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Abstract 
The standard genetic code is well known to be optimized for minimizing the phenotypic 
effects of single nucleotide substitutions, a property that was likely selected for during 
the emergence of a universal code. Given the fitness advantage afforded by high 
standing genetic diversity in a population in a dynamic environment, it is possible that 
selection to explore a large fraction of the space of functional proteins also occurred. To 
determine whether selection for such a property played a role during the emergence of 
the nearly universal genetic code, we investigated the number of functional variants of 
the Escherichia coli PhoQ protein explored at different time scales under translation 
using different genetic codes. We found that the standard genetic code is highly optimal 
for exploring a large fraction of the space of functional PhoQ variants at intermediate 
time scales as compared to random codes. Environmental changes, in response to 
which genetic diversity in a population provides a fitness advantage, are likely to have 
occurred at these intermediate time scales. Our results indicate that the ability of the 
standard code to explore a large fraction of the space of functional sequence variants 
arises from a balance between robustness and flexibility and is largely independent of 
the property of the standard code to minimize the phenotypic effects of mutations. We 
propose that selection to explore a large fraction of the functional sequence space while 
minimizing the phenotypic effects of mutations contributed towards the emergence of 
the standard code as the universal genetic code. 
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Introduction 
The genetic code enumerates the rules for the translation of messenger RNAs into 
proteins, the mapping from each of the 61 three-nucleotide codons to one of the 20 
amino acids (Nirenberg et al. 1963; Woese 1967). The remaining 3 codons signal the 
end of the protein coding region. The genetic code is one of the universal features of 
life, with only minor variations across the three domains (Knight et al. 2001; Alberts et 
al. 2008). The assignment of amino acids to different codons is not random. Even as the 
genetic code was being deciphered in the 1960s, it was recognized that codons differing 
by a single base are either assigned the same amino acid or amino acids that are 
biochemically similar in the standard genetic code, as compared to random genetic 
codes (Woese 1965; Epstein 1966; Goldberg and Wittes 1966; Alff-Steinberger 1969). 
Recent studies utilizing computer simulations have lent quantitative support to this 
notion (Haig and Hurst 1991; Freeland and Hurst 1998; Butler et al. 2009). The 
organization of codon-amino acid assignments in the standard genetic code may have 
evolved to minimize, on average, the phenotypic effect of genetic mutations, 
transcription errors, and mistranslations (Cullmann and Labouygues 1983). Others have 
suggested that the genetic code co-evolved with pathways for amino acid synthesis, 
with amino acids having closer precursor-product relationships in biosynthetic pathways 
being coded by similar codons (Wong 1975; Taylor and Coates 1989; Freeland et al. 
2000). Another view is that the codon-amino acid assignment is an outcome of the 
physiochemical affinity between amino acids and cognate codons (Pelc 1965; Dunnill 
1966; Pelc and Welton 1966). Experimental and statistical evidence in favor of this last 
theory has, however, been inconclusive (Ellington et al. 2000). 

There are two prevalent theories of the mechanism via which a universal genetic code 
may have evolved (Koonin and Novozhilov 2009). The first theory suggests that the 
universality of the genetic code is an outcome of the fact that all present-day life forms 
evolved from a universal common ancestor. After the emergence of translation, the 
genetic code fixed in the population of a single niche and froze. It was only after the 
code froze that life forms diversified from the single niche initially occupied (Crick 1968; 
Wong 1976; Harris et al. 2003). This frozen code was then inherited unchanged during 
the subsequent spread and diversification of life forms. Another possibility in this vertical 
descent model of genetic code evolution is that the genetic code froze after life had 
diversified. As life forms spread, organisms with distinctive characteristics emerged, 
some even lacking translation. Those organisms with translation machineries would 
have evolved different genetic codes. However, over an extended period of time, all 
codes except the standard genetic code were lost, either due to neutral drift or due to 
selection for optimality properties of the standard genetic code. 

In contrast to the vertical descent model described above is the view that a universal 
and optimal genetic code emerged from communal evolution amidst extensive 
horizontal gene transfer during the early stages of life (Vetsigian et al. 2006; Goldenfeld 
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and Woese 2007). With organisms utilizing different genetic codes in multiple 
communities competing for a single niche, the community wherein members utilize the 
same genetic code or compatible genetic codes is more likely to succeed. This is 
because a community-wide code or a set of compatible codes will allow for efficient 
sharing of newly evolved beneficial proteins among different individuals in the 
community via horizontal gene transfer, thereby allowing the organisms in the 
community access to a larger innovation pool. Further, robustness to mistranslations is 
likely to be selected for in such a community-wide code due to the likely inefficient 
translation machineries in these ancient life forms. Simulations have suggested that 
communal evolution amidst extensive horizontal gene transfer allows for the evolution of 
a code that is more optimized for minimizing the phenotypic effect of translation errors. 
In the absence of horizontal gene transfer, conversely, evolving genetic codes tend to 
get stuck in local minima, ending up less optimal for minimizing the phenotypic effect of 
translation errors (Vetsigian et al. 2006). 

In both mechanisms of emergence of a universal code described above, selection acts 
on the phenotypic features of the organism, and not directly on the system of codon-
amino acid assignments. Mutations in the genomic DNA sequence, or the RNA 
sequence in the case of some viruses, are inherited by the progeny during replication. 
Since proteins are the molecules that carry out a majority of the cellular functions, it has 
been argued that they largely determine the phenotype of the organism (Griffiths et al. 
2000). Given that the genetic code governs the translation of the transcript of the 
genetic material into proteins, it plays a fundamental role in steering molecular evolution 
(Gonnet et al. 1992). Here, we probe this dependence of molecular evolution on the 
genetic code. 

Life forms have evolved over time amidst changing environmental conditions. Different 
environmental conditions require different phenotypic responses for an organism to 
survive. Considering the large, yet finite, space of possible amino acid sequences, a 
species that can access a greater portion of the sequence space is more likely to 
encounter a protein capable of forging a fitting response to a new environmental 
condition. However, only those proteins encountered during the exploration of the 
sequence space that are functional can contribute towards the survival of the organism. 
Thus, paths through the sequence space should be highly biased towards those 
containing functional protein variants. Given the evolutionary advantage of exploring a 
larger fraction of the space of protein sequences, and the role of the genetic code in 
guiding molecular evolution, the standard genetic code may have evolved under a 
selection pressure to maximize the fraction of the functional sequence space explored. 
We test this hypothesis using the landscape of functional variants of the PhoQ protein. 

Previous studies have suggested that the organization of the standard genetic code 
constrains the exploration of the space of possible amino acid sequences (Maynard 
Smith 1970). This is because a single nucleotide change allows access to only 6 of the 
19 possible amino acid substitutions on average and silent mutations are abundant 
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within the standard genetic code. Maeshiro and Kimura suggested that the standard 
genetic code allows for a balance of robustness and changeability via a balance 
between the probabilities of synonymous and non-synonymous changes in amino acids 
under single nucleotide substitutions (Maeshiro and Kimura 1998). Judson and Haydon 
found that codes computationally evolved under selection for characteristics such as 
higher amino acid connectedness and shorter path length between different amino 
acids were closer to the standard genetic code (Judson and Haydon 1999). Few studies 
have explored the dependence of the abundance of adaptive mutations on the genetic 
code. Zhu and Freeland, using a population genetic code model, found that the 
standard genetic code has properties that enhance the efficacy of adaptive sequence 
evolution (Zhu and Freeland 2006). Firnberg and Ostermeier showed that the standard 
genetic code enriches for adaptive mutations in the antibiotic resistance gene TEM-1 𝛽-
lactamase (Firnberg and Ostermeier 2013). 

The aim of the present study was to characterize how the genetic code affects the 
exploration of the space of functional amino acid sequences. We considered the 
exploration of functional variants of the Escherichia coli protein kinase PhoQ under 
translation using different genetic codes. The standard genetic code explored a larger 
fraction of the functional protein sequence space at small and intermediate time scales, 
compared to random genetic codes with the same degeneracy as the standard code 
and to random genetic codes with degeneracies different from that of the standard 
code. Upon considering longer time scales, the fraction of random codes of both types 
that allowed for the exploration of more functional PhoQ variants than the standard code 
increased. However, less than 5% of the random genetic codes with the same 
degeneracy as the standard code allowed for the exploration of more functional PhoQ 
variants than the standard code even at these extended time scales. We also 
investigated the dependence of the fraction of the functional sequence space explored 
on the starting nucleotide sequence. Finally, we calculated the correlations of the 
fraction of the sequence space explored under translation using different genetic codes 
with different quantitative characteristic features of the genetic code. 

Results 
We generated random genetic codes using two different approaches, one that 
preserved the degeneracy of the standard genetic code (𝑇𝐷𝐷 codes) and one that did 
not preserve the degeneracy (𝑇𝐷𝐷𝐷 codes). The stop codons were left unchanged in 
both the approaches. Podgornaia and Laub probed the PhoP binding ability of all 
160,000 possible variants of the PhoQ protein with amino acid substitutions at the 
positions 284, 285, 288, and 289 (Podgornaia and Laub 2015). Only 1659 variants of 
PhoQ with substitutions at these positions were functional. Starting from a nucleotide 
sequence coding for the original PhoQ amino acid sequence in E. coli, hereafter 
referred to as the wild type PhoQ variant, we introduced single nucleotide substitutions 
in the 12-nucleotide long sequence. Since multi-nucleotide substitutions are rare 
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(Terekhanova et al. 2013), we do not consider them here. After each mutation, the 
nucleotide sequence was translated into the corresponding amino acid sequence using 
the code under consideration. If the new protein was functional, the mutated nucleotide 
sequence became the starting sequence in the next simulation step. Otherwise, the 
non-mutated nucleotide sequence was carried forward to the next step. Simulations 
were carried out for 100, 1000, 10000, 100000, and 1000000 steps. 

The standard genetic allows for the exploration of more functional variants of 
PhoQ as compared to random codes. 

Fig. 1 shows the distribution of the number of functional variants of the PhoQ protein 
explored under translation using different random genetic codes and using the standard 
genetic code for different numbers of simulation steps. Under translation using the 
standard genetic code, more unique functional variants of PhoQ were explored via 
single nucleotide substitutions as compared to the average number visited under 
translation using randomly generated codes of both types, 𝑇𝐷𝐷 and 𝑇𝐷𝐷𝐷, for up to 
100000 simulation steps. It is only at 1 million simulation steps the the average number 
of functional PhoQ variants visited under translation using 10000 type 𝑇𝐷𝐷𝐷 codes 
surpassed the number explored under translation using the standard genetic code. The 
mean number for type 𝑇𝐷𝐷 codes, however, remained small as compared to the 
standard code even at 1 million simulation steps, fig 2 (A). Among codes of type 𝑇𝐷𝐷, 
less than 5% allowed the exploration of more functional variants than the standard code 
for up to 1 million simulation steps. The fraction was lower at lower numbers of 
simulation steps as is evident from fig. 2 (B). Among codes of type 𝑇𝐷𝐷𝐷, less than 7% 
permitted exploration of more functional PhoQ variants that the standard code with 
number of simulation steps up to 10000. The fraction was larger for higher numbers of 
simulation steps, reaching 87.44% at 1 million simulation steps. The results in fig. 2 (B) 
indicate that the standard genetic code is more optimized for exploring a large fraction 
of the space of functional PhoQ variants at intermediate time scales than at very short 
or long time scales. The fraction of random codes of both types that explored a larger 
fraction of the PhoQ functional sequence space as compared to the standard genetic 
code was lower at 1000 and 100000 simulation steps than at 100, 100000, or 1 million 
simulation steps, fig 2 (B). 

Number of functional PhoQ variants explored varies only slightly for different 
degenerate starting nucleotide sequences. 

Since there are only 20 amino acids and 3 stop codons with 64 possible three-
nucleotide codons, all genetic codes are degenerate, i.e. an amino acid may be 
encoded by more than one codon. Therefore, the same amino acid sequence can be 
encoded by multiple distinct nucleotide sequences. We investigated how the number of 
functional PhoQ variants explored depends on the nucleotide sequence coding for the 
wild type PhoQ variant from which the simulation is started. The results are shown in fig. 
3. For the standard genetic code, the standard deviation of the number of proteins 
explored over all 384 possible starting nucleotide sequences was only 3% and 2% of 
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the mean for 100 and 1000 simulation steps respectively. The average standard 
deviation as a fraction of the mean was 4.57% and 3.75% for type 𝑇𝐷𝐷 codes, and 
12.31% and 12.08% for type 𝑇𝐷𝐷𝐷 codes, for 100 and 1000 simulation steps, 
respectively. The distribution of standard deviations as fractions of means was wider for 
type 𝑇𝐷𝐷𝐷 codes as compared to type 𝑇𝐷𝐷 codes. 

The space of functional nucleotide sequences is modular for all genetic codes. 

We next investigated the structure of the space of functional nucleotide sequences 
under different genetic codes. For each genetic code, we constructed a network with 
nodes as the nucleotide sequences functional under the given code, and edges 
between sequences differing by one nucleotide substitution. We calculated the Newman 
modularity (Newman 2004; Newman and Girvan 2004) of this network using the 
Louvain algorithm (Blondel et al. 2008) for the standard code, for 100 type 𝑇𝐷𝐷 codes, 
and for 100 type 𝑇𝐷𝐷𝐷 codes. For this calculation, we used the computer code available 
from http://www.ludowaltman.nl/slm/. As shown in fig. 4, the modularity of the space of 
functional nucleotide sequences is very high for the standard genetic code and for the 
randomly generated codes (> 0.85 in all cases). Further, we observed a larger variation 
in modularity values for type 𝑇𝐷𝐷𝐷 codes as compared to type 𝑇𝐷𝐷 codes. 

Codes that better preserve the chemical properties of amino acids under point 
mutations explore more functional PhoQ variants. 

To determine the factors with which the numbers of functional PhoQ variants explored 
are correlated, we calculated different characteristic measures for the standard genetic 
code and for the random genetic codes. These measures can be classified into two 
categories, ones that characterize the effects of single nucleotide substitutions on 
physio-chemical properties of the amino acids encoded, and ones that quantify different 
structural features of codon-amino acid assignments in different genetic codes. We 
discuss measures of the first type here. For each genetic code, we calculated the 
average over all single nucleotide substitutions in all codons, except the stop codons, of 
the squared change in different physical and chemical properties of the amino acids 
encoded: polar requirement (C R Woese et al. 1966), hydrophilicity (Weber and Lacey 
1978), isoelectric point (Alff-Steinberger 1969), and amino acid volume (Zamyatnin 
1972). 

We found weak, yet statistically significant (p-value < 10−4) negative correlations 
between the number of functional PhoQ variants explored and the mean squared 
change in polar requirement, hydrophilicity, and isoelectric point for both type 𝑇𝐷𝐷 and 
type 𝑇𝐷𝐷𝐷 codes, at all numbers of simulation steps, fig. 5 and fig. 6. The correlation 
between the number of functional PhoQ variants explored and the mean squared 
change in amino acid volume was further weak, with statistical insignificance at certain 
numbers of simulation steps, fig. 5 and fig. 6. 

To further probe the relation between the mean squared change in polar requirement for 
genetic codes and the number of functional PhoQ variants explored, we compared the 
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mean squared changes in polar requirement for the 100 type 𝑇𝐷𝐷 codes  and the 100 
type 𝑇𝐷𝐷𝐷 codes that allowed for the exploration of most PhoQ variants to the mean 
squared changes in polar requirement for all type 𝑇𝐷𝐷 and type 𝑇𝐷𝐷𝐷 codes, fig. 7 (A) 
and (B). We observed that the mean squared changes in polar requirement for the top 
performing type 𝑇𝐷𝐷 and type 𝑇𝐷𝐷𝐷 codes did not differ significantly from other random 
codes. We also considered the 100 type 𝑇𝐷𝐷 and the 100 type 𝑇𝐷𝐷𝐷 codes with least 
values of mean squared changes in polar requirement and found that the numbers of 
functional PhoQ variants explored under translation using these codes did not differ 
significantly from the numbers explored under translation using all random codes of 
each type, fig. 7 (C) and (D). 

Codes with a larger number of non-synonymous point mutations explore more 
functional PhoQ variants. 

We evaluated quantitative measures of different structural features of codon-amino acid 
assignments in randomly generated genetic codes and investigated their correlation 
with the number of functional PhoQ variants explored under translation using the 
different codes. We used the measures defined previously by Judson and Haydon 
(Judson and Haydon 1999): code fragility, defined as the number of codons with eight 
or nine non-synonymous point mutations out of the nine possible point mutations; code 
mutability, defined as the average number of non-synonymous point mutations per 
codon; and the total number of synonymous point mutations. Scatter plots of these 
measures versus the number of functional PhoQ variants explored under translation 
using type 𝑇𝐷𝐷𝐷 codes at different numbers of simulation steps are shown in fig. 7. Note 
that all type 𝑇𝐷𝐷 have the same value as the standard genetic code for the measures 
considered in this section. 

We observed that code fragility and code mutability were positively correlated with the 
number of functional PhoQ variants visited for different numbers of simulation steps, 
with p-value < 10−4 in each case. The total number of synonymous mutations, which 
encodes information opposite to that encoded by code fragility and code mutability, was 
negatively correlated, p-value < 10−4, with the number of functional PhoQ variants 
explored under translation using type 𝑇𝐷𝐷𝐷 codes for different numbers of simulation 
steps. 

We also calculated the code changeability (Maeshiro and Kimura 1998) for different 
type 𝑇𝐷𝐷𝐷 codes. Changeability is defined as the sum, over all pairs, of the probabilities 
of transitions between different amino acids, excluding paths involving stop codons. The 
number of functional PhoQ variants explored under translation using type 𝑇𝐷𝐷𝐷 codes 
was negatively correlated with code changeability, p-value < 10−4, at numbers of 
simulation steps greater than 100. 

Preservation of chemical properties of amino acids under point mutations 
facilitates exploration of the functional PhoQ sequence space at intermediate 
time scales. 
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We calculated, for each number of simulation steps, the mean squared change in amino 
acid polar requirement, hydrophilicity, isoelectric point, and volume due to point 
mutations under translation using those type 𝑇𝐷𝐷 and type 𝑇𝐷𝐷𝐷 codes that explored 
more functional PhoQ variants as compared to the standard genetic code at the given 
number of simulation steps. The results are shown in fig. 8. The mean squared change 
in these physio-chemical properties of amino acids due to point mutations is lower for 
codes that explored more functional PhoQ variants than the standard genetic code for 
1000 and 10000 simulation steps as compared to the codes that explored more 
functional PhoQ variants than the standard genetic code for 100, 100000, or 1000000 
simulation steps. These results indicate that preservation of chemical properties of 
amino acids under point mutations promotes the exploration of functional PhoQ variants 
at intermediate time scales while contributing little towards exploration of functional 
PhoQ variants at very short time scales i.e. 100 simulation steps, or at very long time 
scales i.e. 100000 and 1000000 simulation steps. 

The deviant genetic codes in different species explore more functional PhoQ 
variants as compared to the standard genetic code. 

Maeshiro and Kimura (Maeshiro and Kimura 1998) proposed that the reassignment of 
certain codons in the deviant genetic codes of some species such as Candida spp., 
Mycoplasma spp., Euplotes spp., and Blepharisma spp. could ease the transitions 
between amino acids with different polarities, and increase chances of recovery from 
nonsense mutations by decreasing the number of stop codons, thereby allowing for 
greater alterability of the phenotypes. Postulating that these properties will facilitate the 
exploration of the space of functional PhoQ variants, we calculated the number of 
functional PhoQ variants explored under translation using these deviant genetic codes 
at different numbers of simulations steps and compared the results to the number of 
functional PhoQ variants explored under translation using the standard genetic code. 
The results are shown in fig. 8 and in table 1. For numbers of simulation steps greater 
than 1000, translation using deviant genetic codes in Candida spp., Euplotes spp., and 
Blepharisma spp. allowed for the exploration of a significantly higher (two-sample t-test 
p-value < 0.01) fraction of the space of functional PhoQ variants as compared to 
translation using the standard genetic code. Differences from the standard genetic code 
are not significant at 100 and 1000 simulation steps for the deviant codes in these 
species. Under translation using the deviant genetic code in Mycoplasma spp., a 
significantly higher fraction of the PhoQ sequence space as compared to translation 
using the standard code (two-sample t-test p-value < 0.05) is explored only at 100000 
and 1000000 simulation steps. For each code and each number of simulation steps, 
100 simulations were carried out and the results used to calculate the p-values. 

Discussion 
Our results indicate that the organization of codon-amino acid assignments in the 
standard genetic code allows for the exploration of a greater fraction of the space of 
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functional variants of the Escherichia coli protein kinase PhoQ via single nucleotide 
substitutions, as compared to most randomly generated codes, particularly at 
intermediate time scales. A role of selection for flexibility in the evolution of the standard 
genetic code was first proposed by Maeshiro and Kimura (Maeshiro and Kimura 1998) 
and backed up soon thereafter by Judson and Haydon (Judson and Haydon 1999). 
Firnberg and Ostermeier showed for a subset of the functional variants of the antibiotic 
resistance gene TEM-1 𝛽-lactamase that there is enrichment for adaptive mutations 
under translation using the standard genetic code (Firnberg and Ostermeier 2013; 
Firnberg et al. 2014). Our results represent the first direct confirmation of Maeshiro and 
Kimura’s hypothesis for the space of all possible variants of an amino acid sequence. 

Both with randomly generated codes and the standard code, the space of functional 
nucleotide sequences is partitioned into clusters of sequences with dense connections 
between nucleotide sequences in the same cluster and sparse connections between 
sequences in different clusters. This modular structure of the functional nucleotide 
sequence space for all genetic codes arises since all genetic codes map 61 codons to 
20 amino acids and must therefore be degenerate. Given the small separation between 
degenerate codons in the standard code and in type 𝑇𝐷𝐷 codes, the probability that a 
single nucleotide substitution will change the encoded amino acid is low. Further, amino 
acid sequences that are closer to a functional sequence are more likely to be functional 
as compared to the sequences that are far away from it. This is since protein 
functionality derives from the physio-chemical properties of amino acids. Thus, 
substitution of an amino acid with another amino acid having similar properties is less 
likely to alter the functionality of the amino acid sequence. This characteristic results in 
a modular structure of the functional nucleotide sequence space, even for type 𝑇𝐷𝐷𝐷 
codes where degenerate codons may be separated by a larger distance. 

The modular structure of the functional nucleotide sequence space is responsible for 
the comparatively small variation in the number of functional PhoQ variants visited on 
starting the simulation from different nucleotide sequences coding for the wild type 
PhoQ amino acid sequence. For the standard code and for type 𝑇𝐷𝐷 codes, all 
nucleotide sequences coding for the wild type PhoQ are likely to lie within the same 
cluster, given the small distances between degenerate codons in these codes. 
Degenerate codons in these codes differ by 1.3 nucleotides on average. Since our 
simulation is a random walk on the network of functional nucleotide sequences, given 
the highly modular nature of the network, simulations starting at nodes within the same 
cluster are likely to explore similar numbers of nodes. For type 𝑇𝐷𝐷𝐷 codes, degenerate 
codons differ by 2.25 ± 0.07 nucleotides (mean ± standard deviation). Thus, different 
nucleotide sequences coding for the wild type PhoQ are less likely to be located within 
the same cluster, resulting in a larger variation and a wider distribution of variations in 
the number of functional PhoQ sequences visited as compared to type 𝑇𝐷𝐷 codes on 
starting the simulation from different degenerate nucleotide sequences. 
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The property of the standard genetic code to allow for the exploration of a large fraction 
of the space of functional nucleotide sequence variants is not a direct consequence of 
the property of the code to minimize changes in different physio-chemical properties of 
the encoded amino acids under point mutations, a property that has been demonstrated 
in previous studies (Alff-Steinberger 1969; Zamyatnin 1972; Wolfenden et al. 1979; Haig 
and Hurst 1991; Freeland and Hurst 1998). The fact that the former property does not 
directly lead to the latter is evident from the weaker optimization of the standard genetic 
code for exploration of the space of functional PhoQ variants as compared to its 
optimization for minimizing the changes in physio-chemical properties of amino acids 
under point mutations. None of the 10000 type 𝑇𝐷𝐷 or type 𝑇𝐷𝐷𝐷 codes exhibited a 
smaller mean squared change in amino acid polar requirement under single nucleotide 
substitutions than the standard code. The 100 type 𝑇𝐷𝐷 codes and the 100 type 𝑇𝐷𝐷𝐷 
codes that allowed for the exploration of highest numbers of functional PhoQ variants 
did not exhibit significantly lower values of the mean squared change in polar 
requirement as compared all random codes. The 100 type 𝑇𝐷𝐷 codes and the 100 type 
𝑇𝐷𝐷𝐷 codes with least values of mean squared changes in polar requirement did not 
allow for the exploration of significantly higher numbers of functional PhoQ variants as 
compared to all random codes. Further, while all type 𝑇𝐷𝐷 codes allowed for the same 
number of synonymous mutations as the standard code, only a few of these codes 
allowed for the exploration of a larger fraction of the space of functional PhoQ variants 
than the standard code. None of the type 𝑇𝐷𝐷𝐷 codes allowed for more synonymous 
mutations than the standard code, but a greater number of such codes allowed for the 
exploration of a greater fraction of the space of functional PhoQ variants as compared 
to the standard code. Taken together, these observations indicate that selection for 
exploring a large fraction of the space of functional nucleotide sequences is largely 
independent of the different selection pressures postulated before. In fact, selection for 
a code that allows for the exploration of a larger fraction of the space of functional 
protein variants as compared to the standard genetic code may have contributed 
towards the emergence of codon re-assignments in deviant genetic codes seen in 
Candida spp., Mycoplasma spp., Euplotes spp., and Blepharisma spp. 

The correlations of the number of functional PhoQ variants explored with different 
characteristic measures of the genetic codes indicate that a balance between 
robustness and flexibility is needed for better exploration of the space of functional 
nucleotide sequences (Maeshiro and Kimura 1998). While genetic codes that are 
conservative for changes in polar requirement, hydrophilicity, and isoelectric point of 
amino acids encoded allowed for visiting more functional PhoQ variants, the number of 
functional PhoQ variants was greater for genetic codes allowing for smaller number of 
synonymous mutations, and for codes with higher fragility and mutability. Such a 
combination of properties allows for visiting, via point mutations, a greater number of 
nucleotide sequences while restricting the sequence of PhoQ mutants visited to 
functional PhoQ mutants, thereby allowing for the exploration of a larger fraction of the 
space of functional PhoQ variants. Further, code changeability, defined as the sum of 
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probabilities of transitions between all pairs of amino acids, was negatively correlated 
with the number of functional PhoQ variants explored for type 𝑇𝐷𝐷𝐷 codes. This result 
indicates that frequent transitions between different amino acids are not sufficient for 
exploring a larger fraction of the functional nucleotide sequence space. In fact, such 
frequent transitions may hamper functional nucleotide sequence space exploration, 
unless constrained. We have shown that the standard genetic code embodies an 
evolutionary advantageous balance of robustness and changeability, leading to the 
exploration of a large fraction of the space of functional protein variants. A similar 
postulate was previously put forward by Firnberg and Ostermeier in the context of TEM-
1 𝛽-lactamase (Firnberg and Ostermeier 2013). 

An organization of codon-amino acid assignments in the genetic code that allows for the 
exploration of a larger fraction of the space of functional nucleotide sequences via point 
mutations is unlikely to provide any evolutionary advantage to an individual. Yet, 
selection for such a property need not invoke a teleological view of evolution. In the 
vertical descent model of emergence of a universal genetic code (Crick 1968; Wong 
1976; Harris et al. 2003), exploration of a larger fraction of the functional nucleotide 
sequence space will allow the population descended from an individual to access a 
much larger innovation pool of functional sequences. Thus, such a genetic code will 
provide a fitness advantage to the population of individuals, particularly amidst changing 
environmental conditions, and can therefore be selected for. Along similar lines, in the 
competition between innovation pools model of emergence of a universal genetic code 
(Vetsigian et al. 2006; Goldenfeld and Woese 2007), a community with a genetic code 
that allows for the exploration of a larger fraction of the space of functional nucleotide 
sequences will have access to larger innovation pool. This property will provide a fitness 
advantage to the individuals in the community, and such a community is more likely to 
drive out other communities from a niche, allowing for positive selection for the property 
to explore a larger fraction of the space of functional nucleotide sequences during the 
emergence of a universal genetic code. 

As described above, the property of a genetic code to allow for the exploration of a 
greater number of functional nucleotide sequences via single nucleotide substitutions 
affords greater standing diversity in the population. Diversity in the population will result 
in a fitness advantage under changing environmental conditions. Environment changes 
are more likely to occur at intermediate time scales as compared to very short or very 
long time scales. As shown in the Materials and Methods section, each simulation step 
roughly corresponds to 8.6 × 103/𝑁𝑒 years where 𝑁𝑒 is the effective population size. For 
𝑁𝑒 = 106, 10000 simulation steps will correspond to a period of around 100 years, an 
approximate time scale for environmental changes. Our results indicate that the 
standard genetic code is more optimized for exploring a larger fraction of the functional 
nucleotide sequence space at these intermediate time scales than at very short or very 
long time scales. Further, the preservation of chemical properties of amino acids under 
single nucleotide substitutions for which the standard genetic code is well-known to be 
optimized aids exploration of more functional nucleotide sequences at such 
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intermediate time scales. Thus, the organization of codon-amino acid assignments in 
the standard genetic code not only helps minimize the phenotypic effects of mutations 
and translation errors, but also allows for greater standing genetic diversity in the 
population at the intermediate time scales of typical environment changes. Together, 
these benefits afforded by the standard genetic code may have contributed towards its 
emergence as the universal genetic code. 

The present study only considers the space of functional variants of the PhoQ protein 
with amino acid substitutions at 4 positions. Thus, the ideas described above are 
universal to the extent to which our results for the PhoQ protein can be generalized. 
Given the dependence of protein function on protein structure and chemistry (Berg et al. 
2002), both of which derive from the amino acid composition of the protein, we expect 
the standard genetic code to exhibit a similar characteristic for functional sequence 
spaces of other proteins. Comprehensive studies of functionalities of variants of other 
proteins are needed for strengthening evidence in support of the ideas presented here. 

Materials and Methods 
Generation of type 𝑻𝑫𝑫 genetic codes 

The 64 codons were divided into 21 classes, 20 classes consisting of codons coding for 
each same amino acid and 1 class consisting of the 3 stop codons. To generate a 
random code, an amino acid was randomly assigned to one of the 20 classes of 
codons, not including the class consisting of stop codons. The set of stop codons was 
left unaltered. 

Generation of type 𝑻𝑫𝑫𝑫 genetic codes 

The set of stop codons was kept the same as in the standard genetic code. Each amino 
acid was assigned to one codon chosen randomly from among the 61 codons. Each of 
the remaining 41 codons was then assigned to a randomly chosen amino acid. 

Simulation 

In a 12-nucleotide sequence encoding the 4 amino acids at positions 284, 285, 288, and 
289 of the Escherichia coli protein kinase PhoQ or of the functional variants of this 
protein (Podgornaia and Laub 2015), one position was chosen randomly, and the 
nucleotide at that position was mutated to one of the other three possible nucleotides. 
The mutated sequence was translated into a 4-amino acid sequence using the genetic 
code being considered, i.e. either the standard genetic code or a randomly generated 
code. This mutation corresponded to one simulation step. If this new 4-amino acid 
sequence corresponded to a functional PhoQ variant (Podgornaia and Laub 2015), the 
mutated nucleotide sequence became the start sequence in the next simulation step. 
Otherwise, the un-mutated nucleotide sequence remained the start sequence in the 
subsequent simulation step. Simulations were run using the standard genetic code, 
10000 type 𝑇𝐷𝐷 codes, or 10000 type 𝑇𝐷𝐷𝐷 codes for 100, 1000, 10000, 100000, or 
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1000000 steps. With the standard genetic code, the starting 12-nucleotide sequence in 
the first simulation step was the wild type nucleotide sequence coding for PhoQ in E. 
coli. With a randomly generated genetic code, the starting sequence in the first 
simulation step was such that it coded for the wild type PhoQ amino acid sequence 
under the given code, with codons from degenerate sets chosen with probabilities 
proportional to their frequency in the E. coli genome. For each code, for each number of 
simulation steps, the average number of functional PhoQ variants explored in 100 
different simulation runs was reported. 

Definition and calculation of different characteristic measures of genetic codes 

Mean squared change in physio-chemical properties: Let 𝑤 be the amino acid 
physio-chemical property being considered. Then, the mean squared change in 𝑤 for a 
given genetic code 𝐺 was defined as 

𝑤𝐺 =
1

549
��(𝑤𝑛𝑒𝑛 − 𝑤𝑜𝑜𝑜)2     (1) 

where the sum is over all possible single nucleotide mutations, 𝑤𝑜𝑜𝑜 is the amino acid 
encoded by the un-mutated codon, and 𝑤𝑛𝑒𝑛 is the amino acid encoded by the mutated 
codon. The quantity was calculated for the following amino acid properties: polar 
requirement (C. R. Woese et al. 1966), hydrophilicity (Weber and Lacey 1978), 
isoelectric point (Alff-Steinberger 1969), and volume (Zamyatnin 1972). References 
adjacent to each property indicate the study from which the values for the property were 
taken. 

Code fragility: Code fragility for a genetic code was defined as the number of codons 
in the given genetic code for which, out of the 9 possible single nucleotide substitutions, 
8 or more were non-synonymous (Judson and Haydon 1999). Note that all genetic 
codes with the same degeneracy have the same value of code mutability. 

Code mutability: Let 𝑥𝑖 be the number of non-synonymous single nucleotide 
substitutions for codon 𝑖 under a given genetic code 𝐺. Code mutability 𝑀 for that 
genetic code was then defined as (Judson and Haydon 1999) 

𝑀𝐺 =
1

64
�𝑥𝑖

64

𝑖=1

     (2) 

Note that all genetic codes with the same degeneracy have the same value of code 
mutability. 

Total number of synonymous point mutations: Under a genetic code 𝐺, let 𝑥𝑖 be the 
number of single nucleotide substitutions to codon 𝑖 that do not change the amino acid 
encoded by the codon. Then, the total number of synonymous mutations is defined as 
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𝑁𝑆,𝐺 = �𝑥𝑖

64

𝑖=1

     (3) 

Note that all genetic codes with the same degeneracy have the same value for this 
measure. 

Code changeability: The definition of code changeability was taken from Maeshiro and 
Kimura (Maeshiro and Kimura 1998). If 𝑖 and 𝑗 are amino acids such that it is possible to 
transition from amino acid 𝑖 to amino acid 𝑗 under the genetic code 𝐺 via a single 
nucleotide substitution, the probability of transition from 𝑖 to 𝑗, 𝜌𝑖𝑖, was defined as 

𝜌𝑖𝑖 =
𝑚𝑖𝑖

9𝑛𝑖
     (4) 

where 𝑚𝑖𝑖 is the number of ways of going from a codon that encodes amino acid 𝑖 to a 
codon that encodes amino acid 𝑗 in the genetic code 𝐺, and 𝑛𝑖 is the number of codons 
that encode amino acid 𝑖 in the genetic code 𝐺. For amino acids 𝑖 and 𝑗 connected via 2 
transitions, 𝜌𝑖𝑖 was defined as 

𝜌𝑖𝑖 = �
𝑚𝑖𝑖

9𝑛𝑖
×
𝑚𝑖𝑖

9𝑛𝑖𝑖

     (5) 

where 𝑘 is the intermediate amino acid via which the transition from 𝑖 to 𝑗 must take 
place. The value of 𝜌𝑖𝑖 for amino acids connected via more than 2 transitions was 
defined along similar lines. The path between amino acids 𝑖 and 𝑗 involving minimum 
number of transitions was chosen for calculating 𝜌𝑖𝑖. The three stop codons were 
treated as if coding for a 21st amino acid. However, paths that passed through stop 
codons were excluded from the calculation of 𝜌𝑖𝑖. Code changeability was finally defined 
as 

𝜌𝐺 =
1

210
��𝜌𝑖𝑖

𝑖𝑖

, 𝑖 ≠ 𝑗     (6) 

Note that all genetic codes with the same degeneracy have the same value of code 
changeability. 

Estimate of the time scale corresponding to one simulation step 

Each simulation step corresponds to the time taken for an individual in a population of 
effective size 𝑁𝑒 to acquire one nucleotide substitution in the 12-nucleotide PhoQ 
sequence considered here. Considering a typical E. coli genome size of 5.44 × 106 base 
pairs and a mutation rate of 0.003 mutations per genome per generation, one simulation 
step will be equivalent to 

5.44 × 106

0.003 × 12 × 𝑁𝑒
=

1.5 × 108

𝑁𝑒
𝑔𝑔𝑛𝑔𝑔𝑔𝑔𝑖𝑔𝑛𝑔     (7) 
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With an average generation time of 30 minutes, one simulation step is equivalent to 

1.5 × 108

𝑁𝑒
× (30 × 1.9 × 10−6) =

8.6 × 103

𝑁𝑒
𝑦𝑔𝑔𝑔𝑔     (8) 
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Figure legends 
Figure 1 Distribution of the number of functional variants of the E. coli kinase PhoQ 
explored via single nucleotide substitutions under translation using type 𝑇𝐷𝐷 codes 
(pink), type 𝑇𝐷𝐷𝐷 codes (green), and the standard genetic code (blue line). All 
simulations were carried out as described in the Materials and Methods section. 
Distributions are shown for 100, 1000, 10000, 100000, and 1000000 simulation steps. 

Figure 2 (A) The number of functional variants of the E. coli kinase PhoQ explored via 
single nucleotide substitutions under translation using different genetic codes for 
different numbers of simulation steps. The bars indicate the number of functional PhoQ 
variants explored, averaged over 10000 different type 𝑇𝐷𝐷 or type 𝑇𝐷𝐷𝐷 codes. The error 
bars for randomly generated codes represent one standard deviation from the mean. 
(B) The fraction of type 𝑇𝐷𝐷 codes (blue) and the fraction of type 𝑇𝐷𝐷𝐷 codes (yellow) 
that allowed for the exploration of more functional PhoQ variants via single nucleotide 
substitutions for different numbers of simulation steps as compared to the standard 
code. Inset: Fraction of type 𝑇𝐷𝐷 codes that allowed for the exploration of more 
functional PhoQ variants as compared to the standard code for 100, 1000, and 10000 
simulation steps. 

Figure 3 Distribution of the standard deviation, as a fraction of the mean, of the number 
of functional PhoQ variants explored on starting the simulation from different 
degenerate 12-nucleotide sequences that code for the wild type PhoQ amino acid 
sequence under type 𝑇𝐷𝐷 and type 𝑇𝐷𝐷𝐷 codes. The distributions are over 10000 
randomly generated codes. (A) Distribution for simulations with 𝑁 = 100 simulation 
steps. (B) Distribution for simulations with 𝑁 = 1000 simulation steps. Insets: The 
standard deviation, as a fraction of the mean, of the number of functional PhoQ variants 
explored on starting the simulation from different degenerate nucleotide sequences for 
the standard genetic code (SGC), type 𝑇𝐷𝐷 codes, and type 𝑇𝐷𝐷𝐷 codes. Inset in (A): 
Summary statistics for the case of 𝑁 = 100 simulation steps. Inset in (B): Summary 
statistics for the case of 𝑁 = 1000 simulation steps. 

Figure 4 Newman modularity of the network of functional 12-nucleotide sequences 
coding for the PhoQ protein under the standard genetic code (SGC), 100 type 𝑇𝐷𝐷 
codes, and 100 type 𝑇𝐷𝐷𝐷 codes. For each genetic code, all 12-nucleotide sequences 
that translated into a functional 4-amino acid sequence were identified. These 
sequences formed the nodes of the network. If it was possible to go from one nucleotide 
sequence to another sequence via a single nucleotide substitution, the nodes 
corresponding to the two nucleotide sequences were connected via an edge. 

Figure 5 Scatter plots representing the dependence of the number of functional PhoQ 
variants explored under translation using type 𝑇𝐷𝐷 codes (vertical axis) on the mean 
squared change in different physio-chemical properties of amino acids due to single 
nucleotide substitutions: polar requirement, hydrophilicity, isoelectric point, and volume 
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(horizontal axis). The Pearson’s correlation coefficient (r) and the p-value of the 
estimate are indicated under each plot. 

Figure 6 Scatter plots representing the dependence of the number of functional PhoQ 
variants explored under translation using type 𝑇𝐷𝐷𝐷 codes (vertical axis) on the mean 
squared change in different physio-chemical properties of amino acids due to single 
nucleotide substitutions: polar requirement, hydrophilicity, isoelectric point, and volume 
(horizontal axis). The Pearson’s correlation coefficient (r) and the p-value of the 
estimate are indicated under each plot. 

Figure 7 (A) Mean squared change in polar requirement for the 100 type 𝑇𝐷𝐷 codes that 
allowed for the exploration of highest numbers of functional PhoQ variants for different 
numbers of simulation steps (Best 100 codes) and for all 10000 type 𝑇𝐷𝐷 codes (All 
codes). (B) Mean squared change in polar requirement for the 100 type 𝑇𝐷𝐷𝐷 codes that 
allowed for the exploration of highest numbers of functional PhoQ variants for different 
numbers of simulation steps (Best 100 codes) and for all 10000 type 𝑇𝐷𝐷𝐷 codes (All 
codes). (C) Number of functional PhoQ variants explored under translation for different 
numbers of simulation steps using the 100 type 𝑇𝐷𝐷 codes with least mean squared 
changes in polar requirement (Best 100 codes), 10000 type 𝑇𝐷𝐷 codes (All codes), and 
the standard genetic code (SGC). (D) Number of functional PhoQ variants explored 
under translation for different numbers of simulation steps using the 100 type 𝑇𝐷𝐷𝐷 
codes with least mean squared changes in polar requirement (Best 100 codes), 10000 
type 𝑇𝐷𝐷𝐷 codes (All codes), and the standard genetic code (SGC). The error bars 
represent one standard deviation from the mean. 

Figure 8 Scatter plots representing the dependence of the number of functional PhoQ 
variants explored under translation using type 𝑇𝐷𝐷𝐷 codes (vertical axis) on quantitative 
measures characterizing the organization in codon-amino acid assignments: code 
fragility, code mutability, total number of synonymous point mutations, and code 
changeability (horizontal axis). Detailed definitions of these properties are given in the 
Materials and Methods section. The Pearson’s correlation coefficient (r) and the p-value 
of the estimate are indicated under each plot. 

Figure 9 Mean squared changes in different physio-chemical properties of amino acids 
due to single nucleotide substitutions for those type 𝑇𝐷𝐷 codes (top row; blue) and type 
𝑇𝐷𝐷𝐷 codes (bottom row; red) that explored more functional PhoQ variants as compared 
to the standard code (green) for 100, 1000, 10000, 100000, and 1000000 simulation 
steps. Results are shown for amino acid polar requirement, hydrophilicity, isoelectric 
point, and amino acid volume. The error bars represent one standard error of the mean. 

Figure 10 Fraction change in the number of functional PhoQ variants explored under 
translation using deviant genetic codes from different species as compared to the 
standard genetic code (SGC) for number of simulation steps 𝑁 = 10000, 𝑁 = 100000, 
and 𝑁 = 1000000. The change is calculated as Δ𝑓 = (𝑓𝑐𝑜𝑜𝑒 − 𝑓𝑆𝐺𝑆)/𝑓𝑆𝐺𝑆. Here, 𝑓𝑆𝐺𝑆 is 
the mean of the number of functional PhoQ variants explored using the standard 
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genetic code over 100 different simulations and 𝑓𝑐𝑜𝑜𝑒 is the mean of the number of 
functional PhoQ variants explored using the deviant genetic code over 100 different 
simulations. 

Tables 

Table 1 p-values for the number of functional PhoQ variants explored under translation using 
deviant genetic codes from different species compared to the number explored under translation 

using the standard genetic code. 

Species Codon re-
assignment 

N=102 N=103 N=104 N=105 N=106 

Candida 
spp. 

CTG; 
Leu  Ser 

0.0158 0.0466 <0.01 <0.01 <0.01 

Mycoplasma 
spp. 

TGA; 
Stp  Trp 

0.3822 0.9664 0.9533 <0.01 <0.01 

Euplotes 
spp. 

TGA; 
Stp  Cys 

0.3664 0.1510 <0.01 <0.01 <0.01 

Blepharisma 
spp. 

TAG; 
Stp  Gln 

0.5101 0.0267 <0.01 <0.01 <0.01 
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