Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Proof of concept continuous event logging in living cells

Andrey Shur, View ORCID ProfileRichard M. Murray
doi: https://doi.org/10.1101/225151
Andrey Shur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard M. Murray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Richard M. Murray
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Biological records are omnipresent in paleontology, history, and climate science. Tree rings and ice cores provide evidence of environmental conditions that have been recorded in the composition of materials that are deposited over time, carrying with them a record of events that have influenced their existence before being buried underneath ice or inside the trunk of a tree. We constructed a proof of concept synthetic circuit that can be used to create a similar chronological record of events in the DNA of a living E. coli. In our system, phage-based serine integrases are employed to sequentially integrate pieces of DNA corresponding to which stimulus is being detected. We show that placing attB and attP sites close together on a piece of DNA prevents intramolecular reactions, and enables repeated integration events to expand a genetic locus proportionally to integrase induction and abundance of plasmid DNA. We also show that dCas9 binding can prevent integrase from reacting with an attachment site, and in so doing we can control which piece of DNA is integrated by the induction of different guide RNAs. These results represent significant steps towards an event logger that is capable of recording the ordering and magnitude of any number of molecular events. Such a system may be useful in studying complex biological phenomena such as biofilm formation, quorum sensing, or signaling in the gut.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted November 25, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Proof of concept continuous event logging in living cells
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Proof of concept continuous event logging in living cells
Andrey Shur, Richard M. Murray
bioRxiv 225151; doi: https://doi.org/10.1101/225151
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Proof of concept continuous event logging in living cells
Andrey Shur, Richard M. Murray
bioRxiv 225151; doi: https://doi.org/10.1101/225151

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Synthetic Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3505)
  • Biochemistry (7348)
  • Bioengineering (5324)
  • Bioinformatics (20266)
  • Biophysics (10019)
  • Cancer Biology (7744)
  • Cell Biology (11305)
  • Clinical Trials (138)
  • Developmental Biology (6437)
  • Ecology (9953)
  • Epidemiology (2065)
  • Evolutionary Biology (13325)
  • Genetics (9361)
  • Genomics (12586)
  • Immunology (7702)
  • Microbiology (19024)
  • Molecular Biology (7443)
  • Neuroscience (41041)
  • Paleontology (300)
  • Pathology (1229)
  • Pharmacology and Toxicology (2138)
  • Physiology (3161)
  • Plant Biology (6861)
  • Scientific Communication and Education (1273)
  • Synthetic Biology (1896)
  • Systems Biology (5313)
  • Zoology (1089)