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Abstract 24 

microRNAs are non-coding RNAs which down-regulate a large number of target 25 

mRNAs and modulate cell activity. Despite continued progress, bioinformatics 26 

prediction of microRNA targets remains a challenge since available softwares still 27 

suffer from a lack of accuracy and sensitivity. Moreover, these tools show fairly 28 

inconsistent results from one another. Thus, in an attempt to circumvent these 29 

difficulties, we aggregated all human results of three important prediction algorithms 30 

(miRanda, PITA and SVmicrO) showing additional characteristics in order to rerank 31 

them into a single list. This database is freely available through a webtool called 32 

miRabel (http://bioinfo.univ-rouen.fr/mirabel/) which can take either a list of miRNAs, 33 

genes or signaling pathways as search inputs. Receiver Operating Characteristic 34 

curves and Precision-Recall curves analysis carried out using experimentally validated 35 

data and very large datasets show that miRabel significantly improves the prediction 36 

of miRNA targets compared to the three algorithms used separatly. Moreover, using 37 

the same analytical methods, miRabel shows significantly better predictions than other 38 

popular algorithms such as MBSTAR and miRWalk. Interestingly, a F-score analysis 39 

revealed that miRabel also significantly improves the relevance of the top results. The 40 

aggregation of results from different databases is therefore a powerful and 41 

generalizable approach to many other species to improve miRNA target predictions. 42 

Thus, miRabel is an efficient tool to accurately identify miRNA targets and integrate 43 

them into a biological context.  44 
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Introduction 45 

Mature microRNAs (miRNAs) are unpolyadenylated and uncapped 21-23 nucleotides 46 

endogenous non-coding single strand RNAs. They act at the post-transcriptional level 47 

to regulate gene expression in eukaryotic organisms. At least 60% of human genes 48 

are believed to be regulated by miRNAs as shown by a genome wide analysis [1]. 49 

Since their discovery in 1993 [2], it has been clearly established that miRNAs act as 50 

key regulators of several cell processes such as proliferation, differentiation, 51 

metabolism and apoptosis [3]; it is therefore not surprising to find them involved in 52 

numerous pathophysiological processes [4]. To date, 2,588 mature miRNAs 53 

(http://www.mirbase.org/) have been identified in human and each of them has the 54 

ability to potentially regulate several hundred of target mRNAs and each targeted 55 

mRNA can be regulated by tens of miRNAs [5], thus creating a large and complex 56 

regulation network of gene expression unsuspected before. They work mostly through 57 

imperfect base-pairing hybridization to mRNA, generally in the 3'-UTR [6], to block 58 

translation or rarely to induce mRNA degradation [7]. Moreover, it was shown that 59 

miRNA binding sites are also found in the 5’-UTR and in the coding region [8]. The 60 

bioinformatics identification of miRNA targets remains a challenge because 61 

mammalian miRNAs are characterized by a poor homology toward their target 62 

sequence except in the conserved “seed” region that mostly comprises nucleotides 2-63 

7 of the miRNA [9]. Nevertheless, several algorithms have been developed in recent 64 

years in order to include a set of features known to modulate the interaction between 65 

miRNA and their cognate mRNA in addition to the essential Watson-Crick pairings [10]. 66 

Among them, the most relevant are the free energy of the miRNA::mRNA system [11], 67 

the conservation of sequences among species [12] and the accessibility of binding 68 

sites [13]. This resulted in the creation of more than 105 target prediction tools (as of 69 
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November 2017, from OMICtools’ database [14]), all of which have their strengths and 70 

weaknesses [15, 16].These tools are useful to reduce the amount of potential targets 71 

in order to streamline the experimental validations [17]. However, their predictions 72 

suffer from a poor accuracy and sensitivity as revealed by experimental data [18, 19]. 73 

In addition, computational results are very divergent depending on how the 74 

bioinformatics tools take into account the aforementioned features of miRNA::mRNA 75 

interactions [20]. Moreover, several studies clearly show that algorithms performances 76 

depend on the dataset used [21, 22]. So far, no single method consistently outperforms 77 

others in the miRNA targets prediction field, thus supporting the idea that databases 78 

content combination is an efficient way to improve MTI prediction. Assuming that an 79 

interaction predicted by more than one algorithm is more likely to be functional, 80 

databases such as miRWalk [23, 24], miRSystem [25], miRGator [26] or, more 81 

recently, Tools4miRs [27], store and/or compare results predicted by several popular 82 

tools using statistics and mRNA/protein expression data. Ritchie et al. [28], however, 83 

demonstrated that targets resulting from the intersection of two lists of predictions are 84 

not more likely to be present in the intersection of two other lists. Therefore, intersecting 85 

results does not increase the probability of retaining true positives. Moreover, 86 

approaches based on intersection of predictions may lead to decreased sensitivity 87 

because of possibly omitting valid interactions as shown by Sethupathy et al. [29]. In 88 

order to circumvent these limitations, we proposed to compute a new unique score 89 

based on the aggregation of the interaction ranks taken from other well known 90 

prediction algorithms. To test our hypothesis, we aggregated three major prediction 91 

algorithm results which enabled us to show that this new score significantly improves 92 

miRNA targets prediction compared to other prediction tools. To allow a more 93 

comprehensive analysis, the results of this aggregation were eventually linked to their 94 
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respective cellular pathways using KEGG database, and implemented in a web tool 95 

named miRabel. Interestingly, miRabel can take either a list of miRs, genes or 96 

pathways as search inputs and retrieve the linked results. 97 

Materials and methods 98 

Aggregated databases 99 

Computationally predicted human miRNA::mRNA interaction databases generated by 100 

miRanda [30], PITA [31] and SVMicrO [32] were used. These publicly available online 101 

algorithms have been chosen because each of them uses different and complementary 102 

features of miRNA::mRNA interactions such as seed match, interspecies conservation, 103 

free energy, site accessibility and target-site abundance (Table S1) [10]. The ranks of 104 

each predicted interaction retrieved from one or more of these databases have been 105 

aggregated using the R package RobustRankAggreg (RRA) (v1.1) [33] with R (v3.2.0). 106 

The new score resulting from the aggregation is used to re-rank each interaction and 107 

also indicates the significativity of the proposed rank in miRabel. 108 

Testing datasets 109 

Two types of testing datasets were used for each of the comparisons described in this 110 

paper. First, to compare the different aggregation methods, we used one million 111 

randomly selected interactions within aggregated data. Validated interactions 112 

accounted for 3% of the testing dataset. For the other evaluations, all common 113 

interactions between compared databases were used (Fig.1A). It resulted in extremely 114 

large datasets (>500,000 interactions) which reduced the amount of possible analysis 115 

due to computation time (several weeks). This led us to design a second type of 116 

datasets of 50,000 interactions randomly picked from the corresponding larger dataset. 117 
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For each large dataset, 10 smaller ones were created (Fig.1B). The amount of 118 

experimentally validated interactions within these randomly picked ones was set so as 119 

to remain close in proportion to the main, larger dataset. These smaller datasets 120 

allowed us to increase the relevance and statistical significance of performance results. 121 

Performance analysis methods 122 

On each dataset, a receiver operating characteristic (ROC) analysis was done using 123 

the area under curve (ROC_AUC) as implemented in the R package pROC [34]. To 124 

analyse top prediction results, a specificity of 90% was set as a threshold in order to 125 

compute partial ROC (pROC90%) and the corresponding AUC (ROC_pAUC90%) and 126 

sensitivity. To focus on which classifier better identifies true positive interactions, 127 

datasets were further compared with precision and recall (PR) curves using R 128 

programming as well. For the same purpose as with the pAUC of the ROC analysis, 129 

we calculated the harmonic mean between the precision and the recall (F-score) for 130 

different percentages of the top interactions. 131 

Statistics 132 

Statistical analysis of results obtained with smaller datasets were done using either a 133 

Repeated Measures One Way ANOVA with Dunnett's post-test or a Student t-test 134 

depending on the number of compared groups with GraphPad Prism software (version 135 

6.00 for Windows, GraphPad Software, La Jolla California USA). 136 

Results 137 

miRabel overview 138 

miRabel : a database for microRNA target predictions 139 
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The database was designed with MySQL (http://www.mysql.com/) using InnoDB motor 140 

and includes predictions from miRanda [30], PITA (v.6.0) [31] and SVMicrO [32]. It 141 

contains tables for the 2,578 human miRNAs (for which 1,107 have target mRNAs), 142 

20,532 genes and 275 pathways. This represents more than 8.6 million predicted 143 

interactions from which 123,373 are experimentally established. These experimentally 144 

validated interactions are taken from miRTarBase (v.6.0) [35] and miRecords [36], 145 

whereas 5’UTR and CDS predictions are retrieved from miRWalk database (v.2.0) [24]. 146 

Genes and pathways information as well as their relationships were retrieved from 147 

KEGG’s database while miRNA data were from miRBase (release 21, 148 

http://www.mirbase.org/) and linked with miRNA target predictions. Since the 149 

annotation of miRNAs has changed in the past few years, a conversion tool was 150 

developed to automatically convert the names of miRNA queries in the latest version 151 

used by miRBase. This tool is also accessible from the home page. In order to 152 

standardize gene names from the different tools, they were converted to the NCBI 153 

gene ID and a table containing their synonyms has been built. Potential interactions 154 

between miRNAs and genes were obtained based on our prediction method 155 

represented as shown in Fig. 2A. Pathways linked to the resulting interactions can be 156 

retrieved and ranked according to the proportion of its interactions regulated by a given 157 

miRNA. The number of validated interactions for this miRNA present in each pathway 158 

is also indicated. 159 

The web interface 160 

The web interface was designed with PHP (http://www.php.net) and CSS (http:// 161 

http://www.cssflow.com/). It enables users to query the system directly by miRNA 162 

name, by gene name or by pathway name (Fig. 2B). Multiple queries are allowed in 163 

order to identify common miRNAs, genes or pathways among the results. Alternatively, 164 
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miRabel can be queried by uploading a text file containing the same information. 165 

Queries by pathways are easily made thanks to asynchronous database queries and 166 

name completion. The results are visualized by using the DataTable plugin of the 167 

JQuery framework which allows to create tables that can be easily filtered and sorted. 168 

Genes are linked to their NCBI gene homepage using their unique gene ID. Results 169 

can be copied, printed or exported in tabulated-separated or pdf formats. An online 170 

documentation section is also provided to help users in their searches. MiRabel 171 

website can be found at http://bioinfo.univ-rouen.fr/mirabel/. 172 

Evaluating aggregation methods 173 

The performances of the aggregation methods (Mean, Default (i.e. 174 

RobustRankAggreg, RRA), Geometric mean, Median, Min, Stuart) provided by the R 175 

package RRA have been compared to each other (except for the Stuart method due 176 

to extensive computation time). ROC and PR analysis show that the mean of the ranks 177 

provides the best result (ROC_AUCMean = 0.5790, PR_AUCMean = 0.0436) (Fig. 3A-D). 178 

Interestingly, the F-score for different percentage of the top interactions indicates that 179 

the mean method is also the most consistent in promoting validated interactions (Fig. 180 

3E-F). These results were confirmed using 10 smaller datasets. There again, the mean 181 

of the ranks provides the best results (ROC_AUCMean = 0.6888±0.0030, PR_AUC = 182 

0.0290±0.0006) with significant statistical differences compared to other proposed 183 

methods (Table S2). When looking at top predictions only, the mean method remains 184 

significantly better than other compared methods (Table S1). Moreover these analyses 185 

show that among the ten datasets, the mean aggregation method provides the best 186 

ROC_AUC nine times whereas geometric mean method succeeds only one time (data 187 

not shown). These results led us to use the mean method to aggregate the ranks of 188 

miRanda, PITA and SVMicrO. 189 
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Comparison to aggregated methods 190 

In order to test whether any improvement was gained with our aggregation method, 191 

the performances of each aggregated algorithms were compared to miRabel using 192 

ROC and PR analysis as well. These comparisons were done with 982,411 predicted 193 

interactions that are common to miRanda, PITA and SVMicrO. Within these 194 

predictions, 30,698 are experimentally validated ones. ROC curve analysis shows that 195 

miRabel improves the prediction of validated miRNA::mRNA interactions (ROC_AUC 196 

= 0.5984) compared to miRanda, PITA and SVMicrO (Fig. 4A-B). This improvement is 197 

even more visuable with the PR analysis (PR_AUC = 0.0437) (Fig. 4C-D) and the 198 

consistency of miRabel superior F-score throughout the dataset (Fig. 4E-F). Using 10 199 

smaller datasets allowed us to confirm and to enhance the significativity of these 200 

analyses (p-value <10-4) (Table S3). A significant improvement was also manifest for 201 

the aggregated predictions for the top ranked interactions (ROC_pAUC90% = 0.0088; 202 

Sen90% = 0.1670) compared to miRanda, PITA and SVMicrO (Table S3). 203 

Comparison to other prediction tools 204 

The performances of miRabel were also compared to MBSTAR [37], miRWalk (v.2.0) 205 

[24], and TargetScan (v.7.1) [38], three efficient, up-to-date and/or widely used 206 

prediction web tools [21]. ROC and PR curves analysis using the same methods (all 207 

common interactions and ten random sets of 50,000 interactions) shows that our 208 

prediction data significantly improves the overall prediction of miRNAs target mRNAs 209 

when compared to MBSTAR (Fig. 5 and Table S4) and miRWalk (Fig. 6 and Table S5). 210 

However, even though miRabel shows better overall performance than Targetscan 211 

(ROC_AUC: 0.5577 vs 0.5477, p=3.5×10-3, Fig. 7-B, Table S6), they both seem fairly 212 

equal when we focus the analysis on true positives identification (PR_AUC: 0.0404 vs 213 
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0.0406, Fig. 6C-F). Optimal specificity, ROC_pAUC90% and the corresponding 214 

sensitivity of our aggregated data exhibit also better performances than those of 215 

MBSTAR (Table S4) and miRWalk (Table S5) whereas these parameters are almost 216 

similar to the ones calculated for Targetscan (Table S6).  217 

Discussion 218 

The prediction of miRNA targets is a bioinformatic challenge. Indeed, increased 219 

biological knowledge of the interactions between miRNAs and their targets has 220 

improved the predictions but they still suffer from high false positive rate [28]. Actually, 221 

each algorithm incorporates its own characteristics [39] and the comparison of their 222 

results highlights important contradictions in their respective predictions [39, 40]. We 223 

therefore hypothesized that the aggregation of the predictions of several algorithms 224 

would improve the relevance and the robustness of the prediction of miRNA targets. 225 

In order to validate this concept, we have chosen to aggregate the predictions of three 226 

algorithms, miRanda, PITA and SVMicrO, because they use different but 227 

complementary information such as site accessibility or free energy to make their 228 

predictions. The results they provide are different both in terms of their probability of 229 

interaction (i.e., their ranking) and their number of target mRNAs [39]. Thus, only 11.4% 230 

of total interactions (982,411 / 8.6 million) are common to each other. The example of 231 

hsa-miR-16 that we present (Fig. 2B) also illustrates very well these divergences of 232 

predictions. Moreover, because these algorithms have not been updated recently, 233 

some more refined features of the seed region found in recent prediction approaches 234 

such as TarPmiR [41], are not considered in our aggregated results. This also explains 235 

why only 1,107 miRNAs have target mRNAs among the 2,578 that miRabel includes. 236 

Only the human miRNAs were used initially to limit the amount of data to be 237 
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manipulated as well as the associated computation times, but the approach that we 238 

propose is generalizable to the miRNAs of all origins. Since the score generated by 239 

the RRA package is also representative of the significativity of the ranking for a given 240 

interaction, we suggest to use miRabel with a threshold of 0.05. Moreover, this is in 241 

agreement with the threshold estimated on the different ROC analyses using the 242 

closest top-left method (data not shown). We, however, acknowledge that further 243 

analyses are required to really define an optimal threshold for miRabel. Finally, the 244 

choice of algorithms is also limited by the free availability of their prediction database. 245 

To further improve predictions, it would therefore be interesting to take into account 246 

newer promising tools such as ComiR [42] or miRmap [43] whose prediction algorithms 247 

have been shown to perform well [39]. 248 

Comparing five of the aggregation methods included in the RRA package shows that 249 

the "mean" method is best for aggregating miRNA prediction lists (Fig. 3, Table S2). 250 

However, although statistically significant, these values are relatively close to one 251 

another. These results are similar to those obtained in studies designed to compare 252 

the performance of several rank aggregation methods and showing better 253 

performances for the mean method [44-46]. Although not the best in our study, the 254 

RRA method can handle incomplete rankings and is robust to noise due to divergent 255 

lists [33]. In addition, it has already been used to aggregate miRNA profiles in a meta-256 

analysis in nasopharyngeal cancer but without comparing it with other aggregation 257 

methods [47]. Among other aggregation methods, Cross Entropy Monte-Carlo has 258 

been found to be inadequate for our study due to too extensive computation times with 259 

large lists of items as previously reported [48]. As an example, a preliminary test 260 

showed us that it takes around 15 hours on a desktop computer for the ECMC method 261 

as integrated in the RankAggreg R package [49] to aggregate three short lists of only 262 
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one hundred predicted mRNA targets from one microRNA (data not shown). Another 263 

method that could be evaluated with our data is the Borda count algorithm [50] which 264 

has already been used to aggregate cancer expression microarrays and proteomics 265 

datasets into a single optimal list [51].  266 

Our miRNA target predictions database, called miRabel, performs better than each of 267 

the individual aggregated algorithms (Fig. 4). Interestingly, prediction improvement is 268 

clearly visible in the top ranked interactions of miRabel (Table S3), thus showing that 269 

aggregating results from other tools moved validated interactions up in ranking and 270 

moved down less relevant ones. This is in line with multiple studies which show that 271 

combining data is so far the best compromise to obtain the most relevant interactions 272 

[16, 22, 40, 52, 53]. A recent study in particular shows that the union (but not the 273 

intersection) of the predictions of three tools among four (TargetScan, miRanda-274 

mirSVR, RNA22) increases the performance of the analyses [54]. However, our work 275 

goes further since prediction lists were aggregated and re-ranked in a unique list. The 276 

performance of their method was evaluated using only ten miRNAs and 1,400 genes 277 

but not the entire database. In order to avoid selection bias of the datasets, we 278 

analyzed all 982,411 interactions common to miRabel and the three aggregated 279 

algorithms, which represent 519 miRNAs and 14,319 genes. The use of ten random 280 

datasets of 50,000 interactions also enhances the relevance and statistical analysis of 281 

the results. Furthermore, even though miRabel aggregates older databases, it shows 282 

equal (vs. TargetScan) or better (vs. MBSTAR and miRWalk) performances than up-283 

to-date algorithms, thus clearly establishing that our method, even though simple, has 284 

a great potential. Interestingly, from all evaluations done with our datasets and 285 

methodology, we found that other algorithm performances to be quite different from 286 

what was originally described in their respective original publications. This is in 287 
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agreement with a previous study which highlighted the importance of testing prediction 288 

results on multiple, independent datasets and with a standardized evaluation protocol 289 

[39]. This is also one of the strengths of our study. Indeed, throughout all comparisons, 290 

miRabel was tested on 55 different datasets, which gives more robustness to the 291 

performance values calculated for our method.  292 

Conclusions 293 

MiRabel is a new efficient tool for the prediction of miRNA target mRNAs and their 294 

associated biological functions. Using an aggregation method, we improved the 295 

relevance of the predictions of 3 available algorithms. This promising approach can 296 

easily be extended to all publicly available databases or to other species. Moreover, 297 

the integrated biological pathways provide a more comprehensive view and new 298 

insights into the complex regulatory network of miRNAs. 299 
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Figures legends 447 

Figure 1: Testing datasets design and databases performance analysis 448 

methodology 449 

A large dataset containing all common interactions between compared databases is 450 

created (A), For ease of use, 10 smaller datasets of 50,000 interactions were randomly 451 

picked from all common ones (B). Predictions performance are then compared using 452 

ROC and PR analysis on all datasets. 453 

 454 

Figure 2: Overview of miRabel 455 

Predictions results from miRanda, PITA and SVMicrO for 3’UTR are aggregated using 456 

Robust Rank Aggreg. 5’UTR and CDS predictions are retrieved from miRWalk 457 

database. Experimentally validated interactions are identified using miRTarBase and 458 

miRecords. Links between predictions and pathways are established based on KEGG 459 

information (A). An example of miRabel web interface is shown using predictions for 460 

hsa-miR-16. Predicted targets are ranked according to miRabel’s score. Rank found 461 

for this interaction in each database are indicated as well as its experimental validation 462 

status and mRNA sub-localization (B). 463 

 464 

Figure 3: Performances comparison of aggregation methods 465 

ROC curve analysis (A), showing the sensitivity and the specificity for 5 aggregation 466 

methods from the RRA R package, and their respective AUC (B) have been calculated 467 

using the pROC R package on 1 million random interactions. Using the same dataset, 468 

a precision and recall (PR) analysis (C) with PR_AUC (D) has been carried out using 469 
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R programming as well. The cumulative harmonic mean between precision and recall 470 

(F-score) was also plotted (E) for each ranked interaction of this dataset. The average 471 

F-score is reported for the top 10%, 20%, 40% and all interactions (F). The higher are 472 

the ROC_AUC, PR_AUC and F-score, the better are the performances of the tested 473 

method. Highest values are in bold font. 474 

 475 

Figure 4: Performances comparison of aggregated prediction algorithms 476 

ROC curve analysis (A), showing the sensitivity and the specificity for miRabel, 477 

miRanda, PITA and SVMicrO, and their respective AUC (B) have been calculated 478 

using the pROC R package on 982,411 common interactions. Using the same dataset, 479 

a precision and recall (PR) analysis (C) with PR_AUC (D) has been carried out using 480 

R programming as well. The cumulative harmonic mean between precision and recall 481 

(F-score) was also plotted (E) for each ranked interaction of this dataset. The average 482 

F-score is reported for the top 10%, 20%, 40% and all interactions (F). The higher are 483 

the ROC_AUC, PR_AUC and F-score, the better are the performances of the tested 484 

algorithm. Highest values are in bold font. 485 

 486 

Figure 5: Performances comparison of miRabel and MBSTAR 487 

ROC curve analysis (A), showing the sensitivity and the specificity for miRabel and 488 

MBSTAR, and their respective AUC (B) have been calculated using the pROC R 489 

package on 583,547 common interactions. Using the same dataset, a precision and 490 

recall (PR) analysis (C) with PR_AUC (D) has been carried out using R programming 491 

as well. The cumulative harmonic mean between precision and recall (F-score) was 492 

also plotted (E) for each ranked interaction of this dataset. The average F-score is 493 
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reported the top 10%, 20%, 40% and all interactions (F). The higher are the ROC_AUC, 494 

PR_AUC and F-score, the better are the performances of the tested algorithm. Highest 495 

values are in bold font. 496 

 497 

Figure 6: Performances comparison of miRabel and miRWalk 498 

ROC curve analysis (A), showing the sensitivity and the specificity for miRabel and 499 

miRWalk, and their respective AUC (B) have been calculated using the pROC R 500 

package on 126,214 common interactions. Using the same dataset, a precision and 501 

recall (PR) analysis (C) with PR_AUC (D) has been carried out using R programming 502 

as well. The cumulative harmonic mean between precision and recall (F-score) was 503 

also plotted (E) for each ranked interaction of this dataset. The average F-score is 504 

reported the top 10%, 20%, 40% and all interactions (F). The higher are the ROC_AUC, 505 

PR_AUC and F-score, the better are the performances of the tested algorithm. Highest 506 

values are in bold font. 507 

 508 

Figure 7 : Performances comparison of miRabel and TargetScan 509 

ROC curve analysis (A), showing the sensitivity and the specificity for miRabel and 510 

TargetScan, and their respective AUC (B) have been calculated using the pROC R 511 

package on 126,214 common interactions. Using the same dataset, a precision and 512 

recall (PR) analysis (C) with PR_AUC (D) has been carried out using R programming 513 

as well. The cumulative harmonic mean between precision and recall (F-score) was 514 

also plotted (E) for each ranked interaction of this dataset. The average F-score is 515 

reported the top 10%, 20%, 40% and all interactions (F). The higher are the ROC_AUC, 516 
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PR_AUC and F-score, the better are the performances of the tested algorithm. Highest 517 

values are in bold font. 518 

  519 
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