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Abstract 

Abnormal metabolism is an emerging hallmark of cancer. Cancer cells utilize both aerobic glycolysis and 

oxidative phosphorylation (OXPHOS) for energy production and biomass synthesis. Understanding the 

metabolic reprogramming in cancer can help design therapies to target metabolism and thereby to 

improve prognosis. We have previously argued that more malignant tumors are usually characterized by a 

more modular expression pattern of cancer-associated genes. In this work, we analyzed the expression 

patterns of metabolism genes in terms of modularity for 371 hepatocellular carcinoma (HCC) samples 

from the Cancer Genome Atlas (TCGA). We found that higher modularity significantly correlated with 

glycolytic phenotype, later tumor stages, higher metastatic potential, and cancer recurrence, all of which 

contributed to poorer overall prognosis. Among patients that recurred, we found the correlation of greater 

modularity with worse prognosis during early to mid-progression. Furthermore, we developed metrics to 

calculate individual modularity, which was shown to be predictive of cancer recurrence and patients’ 

survival and therefore may serve as a prognostic biomarker. Our overall conclusion is that more 

aggressive HCC tumors, as judged by decreased host survival probability, had more modular expression 

patterns of metabolic genes. These results may be used to identify cancer driver genes and for drug design.  
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Introduction 

Hepatocellular carcinoma (HCC) is a primary malignancy of the liver, with average survival time 

between 6 to 20 months without any intervention [1]. It is also the third leading cause of cancer mortality 

worldwide [2]. The prognosis for HCC patients remains poor [3]. Diagnosis of HCC is usually based on 

biomarkers, such as AFP (alpha-fetoprotein) and miR-21 [4]. However, HCC can result from a variety of 

risk factors, such as hepatitis B/C virus or alcoholic liver disease [5], which makes it difficult to 

characterize HCC with single gene biomarkers. One key to a further breakthrough in HCC therapy lies in 

better understanding the underlying mechanism of HCC progression. 

 

In recent years, a significant amount of research has gone into analyzing cancer-associated pathways and 

networks to gain insight into the complex biological systems underlying tumor progression [6, 7]. One 

promossing approach for breast cancer and leukemia patients has been to identify the varying patterns of 

cancer-associated gene expression to predict prognosis [8, 9]. In both of these examples, the level of 

organization of the cancer-associated gene network, as measured by the cophenetic correlation coefficient, 

(CCC), was shown to be correlated with cancer risk, progression, and outcome. Inspired by these works, 

we here aim to characterize HCC progression and patient survival by analyzing the structure of the HCC 

cancer-associated gene network. 

 

Liver is an organ in which metabolism plays a key role. And abnormal metabolism is a hallmark of cancer 

[10, 11].  Therefore, we chose to analyze the structure of metabolic gene expression of HCC patients.  

Unlike normal cells, cancer cells use glycolysis for energy production irrespective of the availability of 

oxygen, a process termed the Warburg effect or aerobic glycolysis [12, 13]. Interestingly, although 

aerobic glycolysis has been regarded as the dominant metabolism phenotype in cancer, recent 

experimental evidence shows that mitochondria are actively functional in cancer cells [14-16], and 

oxidative phosphorylation (OXPHOS) can enhance metastasis in certain scenarios [17, 18]. Study of the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224998doi: bioRxiv preprint 

https://doi.org/10.1101/224998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

interplay between glycolysis and OXPHOS will deepen our understanding of cancer metabolism and 

metastasis. 

 

To quantify the activities of the two main metabolism phenotypes in HCC, OXPHOS and glycolysis, Yu 

et al. [19] developed AMPK and HIF-1 signatures by evaluating the expression of the downstream genes 

of AMPK (5' AMP-activated protein kinase) and HIF-1 (hypoxia-inducible factor 1), in total 33 AMPK 

downstream genes and 23 HIF-1 downstream genes. The AMPK and HIF-1 signatures have been shown 

to capture metabolic features of HCC samples [19].  In addition, the AMPK and HIF-1 signatures can 

associate the metabolism phenotypes of HCC samples with oncogene activities, such as MYC, c-SRC and 

RAS, which further validates the use of the AMPK and HIF-1 signatures in characterizing the metabolic 

activity of HCC samples [19]. Based on these arguments, the AMPK and HIF-1 downstream genes were 

chosen for the present study as a relevant set of cancer-associated genes. A strong anti-correlation 

between AMPK and HIF-1 activity was observed in HCC, suggesting the expression of these metabolic 

genes is modular, with the AMPK and HIF-1 downstream gene subsets as two likely modules (see Results 

section).  

 

Community structure of a gene network conveys information regarding the interaction between genes. In 

particular, genes within the same community cooperate much more with each other than with those in 

other communities. By investigating the community structure of the HCC cancer-associated gene network, 

we identified key changes predictive for tumor progression and patient death. We found that higher 

community structure significantly correlated with glycolytic phenotype, later tumor stages, higher 

metastatic potential, and cancer recurrence, all of which contributed to poorer overall prognosis. Among 

patients that recurred, we found the correlation of greater community structure with worse prognosis 

during early to mid-progression.  
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Here we utilize modularity to quantify the community structure of the HCC cancer-associated gene 

network. Modularity is a measure of intracommunity connection strength compared to what is expected 

from randomly distributed connections [20, 21]. In the current context, it quantifies the ability of tumor 

cells to organize individual cancer-associated genes so as to maximize network efficiency. Modularity is 

present in almost all biological systems, from molecular interactions to macroscopic food webs [22, 23]. 

A general theory regarding modularity shows that high modularity systems afford greater evolutionary 

fitness in high stress environments or over shorter time scales, whereas low modularity systems afford 

greater fitness in low stress environments or over longer time scales [24, 25]. This general principle can 

be applied to understand the relation between modularity of cancer-related gene networks and the 

aggressiveness of cancer [8, 9]. Using this theory, we predict that tumors with a more modular expression 

pattern of cancer-associated genes, organized to counteract host defenses, are more fit and aggressive. At 

longer time scales, tumor growth overcomes host defenses and loses its sensitivity to host actions, and 

modularity is predicted to decline.  

 

In this work, we analyzed the change of the modular expression pattern of the AMPK and HIF-1 

downstream genes in HCC samples as a function of metabolism phenotypes, tumor stages, metastatic 

potentials, and recurrence status. We found that (i) HCC samples with a glycolysis phenotype show 

significantly higher modularity than samples with an OXPHOS phenotype; (ii) HCC samples at tumor 

stages II-IV have significantly higher modularity than samples at stage I; (iii) HCC samples with higher 

metastatic potential maintain significantly higher modularity than samples with lower metastatic potential; 

and (iv) patients that have recurrence within 12, 24 or 36 months have significantly higher modularity 

than those with no recurrence within the same amount of time. These results confirm the theoretical 

prediction that more aggressive tumors correspond to a more modular interaction pattern of the cancer-

associated gene network. We also found that modularity increases with tumor progression up to 8 months 

before recurrence, but then decreases. This result is examined in detail in the Discussion section, and 

indicates that modularity is no longer selected for at very late stages of tumor progression. This result is 
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also in accord with the aforementioned theoretical expectations. We further developed metrics to calculate 

individual modularity, which proved to be predictive of recurrence and survival for individual HCC 

patients. Possible applications of modularity in terms of drug design and identifying cancer-related genes 

will be discussed in the Discussion section. 

 

 

Results 

To construct our HCC cancer-associated gene network, we took the 33 AMPK downstream genes and 23 

HIF-1 downstream genes identified by Yu et al. (2017) [19] as nodes in the network. For each group of 

patients, the interaction patterns between genes were calculated using Pearson correlation. Simply put, 

two genes have a strong interaction if they show a similar trend of gene expression changing across 

patients. That is, if one gene expression increases and another gene expression also increases, then these 

genes are cooperating and strongly interacting with each other. After nodes and links were established, we 

applied the Newman algorithm [21] to obtain the community structure of the gene network and the 

corresponding modularity value.  

 

Modular expression pattern of the AMPK and HIF-1 downstream genes.  

There exists a strong anti-correlation between the AMPK activity and HIF-1 activity across all 371 

samples (Fig. 1A). In addition, expression of individual AMPK downstream genes was highly positively 

correlated within the AMPK gene group and negatively correlated with the HIF-1 downstream genes, and 

vice versa (Fig. 1B). The expression pattern of these genes was highly modular and consisted of two 

modules, one containing mainly AMPK-downstream genes and the other HIF-1-downstream genes, as 

identified by the Newman algorithm (Fig. 1C).  
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Modularity and metabolism phenotypes.  

To evaluate the modular gene expression pattern of different metabolism phenotypes of HCC samples, we 

performed principal component analysis (PCA) on the RNA-Seq data of 33 AMPK downstream genes 

and 23 HIF downstream genes. Since AMPK and HIF-1 are master regulators of OXPHOS and glycolysis, 

respectively [19], the resulting first principal components (PC1s) for AMPK and HIF-1 downstream 

genes were assigned as the axes to quantify the activities of OXPHOS and glycolysis. After projecting all 

371 HCC samples to the AMPK and HIF-1 axes, each cancer sample was assigned a metabolic state of 

glycolysis (HIF-1high/AMPKlow), hybrid (HIF-1high/AMPKhigh) or OXPHOS (HIF-1low/AMPKhigh) through 

𝑘-means clustering using the sum of absolute differences (Fig. 2A). Group modularity calculation showed 

that the OXPHOS group had the lowest mean modularity, the hybrid group had an intermediate mean 

value of modularity, and glycolysis group had the highest mean modularity (Fig. 2B). Combined with 

survival curves of the three groups (Fig. 2C), it is clear that the glycolysis group had the worst survival 

and OXPHOS the best, with hybrid in the middle, indicating that higher modularity corresponded to a 

more aggressive tumor.  

 

HCC samples at later tumor stage have greater modularity  

To analyze the change of modularity with respect to tumor stage, we classified the 348 of the 371 HCC 

samples that have neoplasm disease stage information into two groups, stage I (171 samples) and stage II-

IV (177 samples). This was done to ensure that each group has similar number of samples. Group 

modularity calculations show that the stage II-IV group had a significantly higher mean modularity than 

the stage I group (Fig. 3A). Stage II-IV samples also had a significantly worse survival than stage I 

samples (Fig. 3B), which further confirmed that higher modularity corresponded to worse survival, i.e. a 

more aggressive tumor. 
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HCC samples with higher metastatic potential have greater modularity 

Metastasis accounts for more than 90% cancer related deaths [26]. To evaluate the correspondence of 

modularity to metastatic potential of HCC samples, we grouped the samples based on their metastatic 

potential and calculated the group modularity. Genes SNRPF, EIF4EL3, HNRPAB, DHPS, PTTG1, 

COL1A1, COL1A2, LMNB1 (comprising the eight-gene signature) have been shown to be upregulated in 

metastases compared to primary tumor sites [27]. Expression levels of these genes has been used to 

evaluate the metastatic potential of primary tumors [27]. We here used the sum of log2-transformed 

values of expression levels of these eight genes to represent the metastatic potential of primary HCC 

samples. The 123 samples with the lowest metastatic potential were classified as the low potential group, 

and the 123 samples with the highest metastatic potential as the high potential group. Group modularity 

calculation results show that the high metastatic potential group had higher modularity and worse 

prognosis (Fig. 4A). We also used the expression of gene SPP1 to quantify the metastatic potential of 

HCC samples since the single SPP1 gene has been shown to be a diagnostic marker for metastatic HCC 

[28]. The grouping of HCC samples by expression of SPP1 show consistent results to that observed from 

the eight-gene signature (Fig. 4B). This result indicated that a highly modular pattern of cancer-associated 

gene interactions is a sign of tumor metastasis. 

 

Modularity and tumor recurrence.   

Tumor relapse is a supreme clinical challenge [29]. To analyze how prognosis of tumor relapse in 

connected to the modularity of metabolic genes in HCC samples, we classified the 319 of 371 HCC 

samples that have tumor recurrence information – ‘recurred’ or ‘disease free’. Here the 319 samples were 

classified into non-recurrence and recurrence groups within 12 months, 24 months, or 36 months. For 

example, the recurrence group within 12 months includes HCC samples whose disease-free status was 

'recurred' and the 'disease free time' was shorter than 12 months. The non-recurrence group within 12 

months includes HCC samples whose 'disease free time' was longer than 12 months, with either 'recurred' 

or 'disease free' status.  
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In all three cases, we observed that the group of patients that recurred had a higher mean modularity than 

the group of patients that did not (Fig. 5A). The difference between the recurrence and no-recurrence 

groups became more significant as time increased from 12 to 24 to 36 months. The survival curves 

confirmed that the recurrence group, which was also the high modularity group, had poor survival (Fig. 

5A). 

 

To understand the origin of the correlation between higher modularity and worse survival, we examined 

the relation between modularity and tumor recurrence time among recurred patients. Among the 319 

samples, 174 have disease-free status as ‘recurred’. After discarding the 4 patients with the longest 

disease free time, the rest were sorted based on the disease-free time and classified into 5 groups – group 

1, 2, 3, 4 and 5 with decreasing disease-free time.  That is, group 1 was the longest from recurrence, and 

group 5 was the nearest. The result is shown in Fig. 5B and the corresponding survival curves for each 

group are shown in Fig. 5C. Modularity first increased with tumor progression, and then decreased. The 

differences between each group, however, were not always significant. It is also worth noting that 

modularity correlated with worse survival for the first 3 groups, but the correlation is reversed for groups 

4 and 5. This result is similar to the trend observed in a study of acute myeloid leukemia [9]. In early 

stages, increased modularity correlates with decreased survival time as cancer cells organize their gene 

expression against the host. In later stages, cancer has overcome the host defenses, and a high value of 

modularity is no longer selected for. Host survival, while low, becomes independent of modularity. We 

note that this crossover occurs rather late: recurrence times for groups 1, 2, 3 were 90-22 months, 22-13 

months, 13-8 months; the recurrence times for groups 4 and 5 were 8-4 and 4-1 months, respectively.  

Note that Fig. 5B and 5C are based on recurred patients only, whereas Fig. 5A contains both recurred 

patients and disease-free patients.  
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Clinical application of modularity: Individual modularity and prediction.  

Calculation of group modularity is useful for understanding the group differences of metabolic gene 

expression patterns and the general relation between modularity and malignancy. However, for clinical 

application, individual modularity is required in order to make predictions regarding individual prognosis. 

The detailed definition and calculation procedure of individual modularity can be found in the ‘Materials 

and Methods’. Simply put, we applied the Newman algorithm to an individual cancer-associated gene 

network, with a new method to define links and with an additional de-noising step.  

 

Individual modularity for all 371 samples ranged from 0.248 to 0.652, with mean 0.453 and standard 

deviation 0.079. These numbers appeared to be consistent with modularity found in other functional 

biological networks in human [30]. Modularity at the individual level largely confirmed the above group 

level trends of classification into OXPHOS or glycolytic metabolism, stage, recurrence status and 

metastatic potential. Higher individual modularity corresponded to the glycolysis phenotype, later tumor 

stage, and higher metastatic potential, as determined by the aforementioned eight-gene signature (Fig. 6A-

C). Results regarding recurrence and SPP1 metastatic potential can be found in Supplementary Fig. S2. In 

all three cases, the group of patients that recurred always had a higher mean modularity than the group of 

patients that did not (Supplementary Fig. S2A-C). Similar to the case of the eight-gene signature of 

metastatic potential, a positive Pearson correlation was observed between individual modularity and 

metastatic potential calculated from the log2 transformation of the SPP1 expression (r=0.35, p<10-11, 

Supplementary Fig. S2D). Together, these results validate the use of the metric of individual modularity 

to evaluate the aggressiveness of individual HCC patients. 

 

To make prognostic predictions with individual modularity, we focus on survival and recurrence. We 

attempted to predict the probability of survival longer than 24 months and no recurrence in 12 months, so 

that each group has a comparable amount of samples (survived longer than 24 months: 140 samples; 

shorter than 24 months: 91 samples; no recurrence in 12 months: 176 samples; recurrence within 12 
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months: 104 samples). We then divided patients into 6 groups based on their individual modularity values 

(0.24-0.31, 0.31-0.38, 0.38-0.45, 0.45-0.52, 0.52-0.59). For each group, we counted the number of 

patients that survived longer 24 months and that remained disease-free for more than 12 months. We then 

calculated the proportion of these patients in each group (Fig. 6D and 6E, left panel). Overall, the higher 

the modularity, the lower the survival and disease-free probability. The only exception is the first bar in 

Fig. 6D left panel, which could potentially due to the very small number of patients in the group (7 

patients).  

 

We then captured these results with a Gaussian model of the modularity distribution of each group, with 

mean and standard deviation computed from individual modularity values of each group, Fig. 6D and 6E, 

middle panel. Based on (eq.4) and (eq.5) defined in the ‘Materials and Methods’ section, the probability 

of survival over 24 months and the probability of no recurrence in 12 months was calculated, Fig. 6D and 

6E, right panel. This simple model was able to recapitulate the trend observed in the real data, Fig. 6D 

and 6E, left panel. The modularity range in these two plots was selected as 0.248 – 0.652 to match with 

the sample individual modularity values.  

 

Individual modularity showed significant potential as a predictor of patient survival or recurrence. As was 

the case for the group modularity observations, a high value of individual modularity was suggestive of 

poor prognosis, with values of M > 0.6 correlated to survival and non-recurrence probabilities less than 

0.4.  

 

 

 

Discussion 
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Metabolic reprogramming is an emerging hallmark of cancer [10, 11]. Both aerobic glycolysis and 

oxidative phosphorylation (OXPHOS) play important roles in orchestrating cancer metabolism [12-15, 17, 

18, 31]. Previously, Yu et al. developed the AMPK and HIF-1 signatures to quantify the activities of 

metabolism phenotypes in hepatocellular carcinoma (HCC) [19].  There was a visually apparentmodular 

pattern of gene expression due to the strong anti-correlation between AMPK and HIF-1 activity in HCC. 

In this work, we analyzed the gene expression pattern of metabolic genes in HCC in term of modularity 

and studied its correlation with metabolism phenotypes, tumor stages, metastatic potentials, and tumor 

recurrence.  

 

The analyses of modularity in different metabolism phenotypes of glycolysis, hybrid, or OXPHOS; 

different stages of stage I or stage II-IV; varying tumor metastatic potentials; and differing recurrence 

statuses consistently showed that a higher modularity of the AMPK and HIF-1 downstream gene network 

corresponded to worse overall survival results for HCC patients. For example, a group of samples 

characterized by high glycolytic activity showed significantly higher modularity than a group of samples 

characterized by high OXPHOS activity, and worse prognosis. The result is consistent with the 

experimental observation that hepatocarcinogenesis initiates with a switch of metabolism from OXPHOS 

to glycolysis, and glycolysis is maintained to facilitate the aggressive features of advanced HCCs [32, 33].  

Similarly, comparison of stage I patients to stage II-IV patients showed that the latter has a more modular 

expression of metabolic genes and worse survival prognosis. Additionally, patients with a higher 

metastatic potential had a more modular expression of metabolic genes and worse survival prognosis.  

Finally, those patients that recurred within a given time had a more modular expression of metabolic 

genes and worse survival prognosis that those that did not.  

 

One interesting phenomena is a non-monotonic relation between modularity and tumor progression as 

shown in Fig. 5B. Modularity increased first and then decreased. This result is similar to the trend 

observed in a study of acute myeloid leukemia [9]. We argue that at early stages of tumor progression, a 
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modular pattern of cancer-associated gene interactions is organized by tumor cells, so that they can 

counteract the host defense systems.  At later stages of tumor progression, cancer has overcome the host 

defenses, and a high value of modularity is no longer selected for. The results here suggest that the 

relation between modularity and tumor aggressiveness is mediated by tumor progression. For most of the 

patientl’s history, a higher modularity indicates higher risk. Only when tumor progression has reached a 

very late stage, may a lower modularity indicate higher risk. Therefore, an accurate interpretation of 

modularity should take progression stage into consideration.  

 

We further investigated the relation between modularity and recurrence time of recurred patients in three 

patient subsets: glycolysis phenotype, stage II-IV, and high eight-gene metastatic potential, see 

Supplementary Fig. S3. These groups were chosen as demarcations of stress. The glycolysis group had 37 

patients that recurred. After discarding 2 samples with the shortest recurrence time, the rest were 

distributed into 5 equal size groups. A similar procedure was taken for all groups in which the number of 

recurred patients was not divisible by 5. Again, group 1 was the longest from recurrence, and group 5 was 

the nearest. Survival curves for each group were also plotted. We find the correlation of greater 

modularity with worse prognosis for survival exists for the roughly ~60% (top 3 groups) of patients with 

the longest recurrence time in all cases. Interestingly, a reversal of this correlation occurs at around the 

same time for the different measures of stress: 9.1 months for the glycolysis group, 6.4 months for the 

stage II-IV group, and 7.9 months for the high metastatic potential group. These times are consistent with 

the reversal of the correlation at 8 months found among all recurred patients.  

 

Taken together, these results show that modularity is selected for under the stressful conditions of early to 

mid-progression. That is, more aggressive tumors in these early and mid-conditions, as judged by 

decreased host survival probability, have greater modularity of metabolic genes. These results confirm 

our previous hypothesis that more malignant tumors are usually characterized by a more modular 

expression pattern of cancer-associated genes [8, 9]. We predict that higher modularity increases the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/224998doi: bioRxiv preprint 

https://doi.org/10.1101/224998
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

fitness of tumors because metabolic networks are typically under increased stress in HCC tumor cells [34].  

Thus, tumors with a more modular metabolic gene network typically are more fit, and it is these tumors 

that are able to overcome the body’s defenses. Once the transition to imminent recurrence is achieved, the 

selection strength for modularity is no longer present, and the observed values of modularity decrease. 

 

To the best of our knowledge, this is the first effort to evaluate aggressiveness of HCC samples by 

evaluating expression patterns of metabolic genes in terms of modularity. Further work can extend the 

modularity concept to different types of tumors. At least two avenues for improvement of the present 

results may be possible. First, a different set of parameters used in calculating individual modularity 

might affect the predictive efficiency. We list in Supplementary Table S2 the parameters for calculating 

individual modularity using ITSPCA. Variation of these standard parameter values gave similar results, 

but with a weaker signal. We therefore believe that the chosen parameter set works well and keeps most 

of the signal. Future work could look into further quantifying the signal as a function of the parameter set 

to improve the predictive power of individual modularity. Second, the temporal expression profiles of the 

metabolic genes in HCC samples from individual patients may further power the personalized predictions 

for outcome.  

 

In summary, modular interactions between metabolic genes in HCC play a key role in HCC prognosis. 

Individual HCC patients with higher modularity have a higher risk of death and recurrence. These results 

for modularity may translate to a number of possible clinical applications: (i) prediction of patient 

survival and recurrence probabilities with individual modularity can enable the choice of appropriate 

therapies; (ii) key genes promoting HCC progression could be potentially identified, e.g. a hub node gene 

that strengthens intracommunity interactions and increases modularity is presumably an important cancer 

driver gene that helps facilitate tumor progression; and (iii) drug treatment efficacy could be evaluated by 

testing the ability of drugs to disrupt the modular interactions between cancer-associated genes. A novel 
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approach to drug design could target genes that significantly contribute to the modularity of the cancer-

associated gene network. 

 

Materials and Methods 

1. 371 primary HCC samples 

RNA-Seq data for 373 hepatocellular carcinoma (HCC) samples, which contain the mRNA expression of 

33 AMPK downstream genes and 23 HIF-1 downstream genes, were obtained from TCGA at cBioPortal. 

Among the 373 HCC samples, 371 primary tumor samples were used for subsequent analysis, and 2 

recurrent tumor samples were excluded. More details can be found in Supplementary Materials and 

Methods section 1.  

 

2. Calculation of Group Modularity 

Modularity of a given graph Aij was defined as  

 

𝑀𝐺 =
1

2𝑒
� � �𝐴𝑖𝑖 −

𝑎𝑖𝑎𝑖
2𝑒

�
𝑤𝑖𝑤ℎ𝑖𝑖 

𝑤ℎ𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚

 𝑎𝑎𝑚𝑎𝑖 𝑖,𝑖

                 (𝑒𝑒. 1) 

 

where Aij is 1 if there is an edge between nodes i and j and 0 otherwise, the value of ai = Σj Aij is the 

degree of node i, and e = ½ Σi ai is the total number of edges. This definition can be extended to unsigned 

weighted graphs, where Aij is the weight of the edge between nodes i and j and where Aij > 0. Here the 

subscript ‘G’ is used because this definition is adopted for calculation of group modularity. We applied 

Newman’s algorithm [21] to graph Aij to calculate modularity. This algorithm found the partition of 56 

genes into modules that maximized modularity 𝑀𝐺. This maximized modularity was used as the final 

modularity value for data analysis.  
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To calculate modularity of HCC samples grouped by metabolism phenotypes, tumor stages, metastatic 

potential, or recurrence status the RNA-seq data of each of the 56 AMPK and HIF-1 downstream genes 

the gene expression data were transformed by log2 and normalization, i.e. 

 

𝑥 →
𝑙𝑙𝑙2(𝑥 + 1) − 𝑙𝑙𝑙2(𝑥 + 1)���������������

𝜎(𝑙𝑙𝑙2(𝑥 + 1))
, 

 
 
where 𝑥 represents the expression of each gene, 𝑙𝑙𝑙2(𝑥 + 1)��������������� is the mean of the log2 transformed values 

across all patients’ expression of this gene, and 𝜎(𝑙𝑙𝑙2(𝑥 + 1)) is the standard deviation of the log2 

transformed values.  

 
 
The metabolic gene network for each group was defined by setting the 56 genes as the nodes and the 

Pearson correlation coefficient between genes as the link weights. The resulting network was represented 

by a 56*56 correlation matrix 𝐶. Since the above definition of modularity is for an unsigned graph, and 

since we regard negative correlations as weak links between genes, the whole matrix was shifted as 

𝐶′ = (𝐶 + 1) 2⁄ . We used the Newman algorithm to calculate the modularity of this matrix 𝐶′.  

 

To compare modularity between different patient groups, e.g. glycolysis versus OXPHOS, the 

bootstrapping method was used. This method takes the observed individual gene expression values as the 

most representative measure of the underlying distribution of expression values. That is, the distribution 

of expression values is taken as a sum over 𝛿 functions at the observed values.  Predictions are computed 

from samples taken from this estimated distribution. For example, for the glycolysis group of 75 patients, 

the gene expression correlation matrix was calculated by randomly taking expression values from the 75 

patients with replacement.  The modularity of this correlation matrix was computed as described above. 

This sampling process was repeated 250 times to obtain 250 modularity values for the glycolysis group. 
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Mean modularity and standard error were then obtained. This same procedure was used to compute 

modularity for each of the other groups.  

 

 

3. Calculation of Individual Modularity 

Typically, for each patient there is one expression value for each gene, and no correlation between genes 

based upon only a single patient’s data can be computed. We propose, therefore, to define the link 

between gene i and gene j of patient α as 

 

𝑙𝑖,𝑖⍺ = 𝑒𝑥𝑒�−�𝑋⍺,𝑖 − 𝑋⍺,𝑖�/𝜎�                 (𝑒𝑒. 2) 

 

where 𝑋⍺,𝑖  is the expression of gene i of patient ⍺, and 𝜎  is the standard deviation of �𝑋⍺,𝑖 − 𝑋⍺,𝑖� 

averaged across all pairs of genes and all patients, with 𝜎 = 57 887 in our case. This definition considers 

the link between gene i and gene j weak if the distance between them, i.e.�𝑋⍺,𝑖 − 𝑋⍺,𝑖�, is large. The 

scaling by 𝜎 ensures that �𝑋⍺,𝑖 − 𝑋⍺,𝑖�/𝜎 remains within a reasonable order of magnitude. 

 

Unlike the group modularity case, having only 56 expression values for each individual means the noise 

in the data has a greater impact on the calculated modularity values. Thus, a better way of filtering noise 

is needed. A standard approach is to reconstruct the data based only on cleaned leading eigenvectors. We 

utilized the iterative thresholding sparse PCA (ITSPCA) algorithm for this purpose [35] . The algorithm 

starts by keeping only the top eigenvectors. To separate signal and noise, such that signal is defined as 

above a threshold, a wavelet transformation is used (see Supplementary Materials and Methods section 2, 

Supplementary Fig. S1 and Supplementary Table S1). Data that were dense in real space became sparse in 

wavelet space, and a cutoff was then applied in wavelet space to eliminate the noise. The standard 

wavelet transformation algorithm requires that the number of entries be a power of two. Zero-padding 
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was applied to the input data matrix 𝑋  so that it became a 371*64 matrix, with the last 8 columns 

containing only zeros. The ITSPCA algorithm output the cleaned version of leading eigenvectors Pn  

(56* 𝑛  matrix), which can be used to reconstruct the raw data as  

 

𝑋′ = 𝑋𝑃𝑖𝑃𝑖𝑇                 (𝑒𝑒. 3) 

 

where X is the original raw data matrix, and X’ is the reconstructed matrix that has the same dimension of 

X. The cleaned data X’ should contain mostly signal and much less noise than X, and therefore X’ was 

used in calculation of links (𝑒𝑒. 2). Note that, unlike the group modularity calculation, 𝑋 is based on the 

raw data without taking a logarithm. This is because we believe that noise had already been filtered out by 

ITSPCA, and taking the logarithm would only weaken the signal. See Supplementary Table S2 for chosen 

input parameters of the ITSPCA algorithm. 

 

After determining X’, we computed the individual gene network linkage based on (𝑒𝑒. 2). We then 

applied the binarization step where the top 5.6% edges (178 edges) were set to 1 and the rest set to zero. 

According to our previous work [30], this binarization step increases the signal-to-noise ratio without 

discarding important information. The Newman algorithm was used to compute modularity for each 

patient, 𝑀𝑖. We calculated the mean modularity of each patient group and the corresponding standard 

deviation of the mean to produce similar bar plots as in the group-level case. 

 

4. Definition of probability of surviving longer than 24 months based on individual modularity 

 

𝑒𝑖𝑚𝑎𝑠𝑖𝑠𝑎𝑚,24(𝑀𝑖) =  
𝑁𝑖𝑚𝑎𝑠𝑖𝑠𝑚𝑚,24𝑓𝑖𝑚𝑎𝑠𝑖𝑠𝑚𝑚,24(𝑀𝑖)

𝑁𝑖𝑚𝑎𝑠𝑖𝑠𝑚𝑚,24𝑓𝑖𝑚𝑎𝑠𝑖𝑠𝑚𝑚,24(𝑀𝑖) + 𝑁𝑚𝑚𝑑𝑚𝑎𝑖𝑚𝑚,24𝑓𝑚𝑚𝑑𝑚𝑎𝑖𝑚𝑚,24(𝑀𝑖)
   (𝑒𝑒. 4) 
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where 𝑁𝑖𝑚𝑎𝑠𝑖𝑠𝑚𝑚,24 and 𝑁𝑚𝑚𝑑𝑚𝑎𝑖𝑚𝑚,24 are the numbers of patients that lived longer than 24 months and 

deceased within 24 months, respectively.  Here 𝑓𝑖𝑚𝑎𝑠𝑖𝑠𝑚𝑚,24 and 𝑓𝑚𝑚𝑑𝑚𝑎𝑖𝑚𝑚,24 are the probability density 

functions of the modularity distribution of survived and deceased group, respectively. Given modularity 

𝑀𝑖, we calculated 𝑒𝑖𝑚𝑎𝑠𝑖𝑠𝑎𝑚,24 and thus obtained the probability curve of surviving more than 24 months.  

 

5. Definition of probability of no recurrence in 12 months based on individual modularity 

𝑒𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12(𝑀𝑖)

=  
𝑁𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12𝑓𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12(𝑀𝑖)

𝑁𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12𝑓𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12(𝑀𝑖) + 𝑁𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12𝑓𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12(𝑀𝑖)
   (𝑒𝑒. 5) 

where 𝑁𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12  and 𝑁𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12  are the numbers of patients that remained disease free for 

more than 12 months and those that recurred within 12 months, respectively.  Here 𝑓𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12 and 

𝑓𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12  are the probability density functions of the modularity distribution of disease-free and 

recurred group, respectively. Given modularity 𝑀𝑖, we calculated 𝑒𝑖𝑚 𝑎𝑚𝑑𝑚𝑎𝑎𝑚𝑖𝑑𝑚,12 and thus obtained the 

probability curve of no recurrence within 12 months. 
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Figure Legends 

Figure 1. Modular structure of the metabolic gene network. A, Evaluation of the AMPK and HIF-1 

activities in HCC patients' samples (n = 371, r=-0.59, p<0.0001). Each point represents the AMPK and 

HIF-1 activities of one sample. B, Correlation matrix of the 33 AMPK downstream genes and 23 HIF-1 

downstream genes. C, Rearranged correlation matrix calculated from the complete dataset of 371 HCC 

patients by the Newman algorithm. The Newman algorithm obtained a partition into two modules. 

Modules are labeled by black dashed lines. 

 

Figure 2. Modularity and metabolism phenotypes. A, The 371 patients' samples are clustered into three 

metabolism phenotypes - OXPHOS (blue), hybrid (magenta) and glycolysis (red); B, Group modularity of 

three metabolism phenotypes; C, Kaplan-Meier (KM) overall survival curves.  

 

Figure 3. Modularity and tumor stages. A, Bar plot of stage I and stage II-IV groups’ modularity values. 

B, Kaplan-Meier (KM) overall survival curves. 

 

Figure 4. Modularity and metastatic potential. Left panel: Group modularity of HCC samples with low 

and high metastatic potential evaluated by eight-gene signature (A) and SPP1 (B), respectively. Right 

panel: Kaplan-Meier (KM) overall survival curves of low and high metastatic potential groups on eight-

gene signature (A) and SPP1 (B), respectively. 

 

Figure 5. Modularity and tumor recurrence. A, Modularity (left panels) and Kaplan-Meier (KM) overall 

survival curves (right panels) of patients that were stratified into recurrence and no recurrence within 12, 

24 and 36 months groups. B, Non-monotonic change of modularity with tumor recurrence time among 

patients that recurred. Group 1 is the longest from recurrence, and group 5 is the nearest. C, Kaplan-Meier 

(KM) overall survival curves of each group. 
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Figure 6. Individual modularity. A-C, Individual modularity results show the same trend of modularity 

with metabolism types, stages and metastatic potential. Pearson correlation between individual modularity 

and eight-gene metastatic potential r=0.46, p<1e-20. D, Left: probability of survival longer than 24 

months derived from data. Middle: Gaussian distribution of modularity values for the two groups. Right: 

same probability based on Gaussian model. E, Left: probability of no recurrence in 12 months derived 

from data. Middle: Gaussian distribution of modularity values for the two groups. Right: same probability 

based on Gaussian model. 
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Figure 4 
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Figure 5 
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Figure 6 
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Modularity of the metabolic gene network as a prognostic biomarker for hepatocellular carcinoma 
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Supplementary Tables 

 

 

 

 

Table S1. DWT frequency domain of an example of signal 𝑥[𝑛] with a size of 64 under a 3-level 
decomposition. Frequency range of the signal is 0 to 𝑓. 

Level Frequency range Size of sample 

1 𝑓/2 to 𝑓 32 

2 𝑓/4 to 𝑓/2 16 

3 𝑓/8 to 𝑓/4 8 

3 0 to 𝑓/8 8 
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Table S2. Input parameters of the ITSPCA algorithm. 

Parameter Value 

Number of significant leading eigenvectors n 10 

Wavelet basis to be used Symmlet 

Coarsest level in wavelet transform L 4 

Parameter describing the support length and vanishing 

moments of the selected wavelet basis, par 

8 

Adjustable constant in the diagonal thresholding step, ⍺ 3 

Adjustable constant in the iterative thresholding steps, β, 

which is directly related to level sparsity in cleaned 

eigenvectors. 

1.5 

Thresholding rule, itthres. hard 
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