPROBE, update 

2015: new tools and content for the online database of protein-binding microarray 

data on protein-DNA interactions. Nucleic acids research 43(Database 

issue):D117-122. 

47. Zhu C, et al. (2009) High-resolution DNA-binding specificity analysis of yeast 

transcription factors. Genome research 19(4):556-566. 

48. Badis G, et al. (2008) A library of yeast transcription factor motifs reveals a 

widespread function for Rsc3 in targeting nucleosome exclusion at promoters. 

Mol Cell 32(6):878-887. 

49. Akache B, Wu K, & Turcotte B (2001) Phenotypic analysis of genes encoding 

yeast zinc cluster proteins. Nucleic acids research 29(10):2181-2190. 

50. Bednar J, et al. (1995) Determination of DNA persistence length by cryo-electron 

microscopy. Separation of the static and dynamic contributions to the apparent 

persistence length of DNA. J Mol Biol 254(4):579-594. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

51. Krietenstein N, et al. (2016) Genomic Nucleosome Organization Reconstituted 

with Pure Proteins. Cell 167(3):709-721 e712. 

52. de Boer C & Hughes TR (2015) The RSC complex may be the poly-A 

nucleosome turnstile mechanism. figshare. 

53. de Boer C & Hughes TR (2015) Model for how poly-dA:dT sites act as 

nucleosome turnstiles. figshare. 

54. Yu L & Morse RH (1999) Chromatin opening and transactivator potentiation by 

RAP1 in Saccharomyces cerevisiae. Molecular and cellular biology 19(8):5279-

5288. 

55. Hahn S & Young ET (2011) Transcriptional regulation in Saccharomyces 

cerevisiae: transcription factor regulation and function, mechanisms of initiation, 

and roles of activators and coactivators. Genetics 189(3):705-736. 

56. Weirauch MT & Hughes TR (2010) Conserved expression without conserved 

regulatory sequence: the more things change, the more they stay the same. 

Trends in genetics : TIG 26(2):66-74. 

57. Rohs R, et al. (2009) The role of DNA shape in protein-DNA recognition. Nature 

461(7268):1248-1253. 

58. Mathelier A, et al. (2016) DNA Shape Features Improve Transcription Factor 

Binding Site Predictions In Vivo. Cell Syst 3(3):278-286 e274. 

59. Voth WP, et al. (2007) Forkhead proteins control the outcome of transcription 

factor binding by antiactivation. EMBO J 26(20):4324-4334. 

60. Turcotte B & Guarente L (1992) HAP1 positive control mutants specific for one of 

two binding sites. Genes Dev 6(10):2001-2009. 

61. Zhou X & O'Shea EK (2011) Integrated approaches reveal determinants of 

genome-wide binding and function of the transcription factor Pho4. Mol Cell 
42(6):826-836. 

62. Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, & Struhl K (2014) Global analysis 

of mRNA isoform half-lives reveals stabilizing and destabilizing elements in 

yeast. Cell 156(4):812-824. 

63. de Boer CG, et al. (2014) A unified model for yeast transcript definition. Genome 
research 24(1):154-166. 

64. Kaplan CD, Laprade L, & Winston F (2003) Transcription elongation factors 

repress transcription initiation from cryptic sites. Science 301(5636):1096-1099. 

65. Mazo A, Hodgson JW, Petruk S, Sedkov Y, & Brock HW (2007) Transcriptional 

interference: an unexpected layer of complexity in gene regulation. J Cell Sci 
120(Pt 16):2755-2761. 

 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224907doi: bioRxiv preprint 

https://doi.org/10.1101/224907
http://creativecommons.org/licenses/by-nd/4.0/

