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Abstract

Genetic engineering technology has become sophisticated enough to allow precise

manipulation of bacterial genetic material. Engineering e�orts with these technologies

have created modi�ed bacteria for various medical, industrial, and environmental pur-

poses, but organisms designed for speci�c functions require improvements in stability,

longevity, or e�ciency of function. Most bacteria live in multispecies communities,

whose composition may be closely linked to the e�ect the community has on the en-

vironment. Bacterial engineering e�orts will bene�t from building communities with

regulated compositions, which will enable more stable and powerful community func-

tions.

We present a design of a synthetic two member bacterial community capable of

maintaining its composition at a de�ned ratio of [cell type 1] : [cell type 2]. We have

constructed the genetic motif that will act in each cell in the two member community,

containing an AHL-based negative feedback loop that activates ccdB toxin, which caps

population density with increasing feedback strength. It also contains one of two ccdB

sequestration modules, either the ccdA protein antitoxin, or an RNA device which

prevents transcription and translation of ccdB mRNA, that rescues capped popula-

tion density with induction. We compare absorbance and colony counting methods of

estimating bacterial population density, �nding that absorbance-based methods overes-

timate viable population density when ccdB toxin is used to control population density.

Prior modeling results show that two cell types containing this genetic circuit motif

that reciprocally activate the other's ccdB sequestration device will establish a steady

state ratio of cell types. Experimental testing and tuning the full two member commu-

nity will help us improve our modeling of multi-member bacterial communities, learn

more about the strengths and weaknesses of our design for community composition

control, and identify general principles of design of compositionally-regulated microbial

communities.

Introduction

Bacteria are major players in the function of the environments they inhabit, partially respon-
sible for shaping immune responses in humans [1] and driving global geochemical cycles [2, 3].
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Developments in DNA technologies, particularly DNA synthesis, molecular cloning, and se-
quencing, have created a major opportunity to genetically engineer bacteria to a�ect any
of the many important phenomena they mediate, and potentially create new bacterial func-
tions. Due to the speed of bacterial replication and enormous capacity of bacteria to colonize
diverse niches, any genetic engineering e�orts made with bacteria have the potential to be
massively in�uential for the system in which they are deployed.

Early e�orts to exploit the power of engineered bacteria in mammalian systems have
led to the creation of engineered gut-commensal organisms capable of responding to chem-
ical signals in the gut [4], serving as long-term resident detectors of gut in�ammation [5],
and protecting vaginal mucosa against HIV infection [6]. Other engineered bacteria have
been designed to sequester atmospheric carbon dioxide and produce carbon-neutral energy
sources [7, 8], or seek and detoxify the herbicide atrazine [9].

These successful e�orts are important steps forward for practical microbiological engineer-
ing, but still want for improvements in stability, longevity, or e�ciency of function [10, 11].
Many organisms identi�ed in nature are not culturable in the laboratory, precluding their
genetic manipulation [12, 13]. Additionally, bacteria do not usually mediate their e�ects on
their environments as homogenous populations; they are almost always found as communi-
ties of di�erent interacting species, strains and subtypes that often function better together
than any single one would alone [14, 15]. The speci�c species composition of a bacterial
community is a partial determinant of the community's function [16, 17, 18, 19, 20], though
regulation of the composition of a community by environmental factors and gene regulation
by community members likely work together to control community function [21, 22]. Syn-
thetic biologists have made great strides in the engineering of genetic circuits for dynamic
regulation of gene expression within single cells, but engineering control of bacterial com-
munity composition presents the special challenge of linking the activity of a genetic circuit
that exists inside individual cells to the number of cells of each type in a population.

Population control using genetic circuits has been achieved in a few forms over the last
decade. You et al. created a single strain community capable of limiting its own popula-
tion density [23] and Balagaddé et al. created a two member community that displays the
oscillatory behavior of a predator-prey ecological relationship [24].

Di�usible acyl-homoserinelactone (AHL) quorum sensing signals are frequently used to
allow information transfer between members of an engineered community [25, 26] and link the
behaviors of cells. In population control circuits, AHL signals usually activate a population
regulating e�ector, typically a genetically encoded toxin [27, 28, 11, 24, 23]. That said, other
regulatory devices exist, including regulated transport of cross-feeding metabolites [29] or
reciprocal activation of antibiotic resistance [30].

Motivated by the results of studies demonstrating remarkably stable compositions of
various microbial communities over time in diverse environments [31, 32], we present a design
of a two member community of bacteria that maintains a speci�c ratio between the densities
of the two members in coculture: [cell type A] = a[cell type B] where a represents the
desired proportionality relationship between the densities of A and B, with which we hope
to learn basic design principles for heterogeneous microbial communities. Ren et al. recently
published a detailed model and analysis of this system, demonstrating that the proposed
community architecture implements a lag compensator that can maintain a steady-state
population composition robust to changes in cell number and strain growth rates [33].
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Here we report the experimental characterization of the genetic circuit motif that will
act in each cell type in the full two member community, which balances feedback activation
of cell death via ccdB toxin and inducible repression of cell death via ccdB inhibition.

Results

Population Circuit Design

Strain 1 Strain 2
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AHL1R
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ccdB
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Figure 1: Schematic of two cell composition control
circuit. Dashed outlines separate symmetric halves of
the circuit that interact through two di�erent AHL
molecules. Components shaded red are involved in
feedback activation of ccdB toxin and cell death. Com-
ponents shaded green are involved in rescue from cell
death by a sequestration device (Seq).

Each cell type in the two member commu-
nity contains a symmetric genetic circuit
that, at steady state, balances cell death
from cis-acting AHL feedback activation of
ccdB toxin and cell death inhibition from
trans-acting AHL activation of a toxin se-
questration device (Fig 1). Simulations and
analysis of this system demonstrate its abil-
ity to maintain a steady community compo-
sition robust to various perturbations [33].

Toxin "sequestration" is di�erentiated
from toxin "expression" by the biochemical
level of regulation. Our sequestration de-
vices do not a�ect the activity of the pro-
moter driving transcription of ccdB, but "se-
quester" either mRNA or ccdB protein, pre-
venting transcription/translation of ccdB at
the mRNA level [34], or binding ccdB pro-
tein in a nonfunctional complex [35, 36], re-
spectively.

We explore 2 types of toxin sequestra-
tion devices, one being ccdB's protein antitoxin ccdA, the other a transcription/translation-
inhibiting RNA device (RNA-IN and RNA-OUT) [34]. The ccdA/B pair combines both
cytotoxic action and the sequestration mechanism, preventing exploration of other toxins
that do not have a protein antitoxin. The RNA-IN/OUT system separates sequestration
and cytotoxicity modules, allowing future exploration of arbitrary toxins in place of ccdB.

Before creating the complete community from Fig 1, we considered the circuit motif in
Fig 2 and simulated its ability to a�ect the density of a single cell type in monoculuture (Fig
2). The circuit has 2 modules: a negative feedback loop causing self-limitation of cell density
through expression of ccdB toxin (population capping); and a toxin sequestration module,
which can be activated by external inducer to allow growth to a higher density than allowed
by the negative feedback arm (population rescue). The circuit can be conceptualized as 2
dials, a red dial that regulates the strength of AHL feedback on the cell and thus the steady
state population density in the absence of toxin sequestration. Higher numbers on the dial
correspond to lower steady state population densities. The green dial regulates the amount
of toxin sequestration and thus, the amount to which a culture is allowed to increase its
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density above the steady state set by the negative feedback arm. Higher numbers correspond
to higher steady state population densities.

Experimental Data
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Figure 2: Schematic of single cell density control circuit.
As in Fig 1, red shading indicates participation in feed-
back toxin activation, green indicates toxin sequestration.
The red dial represents the level of induction of the indi-
cated feedback components. Turning the red dial by adding
IPTG increases expression of feedback components and the
strength of feedback toxin activation. Similarly, turning the
green dial by adding the appropriate inducer increases ex-
pression of the toxin sequestration device. See Materials and
Methods "Modeling and Simulations" for modeling detail.

To verify the two functions of our ge-
netic circuit motif, we transformed E.

coli cells with the components in Fig
2 and incubated a dilute suspension
of cells in varying concentrations of
isopropyl β-D-1-thiogalactopyranoside
(IPTG) for 18 hours, to induce expres-
sion of the AHL components involved
in feedback population density limita-
tion and observe the e�ect of popu-
lation feedback on steady state pop-
ulation density. Induction of popula-
tion capping by IPTG leads to reduc-
tion in steady state population den-
sity in circuits containing each ccdB se-
questration module, as measured by ab-
sorbance at 600nm (Fig 3).

We con�rmed the ability of each
of our ccdB sequestration modules to
rescue steady state population density
above the feedback limited density by
incubating cells in the maximum con-
centration of IPTG and varying concentrations of the appropriate inducer to express each
sequestration module. A population strongly induced by IPTG and various amounts of sec-
ondary inducer establishes a higher steady state density than a population induced by IPTG
alone (Fig 3).

The function of the circuit motif is a�ected by the ccdB sequestration device driving it.
In the circuit variant with protein-level sequestration (ccdA, top row in Fig 3), growth of
each population is smooth and consistent across replicates. In the variant employing RNA
level sequestration (RNA-IN/OUT, bottom row in Fig 3), growth of each population is jerky
and noisy across replicates. We suspect the level of ccdB sequestration is responsible for
these e�ects; at lower mRNA copy numbers compared to protein copy numbers, stochastic
sequestration may play a larger role in regulating ccdB activity, producing the observed noise
and variability in cell growth.

The steady state values of OD600 absorbance at increasing levels of IPTG are only mod-
estly lower than the uninduced steady state, though previously reported results with similar
AHL feedback activation of ccdB demonstrate 10-fold reduction in cell counts [23]. These
results imply that population negative feedback is too weak in our circuit motif and limit our
ability to demonstrate many, signi�cantly di�erent density steady states with feedback limi-
tation or sequestration rescue. We suspected that the cytotoxic mechanism of ccdB does not
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kill a cell in a way that reduces its contribution to OD600, rather, dead cells may continue to
absorb strongly at 600nm [36, 37, 38]. We compared OD600 absorbance values to viable cell
counts obtained with two methods of culture plating and counting of colony forming units
(CFU). Viable cell counts in cultures strongly induced with IPTG revealed drastically lower
population densities relative to uninduced cultures than are captured by OD600 absorbance.
Population steady states produced during rescue from capping were similarly found to be
lower than uncapped steady states when measured by CFU counting (Fig 4).

Discussion
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Figure 3: E. coli transformed with the circuit components in Fig
2 were induced with IPTG (blue curves) and the appropriate rescue
inducer (red curves) to induce population capping and rescue, respec-
tively. The top row contains ccdA protein as the ccdB sequestration
module, inducible by aTC. The bottom row contains RNA-IN + ccdB
as the ccdB mRNA and RNA-OUT as the ccdB sequestration module,
inducible by Cin AHL. Each curve represents the mean of 3 replicates,
shaded regions represent the standard deviation.

We demonstrate the ability of
a genetic circuit motif employ-
ing negative feedback activa-
tion of ccdB toxin and in-
ducible sequestration of ccdB
to both negatively and pos-
itively regulate the steady
state density of a bacterial
culture. Two methods of
ccdB sequestration that act
on di�erent biochemical lev-
els were tested and shown to
sequester and inhibit ccdB in
the circuit context, through
more precise experimentation
is needed to compare their rel-
ative strengths of ccdB inhibi-
tion. While the circuit design
using ccdB and ccdA is not
modi�able to use di�erent tox-
ins except those with protein
antitoxins, a circuit designed
using RNA sequestration can
be modi�ed to function with
arbitrary genes.

On its own, this circuit mo-
tif requires more testing in dynamic environments, that is, when the di�erent inducers change
concentration during cell growth. Additionally, it will be important to verify the claims that
this circuit motif can reject perturbations in cell number and cell growth rate. We have
established automated protocols to create arbitrary dynamics in inducer concentrations,
perturbations to the number of cells in culture and perturbations in cell growth rate.

This circuit motif is designed to be linked between two cell types to maintain a stable ratio
between the densities of each cell type. This system requires the use of two orthogonal AHL
quorum sensing systems to allow the feedback capping and rescue modules in each cell to
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Droplet CFUOD600 Plate CFU

Figure 4: 3 methods of cell density quanti�-
cation were used to determine cell density af-
ter inducing population capping (red) and res-
cue (blue) in cells transformed with the circuit
motif containing the protein-level toxin seques-
tration module. Values for each column are self-
normalized to the absolute value of the green

condition. Cell densities are those achieved after
18 hours of growth in the experimental condi-
tions.

function without crosstalk. The circuit motifs
tested in this study will be modi�ed to include
the appropriate receptors, synthases and promot-
ers to create the community circuit presented in
Fig 1.

More data is needed to precisely determine
the amount to which OD600 overestimates viable
cell counts, but it is clear that cell counting meth-
ods uncover a more realistic estimate of viable
population density. We have added the droplet-
based CFU counting method to our automated
experimental protocols and hope to adjust our
models of cell density to re�ect the inaccuracy
of OD600 measurements to allow maximal infer-
ence of circuit function from highly time-resolved
OD600 data.

Testing and tuning the full two member
community will help us learn more about the
strengths and weaknesses of our design for com-
munity composition control and identify general
principles of design of compositionally-regulated
microbial communities.

Materials and Methods

E. coli cell strains

E. coli strain DH5αZ1 was used for the creation of the cell strain containing the circuit
motif with protein-level ccdB sequestration; strain CY027 [39] was used to create the cell
strain containing the motif with RNA-level ccdB sequestration. Both strains have genome
integrations expressing the necessary activator/repressor transcription factors to allow reg-
ulated expression of circuit components: DH5αZ1 has genome integrated expression of LacI
and TetR; C027 has genome integrated expression of both RhlR and CinR.

Plasmids

The circuit motif with protein-level ccdB sequestration contains 3 plasmids: pLuxRI2,
pluxCcdB3 (both from [23]), and pTetCcdA. pTetCcdA was constructed by GoldenGate as-
sembly of the pTet promoter, the B0033m weak RBS, the ccdB gene taken from pOSIP_KO
plasmid [40], and the B0015 terminator into a pSC101 backbone containing carbenicillin
resistance.

The circuit motif with RNA-level ccdB sequestration contains 3 plasmids: pRNAINc-
cdB, pRNAOUT and pRhlI. pRNAINccdB was constructed by Gibson assembly of the pRhl
promoter, the RNA-IN module [34], the ccdB gene and the B0015 terminator into a p15a
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backbone containing chloramphenicol resistance. pRNAOUT was constricted by Gibson as-
sembly of the pCin promoter and the RNA-OUT module into a ColE1 backbone containing
kanamycin resistance. pRhlI was constructed by Gibson assembly of the J23106 promoter,
the B0034 strong RBS, lacI gene, and B0015 terminator; the pLac promoter, B0034 strong
RBS, the rhlI gene and the B0015 terminator into a pSC101 backbone containing carbeni-
cillin resistance.

Unless otherwise noted, all parts used in cloning come from the CIDAR MoClo parts
kit [41]. The CIDAR MoClo Parts Kit was a gift from Douglas Densmore (Addgene kit #
1000000059). The pOSIP plasmid kit used for clonetegration was a gift from Drew Endy
and Keith Shearwin (Addgene kit # 1000000035).

Cell Growth Experiments

Cells containing a circuit motif variant were grown from a frozen glycerol stock in TBK me-
dia (10g tryptone, 7g KCl per liter, 100mM MOPS bu�er) overnight, then were diluted 200x
into fresh TBK media with carbenicillin (100µg/mL), kanamycin (50µg/mL) and chloramp-
enicol (25µg/mL) and aliquoted in triplicate in 500uL into a square 96 well Matriplate (dot
Scienti�c, MGB096-1-1-LG-L). The plate was incubated for 18 hours in a Biotek Synergy
H2 incubator/plate reader at 37◦C while OD600 measurements were taken every 7 minutes.

Inducers were added to the 96 well Matriplate before cell suspensions were aliquoted. A
Labcyte Echo 525 Liquid Handler was used to aliquot inducers into each well of the plate
before cell suspensions were added.

Cell Density Quanti�cation

OD600 measurements were taken every 7 minutes during the growth period. CFU measure-
ments were taken once at the end of an 18 hour growth cycle. OD600 measurements were
taken using a Biotek Synergy H2 incubator/plate reader. Colony forming units were counted
using two methods:

Droplet CFU counting: Cell suspensions were diluted 25,000x into fresh TBK media and
aliquoted into a Labcyte Echo 384 well source plate. 50µL drops of this suspension were
transferred to a Nunc OmniTray (ThermoFisher: 140156) �lled with LB agar containing the
appropriate antibiotics. The OmniTray was incubated at 37◦C overnight, then colonies were
counted. The fraction of droplets spotted on the plate that DID NOT grow colonies was �t
to a Poisson distribution to determine λ, which yielded the mean cells/mL.

Plate CFU counting: Cell suspensions were diluted 1 ∗ 106x into fresh TBK media, then
10-50uL of this suspension was spread on LB agar petri dishes. These plates were incubated
at 37◦C overnight, then colonies were counted. The number of colonies grown was multiplied
by the dilution factor to obtain cells/mL.

Modeling and Simulations

We constructed a general ODE model of the circuit motif under study. The model does not
currently capture the biophysical details of the di�erent sequestration devices and is meant
to be a high level exploration of the sequestration concept. The curves in Fig 2 are simulated
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from this model, by varying kE (Fig 2B top) to simulate stronger AHL feedback and kT (Fig
2B bottom) to simulate stronger induction of the sequestration device.

dC

dt
= kCC(1−

C

Cmax
)− dCCE −DC, (1)

dE

dt
= kE

Aβ

kβ + Aβ
− konET − dEE, (2)

dT

dt
= gT − konET − dTT, (3)

dA

dt
= kAC − (dA +D)A. (4)

(5)

The variables in this model are as follows:

C: cell density ( cell
mL

)
E: CcdB concentration (nM)
T: Sequestration device concentration (nM)
A: AHL concentration (nM)

Parameters in the model:

kc: cell growth rate constant (0.01− 0.04 min−1)
Cmax: carrying capacity for cell growth (109 ml−1)
β: cooperativity of AHL e�ect (β = 2)
dc: cell death rate contant by CcdB (2× 10−3 nM−1 ·min−1)
k: concentration of AHL to half-maximally active promoter (10 nM)
D: dilution rate (0.01 min−1)
kon: binding rate of CcdB and sequestration device (0.05 nM−1 ·min−1)
gT , gR: basal production rate (0.01− 0.1 nM ·min−1)
kE, kT : synthesis rate constant of CcdB, sequestration device (0.01− 0.1 nM ·min−1)
kA: synthesis rate constant of AHL (5× 10−9 nM ·ml ·min−1)
dA: decay rate constant of AHL (0.01 nM ·min−1)

Parameter estimates were found in a few literature sources [24, 23, 42]

In Fig 2, intial conditions are:

C = 1 ∗ 107 cell
mL

E, T , A = 0
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