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Abstract1

Dropout is a common phenomenon in single-cell RNA-seq (scRNA-seq) data, and when left2
unaddressed affects the validity of the statistical analyses. Despite this, few current methods for3
differential expression (DE) analysis of scRNA-seq data explicitly model the dropout process. We4
develop DECENT, a DE method for scRNA-seq data that explicitly models the dropout process5
and performs statistical analyses on the inferred pre-dropout counts. We demonstrate using6
simulated and real datasets the superior performance of DECENT compared to existing methods.7
DECENT does not require spike-in data, but spike-ins can be used to improve performance8
when available. The method is implemented in a publicly-available R package.9

Keywords— Differential expression, single-cell RNA-seq, dropout, imputation10

Introduction11

Recent developments in sequencing technology have enabled high-throughput whole-transcriptome12

profiling at single-cell resolution. Single-cell RNA-seq (scRNA-seq) allows the quantification13

of gene expression of thousands of individual cells in a single experiment. It has already led to14

profound new discoveries that could not be have been made using data from bulk transcriptome15

∗DECENT: differential expression with (molecule) capture efficiency adjustment for single-cell RNA-seq data;
Adjusting for molecule capture efficiency improves differential expression analysis of single-cell RNA-seq data; Modeling
molecule capture improves differential expression analysis of single-cell RNA-seq data
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sequencing, ranging from the identification of novel cell types to the study of global patterns of16

stochastic gene expression (Kolodziejczyk et al., 2015) (Wagner et al., 2016). However, there are17

still many statistical challenges in drawing inferences from scRNA-seq data. Due to the small18

amount of starting material and the imperfect capturing of RNA molecules in current scRNA-seq19

experiments, failures to detect expressed transcripts in single cells is still common. This gives20

rise to to the characteristic dropout phenomenon in scRNA-seq data, in which a gene shows zero21

or very low abundance in a fraction of cells in spite of moderate to high expression in others22

(Hashimshony et al., 2012) (Finak et al., 2015) (Ramskold et al., 2012). Also, the dropout rates23

can vary between cells and across genes (Brennecke et al., 2013), showing as a major source of24

unwanted variation in scRNA-seq data, with the first principal component of raw counts typically25

exhibiting high correlation with the proportions of zero counts (Risso et al., 2018). This unique26

feature of scRNA-seq will hinder downstream analyses if not properly modeled. Lots of effort has27

been made in order to alleviate this issue, including specialized normalization methods (Lun et al.,28

2016) (Bacher et al., 2017), clustering algorithms (Zeisel et al., 2015) (Wang et al., 2017) (Kiselev29

et al., 2017), and methods for differential expression analysis (Kharchenko et al., 2014) (Finak et al.,30

2015) (Jia et al., 2017).31

One way to resolve this is through explicit modeling of the capturing process and hence32

separating the biological variation of interest from unwanted variation in the experimental procedures.33

For instance, imputation methods (Huang et al., 2018) (van Dijk et al., 2018) are designed to recover34

the pre-dropout expression matrix by modeling the process from RNA molecule to read count.35

However, a difficulty in modeling the molecule capturing and dropout events is that this process is36

usually mixed up with other sources of technical variation, such as amplification and sequencing37

biases (Wagner et al., 2016). The unique molecular identifier (UMI) barcoding approach has become38

increasingly popular in scRNA-seq experiments as an effective way to address this issue (Islam et al.,39
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2014) (Svensson et al., 2017). Random barcodes are attached to cDNA molecules during reverse40

transcription. Each individual molecule from a particular gene in each cell is expected to have a41

distinct UMI (Islam et al., 2014). Therefore, after sequencing, by counting UMI barcodes instead of42

reads per se, the resulting UMI counts will be a faithful representation of the original cDNA counts,43

with amplification and sequencing bias largely avoided. But the UMI count will still show as zero if44

a RNA molecule failed to convert to cDNA, or was completely lost in amplification and sequencing.45

As a consequence, the main source of technical variation left in UMI counts is the loss of molecules46

during the experimental procedure, namely, dropouts. Hence, UMI count data provides us with an47

opportunity to model the molecule capturing process in depth. Also, given the distinct features of48

UMI-based data, it is necessary to build specific models in order to perform statistical tests reliably.49

Currently scRNA-seq experiments mainly focus on cell-wise analyses such as clustering50

and trajectory inference for studying heterogeneity within cellular populations (Zeisel et al., 2015)51

(Trapnell et al., 2014) (Qiu et al., 2017). Nevertheless, differential gene expression (DE), as one of52

the most common gene-wise analyses, still plays an essential role in complementing these analyses.53

For example, it is used to identify cluster-specific markers for identifying the cell types. It is also54

used to derive disease-associated gene signatures (Sun et al., 2018) (Zhao et al., 2017) (Savas et al.,55

2018). However, DE methods originally designed for bulk RNA-seq tend to produce unreliable56

results due to failing to account for the extra variation in single-cell data (Jia et al., 2017) (Van den57

Berge et al., 2018). Driven by this, a few DE methods have been designed specifically for scRNA-seq58

data. All of them use some strategy to deal with the large variation and amount of zero observations.59

However, most of them do not distinguish biological from technical factors that are causing the60

phenomenon. For example, SCDE (Kharchenko et al., 2014) uses a mixture model to distinguish61

counts affected by dropout from the rest of the data. This model almost always assigns a probability62

of one that a zero count belongs to the dropout component, in essence assuming all observed zeroes63
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to be technical. MAST (Finak et al., 2015) uses a two-part generalized linear model in which the64

dropout rates are adjusted by the inclusion of the observed fraction of non-zero counts as a term65

in their regression model. This still does not differentiate the dropouts from real biological zeros.66

Additionally, the effect of dropout events is likely to be non-linear, especially for genes with low to67

moderate expression (Bacher et al., 2017), and so the inclusion of simple linear term that represents68

capture rates in the regression model is unlikely to be optimal. ZINB-WaVE (Van den Berge et al.,69

2018) uses a zero-inflated model directly fitted to the observed data to derive observation weights70

for adjusting bulk DE methods. Only Jia et al. (Jia et al., 2017) proposed a DE method, TASC, that71

relies on external RNA spike-in data (Jiang et al., 2011) to fit a technical variation model in order to72

explicitly cater for dropouts, thus enabling separation of the biological variation for DE analysis.73

They showed improved performance of their method compared with methods that perform DE74

analysis directly using the observed data. Note that the methods mentioned so far are not specifically75

designed for UMI-count data. There are two existing methods that considers the unique features of76

UMI-based experiments: Monocle2 (Qiu et al., 2017) and NBID (Chen et al., 2018). They both77

fit negative binomial models directly to the observed UMI count without any explicit modeling of78

dropouts.79

Here we propose a novel model for the DE analysis of UMI-based scRNA-seq data. Leveraging80

the features UMI-count data, we are able to model the molecule capturing process precisely. We81

build a dropout model to account for the gene- and cell-specific properties of molecule capturing.82

This allows us to perform DE analysis on the inferred pre-dropout distributions of RNA molecules.83

We named our method Differential Expression with Capture Efficiency adjustmeNT (DECENT).84

DECENT can use the external RNA spike-in data to calibrate the dropout model, but also works85

without spike-ins. In this paper, we describe the DECENT model and benchmark it against existing86

methods using both simulated data and four real UMI-based scRNA-seq datasets. The results87
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showed improved performance of DECENT in various settings when compared to existing methods.88

Results89

Modeling extra-binomial variation in the capture process90

ScRNA-seq data are noisy largely due to the complex experimental procedures. Each step introduces91

different sources of technical variation, which are further magnified by the low amount of starting92

material in a single cell. With the UMI barcoding approach, we are able to avoid part of the technical93

variation in the read counts caused by amplification and sequencing, primarily the over- and under-94

representation of RNA molecules (Islam et al., 2014) (Wagner et al., 2016). However, we still need95

to deal with the extensive loss of molecules that happen at all stages in a scRNA-seq experiment. For96

UMI-based experiments, we may simplify the procedures of the actual transcript counts in single97

cells turning into final UMI counts into a single capturing process, in which each RNA molecule is98

captured with a certain probability that we term capture efficiency. We aim to design a dropout99

model to describe this capture process, which will enable us to infer the unobserved pre-dropout100

RNA molecule counts and perform DE analysis on them. It is natural to consider capture efficiencies101

to be cell-specific, as molecules from the same cell are in the same reaction chamber (well or droplet)102

during the capturing process. Previous models have considered between-cell variation of capture103

efficiency as a major source of technical variation in scRNA-seq data (Grun et al., 2014). By further104

assuming the capture of each molecule is independent within a cell, we obtain the simplest dropout105

model, a binomial thinning process B(yi j, η j), where yi j is the unobserved pre-dropout molecule106

count of gene i in cell j and η j is the molecule capture efficiency in cell j. We denote the observed107

UMI counts by zi j .108

We now examine the plausibility of this simple dropout model using ERCC spike-in data.109
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ERCC spike-ins are synthetic RNA molecules added to the initial RNA pool in transcriptome110

profiling assays to measure technical variation (Jiang et al., 2011). The nominal molecule count of111

each spike-in added per cell (ci) is known, with no biological variation between cells expected. We112

thus use a Poisson distribution with rate ci to model pre-dropout spike-in molecule count yi j , where113

ci is the nominal molecule count of spike-in i. This is to model the sampling noise due to dilution.114

The known pre-dropout distribution of spike-in data enables us to focus on examining the dropout115

model. In total, we investigated six ERCC spike-in datasets, including three plate-based (Tung116

et al., 2017) (Zeisel et al., 2015) (Grun et al., 2014) and three droplet-based experiments (Macosko117

et al., 2015), (Klein et al., 2015), (Zheng et al., 2017) (Supplementary Table 1). Taking the Tung118

et al. data as an example, we first estimated the capture efficiencies η j under the hypothesized119

model. We then used deviance statistics to evaluate goodness-of-fit of this cell-specific binomial120

dropout model. It can be easily calculated as a log-likelihood ratio (See Supplementary Methods).121

Under the null hypothesis that the binomial dropout model is adequate, the deviances approximately122

follow a χ2 distribution of with degree of freedom (#spike-ins - #parameters). However, as shown123

in Fig.1a, the observed distribution of cell-wise deviances is evidently shifted towards the higher124

values, indicating a poor fit to the data.125

This shows the inadequacy of the cell-specific binomial dropout model. It could be due to the126

spike-in-wise variation of capture efficiency or a clumping of molecules in which the capture events127

are actually not independent within a cell. Further analyses suggests the former as a more probable128

main cause (Supplementary Fig.1). We model this extra variation by allowing capture efficiencies η j129

to have a beta distribution with dispersion parameter ρ instead of being constant in a cell, resulting in130

a beta-binomial dropout model, BB(yi j, η j, ρ). Note that this is not the conventional parametrization131

of beta-binomial (See Methods). We then investigated whether a constant, cell-specific ρ is adequate.132

Towards this end, we looked at the variation of ρ across spike-ins. If we estimate ρi for each spike-in133
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separately, a negative correlation between the spike-in-specific ρi estimates and the spike-in nominal134

count ci can be observed (Fig.1b). This indicates a standard cell-wise beta-binomial dropout model135

with a single ρ j for the all genes will not adequately describe the variation in the capture process.136

To deal with this, we constructed a simple logistic linear model for cell and gene-specific ρi j :137

logit(ρi j) = τ0 j + τ1 j · log(ci) (1)

where τ j = (τ0 j, τ1 j) are the intercept and slope determining how ρi j depends on ci in cell j. Using138

spike-ins, the estimation of τj by maximum-likelihood is straightforward (see Methods). As a139

final examination, we fit both the binomial and this beta-binomial dropout models to the data140

and compared their goodness-of fit. Since the two models have different degrees of freedom, to141

facilitate comparison, we standardized and transformed the deviances of both models by forming142

log(deviance/df ), which is expected to have a log(χ2df /df ) distribution with mean 0. As expected,143

we found cell-wise log(deviance/df ) values under our beta-binomial model to be substantially144

smaller than those under the binomial dropout model for most of the cells (Fig.1c). We also observed145

that the distribution of log(deviance/df ) values under our beta-binomial model are centered around146

0, suggesting a good match to the null distribution. This indicates that our beta-binomial dropout147

model should satisfactorily account for variation in the molecule capturing process. The same148

analyses were carried out using the spike-in data from the other five experiments and similar results149

were obtained (Supplementary Fig.2).150

Inferring the distribution of pre-dropout molecule counts151

We now start considering the model for RNA molecules from endogenous genes. We expect the152

external spike-ins and endogenous transcripts to have similar but not identical capture processes.153
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Therefore, we use the same dropout model for endogenous genes with partially re-estimated154

parameters (See Methods for detail). To infer the pre-dropout molecule counts, we need to specify155

a distribution that characterizes them. We used a Poisson distribution to model the pre-dropout156

molecule count of spike-ins where no biological variation is expected. This is unlikely to be157

appropriate for endogenous genes. Instead, we chose to use the zero-inflated negative binomial158

(ZINB) distribution, which has been used in some scRNA-seq methods to model the observed159

counts (Risso et al., 2018) (Van den Berge et al., 2018). The ZINB distribution is a mixture of two160

components, a negative binomial distribution component and a structural zero component. The161

negative binomial (NB) distribution alone has been previously used in bulk DE methods (Robinson162

et al., 2010) (McCarthy et al., 2012) (Love et al., 2014) to model overdispersion in data due to163

gene-specific biological variation. In addition, we expect biological zeros at the single-cell level to164

be more abundant due to phenomena such as stochastic gene expression, state-dependent expression165

and heterogeneous cell composition, which are not observable in bulk RNA-seq experiments (Raj166

et al., 2006) (Shalek et al., 2013) (Buettner et al., 2015). The structural zero component is used to167

model these inflated biological zeros. These result in the DECENT framework that describes the168

molecule capture process. The pre-dropout RNA molecule count yi j from gene i in cell j is assumed169

to follow a ZINB distribution with gene-specific dispersion and zero-inflation parameters. After170

molecule capturing, we observe an UMI count zi j that is generated according to the beta-binomial171

dropout model (See Methods for detail). We use the DECENT model to distinguish biological172

from technical variation due to dropouts and perform differential expression analysis on the inferred173

pre-dropout distribution.174

Next we investigated how well we can infer the pre-dropout counts by simulation studies. We175

simulated a dataset of 500 cells, 3000 endogenous genes and 50 detected spike-ins, with parameters176

empirically estimated from the Tung et al. dataset. We fit the DECENT model to this simulated data177
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and then looked into two main features of the pre-dropout counts: proportion of zeros and variance.178

We calculated the gene-wise zero fractions and variances of the inferred pre-dropout counts and179

found the values are very close to those calculated using the actual pre-dropout counts (Fig.2a, b).180

We further calculated the expected pre-dropout count of each gene in each cell based on the fitted181

model and the observed data. Again, we found it to be highly consistent with the true count (Fig.2c).182

To examine whether there is overdispersion and zero-inflation in pre-dropout counts in reality,183

we used two scRNA-seq datasets where spike-ins are available (Zeisel et al., 2015), (Tung et al.,184

2017). Therefore, capture efficiencies could be estimated using the spike-ins to obtain reliable185

dropout models. To look for overdispersion, we first fit the DECENT model assuming an NB186

pre-dropout distribution to the data without considering zero-inflation. We found that without187

gene-specific dispersion parameters, the expected variances of most genes were noticeably lower188

than the observed values for the Zeisel et al. dataset. The extra variation was modeled by having189

the dispersion parameter (Supplementary Fig.3a). For the Tung et al. data, the expected variances190

without overdispersion parameters for most genes were already close to the observed values,191

showing little need for the extra parameter (Supplementary Fig.3b). This suggests overdispersion192

in pre-dropout counts is dataset-specific and depends on the amount of biological variability in193

the sample. The Tung et al. data used here are from one iPSC cell line where cells were highly194

homogeneous and hence lack biological variation. On the other hand, the Zeisel et al. data are195

from mouse brain tissue, which has a complex cellular composition. To check for zero-inflation, we196

then fitted DECENT models to the data assuming ZINB pre-dropout distributions. We performed197

chi-square goodness-of-fit test on both DECENT models with ZINB and NB to assess their adequacy.198

Consistent with previous findings (Vieth et al., 2017) (Chen et al., 2018), the majority of genes do199

not need to have a zero-inflated model. However we still found a small number of genes in both200

datasets in which models with ZINB provide a more adequate fit than NB (Supplementary Fig.4).201
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Overall, the ZINB distribution provides a comprehensive solution for modeling the pre-dropout202

molecule counts. Zero-inflation and overdispersion in gene-wise pre-dropout counts turned out to203

be dataset-specific and gene-specific. In the cases where these effects are less prominent, the ZINB204

distribution will have low pre-dropout zero-inflation and/or dispersion parameter estimates, and205

effectively turn into NB, zero-inflated Poisson or Poisson distributions.206

Additionally, we investigated a single-molecule fluorescence in situ hybridization (smFISH)207

dataset. The smFISH technology allows precise quantification of RNA molecules from a list of208

targeted genes. This technology can achieve near 100% sensitivity detection of the RNA molecules209

(Raj et al., 2008). In other words, the smFISH count data may be a good approximation to the210

pre-dropout molecule counts and should follow our assumed distribution. We used the data from211

an experiment that profiled 33 marker genes in mouse somatosensory cortex (Codeluppi et al.,212

2018). We examined three of the clusters identified by the authors, Oligodendrocyte Mature,213

Pyramidal L4 and Inhibitory Vip, finding most of the gene count distribution to be significantly214

overdispersed relative to the Poisson (Supplementary Fig.5a). Yet we did not find zero-inflated215

genes in these clusters. This is quite possibly because the targeted genes are all canonical markers,216

which are expected to mostly exhibit constitutive expression and hence unlikely to have inflated217

zeros caused by transcriptional bursting. However, heterogeneity within a population can also result218

in zero-inflation, which is common in actual DE analysis. We thus increased the heterogeneity219

within the groups by focusing on three major cell types , Oligodendrocytes, Pyramidal neurons and220

Inhibitory neurons. We then identified two, one and two out of the 33 genes to have significant221

zero-inflation (Supplementary Fig.5b).222
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Benchmarking using simulated data223

We next performed DE analysis using the simulated data and benchmarked DECENT against several224

existing methods. These includes SCDE (Kharchenko et al., 2014), MAST (Finak et al., 2015),225

Monocle2 (Trapnell et al., 2014) (Qiu et al., 2017), ZINB-WaVE adjusted edgeR (Van den Berge226

et al., 2018), and the standard edgeR (McCarthy et al., 2012) to represent bulk DE methods. We227

set a fraction of genes in the simulated data to have higher log fold-changes and used those as the228

reference genuine DEGs for benchmarking. Firstly, to assess the general ability of each method229

to distinguish between DEGs and non DEGs, we used the receiver operating characteristic (ROC)230

curves based on the nominal p-values produced by different methods. In actual DE analysis, usually231

only the low p-value region is of interest, so we used the partial ROC (pROC) curve (McClish, 1989)232

(Robin et al., 2011) focusing on the region with false positive rate smaller than 0.1. As shown in233

Fig.3a, DECENT outperformed all other methods in the simulation study. To further evaluate the234

level of false positives among the top discovered DEGs, we used the false discovery rate (FDR)235

curve, describing the fraction of false discoveries among the top n declared DEGs by each method.236

Again DECENT showed the smallest fraction of false discoveries consistently (Fig.3b).237

Many existing scRNA-seq data datasets do not have spike-ins. Also, the recently popularized238

droplet-based technologies are incompatible with spike-ins. We therefore want to enable the usage of239

DECENT without spike-ins. To this end, we have developed a strategy to obtain functional dropout240

models only using information of endogenous genes. Basically, we assign ranked random capture241

efficiencies to each cells according the empirical distribution of the observed library size. We then242

fit the DECENT model assuming no spike-in information available. According to certain properties243

of our model, other components will compensate for the inaccuracy of capture efficiency estimates244

(Supplementary Fig.6, see Methods for details). To examine how this affect DE analysis, we set the245
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range of the ranked random capture efficiencies to be either the same as (1x), half (0.5x) or one and a246

half (1.5x) the true range. We found DE analysis is mostly unaffected by using this strategy to obtain247

dropout models and robust to inaccurate capture efficiencies. Except the performance decreases248

slightly when the capture efficiencies are specified too high (Supplementary Fig.7). This is possibly249

because the unaccounted variation is so large that it goes beyond the extent to which the model can250

adjust itself. Therefore, we generally recommend setting smaller ranges of capture efficiencies.251

Benchmarking using real data252

The simulation study has demonstrated the feasibility of our model mathematically. However, it253

cannot prove that our model assumptions or DE strategy are appropriate for genuine biological254

data and questions. Hence, we further benchmarked our model against existing methods using real255

datasets. The difficulty in benchmarking using real datasets is that the genuine DEGs are usually256

unknown. In order to obtain a credible list of genuine DEGs, we searched for scRNA-seq datasets257

that have matching bulk RNA-seq experiments, which means a bulk RNA-seq was also performed258

using cells from exactly the same tissues or cell lines. We found four such experiments in total that259

also used UMI. Then a DEG list derived from these bulk data can be used as the reference set for260

benchmarking. These includes two plate-based experiments and two droplet-based experiments,261

with different scales, sources of tissues or cell lines and observed proportion of zeros (Supplementary262

Table 2) (Tung et al., 2017) (Soumillon et al., 2014) (Savas et al., 2018) (Chen et al., 2018).263

We again evaluated the performance using pROC and FDR curves. The same methods as264

the last section were benchmarked using all four datasets, except that we also applied TASC to the265

Tung et al. data where spike-ins are available. As shown in Fig.4 and 5, DECENT showed superior266

performance on all four datasets. MAST showed stable and generally acceptable performance across267

datasets, while the performance of SCDE appeared to be dataset-specific, showing inadequacy for268
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droplet-based experiments. The Monocle negative binomial-based model based on observed UMI269

count did not show satisfactory performance. The ZINB-WaVE adjustment of edgeR did not show270

noticeable improvements over standard edgeR for three out of four datasets. But it remarkably271

outperformed edgeR on the Chen et al. data, where both molecule counts and the cell numbers were272

high. To demonstrate the merit of performing DE analysis using a inferred pre-dropout rather than273

the observed expression, we selected a few genuine DEGs in the Tung et al. data that are detected274

by our method and compared their expression levels between the two cellular groups using either275

the observed counts or inferred pre-dropout counts. We discovered that the differential expression276

between two groups became more prominent in the pre-dropout counts (Supplementary Fig.8).277

ERCC spike-ins were available in Tung et al. data. We thus used capture efficiencies estimated278

from spike-ins for the result shown. This dataset also enabled us to examine how specifying the279

ranked random capture efficiencies impacts DE performance on real data. We performed DECENT280

DE analysis again using the ranked random capture efficiencies specifying the range as half, the281

same and 1.5 times the range of the spike-in estimates. The results turned out to be in concordance282

with the simulation studies. Although optimal performance was achieved when capture efficiencies283

estimated from spike-ins were used, there were only small decreases in performance when using the284

ranked random capture efficiencies (Supplementary Fig.9). This convincingly demonstrated the285

viability of using the spike-in capture efficiencies for endogenous RNA and that DECENT’s DE286

performance is also robust to misspecified capture efficiencies.287

For the Soumillon et al. data, the median of the log fold-change estimates deviates from288

zero when the standard MLEs were used to estimate the cell size factors s j . This default size factor289

estimator effectively performs library size normalization on the pre-dropout counts yi j . The bias290

greatly reduced when using the trimmed mean of M values (TMM) method (Robinson and Oshlack,291

2010), to estimate the size factors instead and the overall performance of DECENT was slightly292
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improved (Supplementary Fig.10). This suggested that different datasets tend to require different293

normalization strategies, and suggested the flexibility of our method with regards to normalization294

strategy.295

The benchmarking so far was based on two group comparisons. DECENT performs statistical296

tests under the under the well-established generalized linear model (GLM) framework and can297

readily accommodate more complex experimental designs. The Soumillon et al. data is a time298

course experiment, with three time points involved in adipose stem cell differentiation. This allowed299

us to have a glance at how different DE methods perform on more complex UMI-based scRNA-seq300

experiments beyond two-group comparisons. We tested the hypothesis that expression of a gene301

is constant across the three time points. Except for SCDE, which is designed only for two group302

comparison, and TASC, which requires spike-ins, other methods were compared in this setting.303

The reference genuine DEGs across the three time points were also derived from the matching304

bulk experiments. DECENT again outperformed all other methods with an even more pronounced305

advantage (Supplementary Fig.11).306

Controlling type I errors307

Finally, we examined the ability of DECENT to control type I errors. Towards this end, we created a308

scenario where no genuine DEGs are expected, thus all discovered DEGs are false positives. We309

randomly split the 221 cells from individual NA19239 in Tung et al. data in two groups of sizes310

110 and 111. Since the split is random, no biological variation would be expected between the two311

group of cells, on average. Then the same set of DE methods as above were used to perform DE312

analysis comparing the two groups. The null hypothesis should hold true for all the genes and hence313

the nominal p-values obtained from each method should be uniformly distributed. As shown in the314

quantile-quantile plots, most of the methods produced p-value distributions as desired, including315
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DECENT both with and without using the spike-ins. Only SCDE was producing a conservative316

p-value distribution with a spike at one, and the p-values from Monocle2 were skewed towards the317

lower end (Fig.6a). This suggests the negative binomial model fitted directly to the observed data as318

used in Monocle2 is not able to adjust for the extra variability in the molecule capturing process,319

thus producing false positives.320

We conducted the comparison on twenty random splits of the cells. To perform an overall321

assessment, we calculated the observed proportion of declared DEGs by each method using a p-value322

cut-off of 0.05. This proportion equals type I error rate and is supposed to match the nominal323

p-value cut-off on each random splits. The results coincided with that shown in the single split case.324

Most methods consistently produced observed type I error rates close to 0.05, whereas SCDE was325

overly conservative and Monocle2 produced the largest number of false positives (Fig.6c).326

We also carried out a similar analysis using the Soumillon et al. data. In each comparison,327

we randomly sampled two groups of 200 cells from day 0. And again twenty comparisons were328

conducted. Given the different features of this dataset, such as being more sparse, MAST exhibited329

overly low type I error rates with p-value cut-off 0.05, whereas DECENT still showed acceptable330

control of false positives (Fig.6b, 6d). This could be that the hurdle model used by MAST was331

overly adjusting for the observed zeros without distinguishing between dropouts and real biological332

ones. SCDE appeared to have more reasonable observed type I error rate in this case but a closer333

examination on p-value distribution revealed the same concerns as previously (Fig.6b).334

Discussion335

We presented DECENT, a novel statistical method for performing DE analysis on UMI-based336

scRNA-seq data. The UMI-count data has provided us with a great chance to model the molecule337
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capturing process. The technical variation occurring in this process is precisely characterized by338

gene and cell-specific beta-binomial dropout models. We were able to perform DE analysis on339

the inferred pre-dropout data where most technical variation was removed, and hence achieving340

superior performance. We demonstrated the flexibility of our model for being usable either with or341

without spike-ins and compatible with different normalization strategies. Also, the model is based342

on the established GLM theory thus capable of analyzing complex designed experiments. We tested343

model under the three group one-way ANOVA setting and obtained promising results. Adding more344

cell-level covariates would also be relatively straightforward (see Methods) and this is catered for in345

our software.346

External RNA spike-ins, such as ERCC spike-ins (Jiang et al., 2011) are a good approach of347

measuring the technical variation in scRNA-seq data. We use them to estimate capture efficiencies in348

our model when available. They have also been used in some other scRNA-seq methods (Lun et al.,349

2017) (Jia et al., 2017). However, given the different features of external RNA spike-in molecules350

compared with endogenous transcripts such as poly(A) stretch and sequence length, it has been351

previously found that the amount of technical variation, such as the magnitude of capture efficiencies352

(Svensson et al., 2017), differs between the two types of molecules. Therefore, models estimated353

using spike-ins may not be entirely appropriate for endogenous transcripts. How to effectively make354

use of spike-ins is still a challenging topic in scRNA-seq data analysis. Efforts were made in looking355

for stably expressed genes in data to substitute for spike-ins (Lin et al., 2017) (Yip et al., 2017). We356

have used ERCC spike-in mainly as a tool for exploring. If we consider spike-ins as a separate357

groups of molecules that have a similar capture process to the endogenous RNA molecules, we can358

then use the same dropout parameters estimated using spike-ins when dealing with endogenous359

genes. But our method is also flexible enough and allows some of the dropout parameters to differ360

between the spike-ins and endogenous genes to reflect potential differences in the capture process of361
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the two types of molecules.362

In our initial investigation of the dropout model, we found extra variation in the data compared363

to the cell-specific binomial dropout model. This extra variation is more likely to be spike-in-specific364

biases rather than random noise (Supplementary Fig.2). However, unlike cell-specific capture365

efficiencies, the estimated spike-in-specific biases cannot be applied to endogenous genes. Also,366

we are not able to estimate the gene-specific bias using gene abundance because it is not separable367

from actual gene mean expression. The separation is only achievable if extra information other than368

transcript abundance is available. For example, it is plausible that capture efficiencies would depend369

on gene sequence features such as GC-content and the length of the poly(A) stretch. A more refined370

dropout model might be built by modeling the relationship between these gene-specific features and371

the gene-specific biases of capture efficiency.372

Although multilevel models with EM algorithm are intrinsically computationally intensive,373

DECENT has achieved acceptable speed with a series of acceleration approaches such as a gaussian374

quadrature approximation for large integration and parallelization of all the main steps. For instance,375

our 500 cells with 3,000 genes simulated data took ∼18 minutes and the largest Chen et al. data376

with 6,875 cells and 12,929 genes took ∼8 hours to finish on a 28-core XENON Radon Duo R1885377

server node with Intel(R) Xeon(R) E5-2690 v4 CPUS @ 2.60GHz.378

Some existing models for scRNA-seq allow differential tests beyond the conventional DE379

analysis, such as testing on differences in the zero fraction, biological variation or even the overall380

distribution (Korthauer et al., 2016) (Wu et al., 2018) (Wang et al., 2018). But there is still difficulty381

in assessing the performance such as accuracy, type I error control, etc. of these types of tests due to382

lack of ground-truth. The smFISH technology is under rapid development. It is able to produce383

accurate measurements of the biological variation and the zero fraction. As the amount of data and384

number of genes profilable increases, this should provide us with an opportunity to assess these tests385
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objectively. While DECENT focuses on performing a reliable statistical test for the conventional386

DE of the mean, it could be extended for performing other types of tests in relatively straightforward387

manner, given its general modeling framework. For example, we can also model the zero-inflation388

parameter in the pre-dropout distribution as a function of cellular groups through a logistic linear389

regression model and test for differences in inflated biological zeros. However, some alteration of390

the parameter estimation strategy might be needed to achieve valid testing results.391

Methods392

Model formulation393

DECENT assumes that unique molecular identifiers (UMI) (Islam et al., 2014) have been used in the394

scRNA-seq experiment for counting molecules. To permit separation of biological from technical395

variations, we first assume that in an idealized setting where all molecules are captured, the observed396

count yi j for gene i in cell j can be modeled as a zero-inflated negative binomial (ZINB) random397

variable with parameters θi j = (π0i, µi j, s j, ψi), where π0i is a gene-specific zero-inflation parameter,398

ψi is a gene-specific dispersion parameter, µi j is the gene-specific and cellular group-specific mean399

parameter and s j represents the size factor for cell j that measures differences in the amount of400

starting material, namely total mRNA between cells.401

p(yi j = k; θi j) =


π0i + (1 − π0i)

(
ψ−1i

ψ−1i +sj µi j

)ψ−1i
, k = 0.

(1 − π0i)
Γ(ψ−1i +k)

k!Γψ−1i

(
ψ−1i

ψ−1i +sj µi j

)ψ−1i (
sj µi j

ψ−1i +sj µi j

) k
, k>0.

(2)

The first line gives the probability of a biological zero. For lowly expressed genes with small402

mean parameter µi j , the contribution from the second component can be considerable, but for higher403
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abundance genes, the probability of a biological zero largely depends on π0i, with larger values of404

this parameter being closely associated with higher probabilities of a biological zero.405

The gene-wise mean parameter µ = (µi j) is assumed to depend on the cell type or group406

through a log-linear model407

log µ = Xβ +Wγ (3)

where X is the design matrix providing group information and β are the coefficients. For the408

completeness of a generalized linear model framework, we also allow including cell-wise covariates409

W to remove unwanted variation (e.g batch effects, cell-cycle phases, etc.). In the most common410

two group comparisons, we have411

log µi j = β0i + β1i x j +

q∑
m=1

γimwmj (4)

where x j is simply the binary indicator of cellular group and β1i has interpretation as the log-fold412

change (logFC) parameter for gene i.413

In reality, yi j is unobservable. Instead we have the observed counts zi j that are what remains414

of the yi j after dropout. DECENT uses a modified beta-binomial distribution to model the capturing415

process (see Results). We suppose, given yi j as the unobserved pro-dropout molecule count, that the416

observed count zi j follow a beta-binomial distribution417

P(zi j = l | yi j = k) =
(
k
l

)
B(l + ai j, k − l + bi j)

B(ai j, bi j)
, (5)

where B(., .) is the Beta function. We reparametrize the model by418
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ηi j =
ai j

ai j + bi j
= η j (6)

ρi j =
1

ai j + bi j + 1
(7)

where we suppose ηi j does not depend on i, and so η j represent the cell-specific capture419

efficiency in cell j. The amount of variability within the cell is measured by the dispersion parameter420

ρi j that depends on the mean expression of gene i in cell j via a cell-specific linear model:421

logit(ρi j) = τ0 j + τ1 j · log(s j µi j) (8)

Capture efficiencies η j are estimated using spike-ins when available. We also provide422

a strategy to produce functional capture efficiencies when spike-ins are not available. These423

will be discussed in the following sections. Since the pre-dropout counts for endogenous genes424

are unobserved, we use an Expectation-Maximization algorithm to estimate the gene-specific425

parameters θi = {π0i, β0i, β1i, γi
, ψi} and cell-specific parameters s j . Not surprisingly, the E-step426

involves evaluating the conditional probability of an observed zero count being a biological zero,427

P(Ei j = 0 | zi j = 0; θ0i , s
0
j ) = 1 − P(Ei j = 1 | zi j = 0; θ0i , s

0
j ), where Ei j is a binary indicator of428

gene i being truly expressed in cell j, i.e. yi j > 0 (see Supplementary methods for details). The429

τ j = (τ0 j, τ1 j) parameters in the dropout model are estimated during the EM iterations using either430

spike-ins or endogenous gene counts. If endogenous genes are used to estimate τ j it would allow431

some dropout parameters to be different between the spike-ins and endogenous genes, reflecting432

inherent differences in their dropout processes.433
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Estimating capture efficiencies434

Spike-in data are used to estimate the capture efficiencies when available. Suppose we added n spike-435

ins at the known concentrations c1, c2, . . . cn into cell j and subsequently observe z1 j, z2 j, . . . znj436

molecules respectively. The cell-specific capture efficiency for any cell j is estimated as the437

proportion of molecules observed after sequencing relative to the total number of molecules initially438

added:439

η̂ j =

∑n
i=1 zi j∑n
i=1 ci

, (9)

This is the method of moments estimator (MME) of η j under the beta-binomial-Poisson model for440

spike-ins (see Supplementary Methods).441

Many scRNA-seq data do not have spike-ins. Also, although the spike-in capture efficiencies442

can be used as a good approximation, they may not be exactly the same as those of endogenous RNA.443

Interestingly, we found that if we specified a set of inexact capture efficiencies, other components of444

the model will compensate for the inaccuracy and produce DE results almost as reliable as if we had445

the correct values. This is due to a property of the our model that is explained below:446

Let Y be the pre-dropout count where Y ∼ ZINB(π0, sµ, ψ). Given Y , the observed data Z447

follows Beta-Binomial distribution, Z | Y = y ∼ BB(y, a, b). This is the usual parametrization of448

beta distribution where η = a
a+b and ρ = (a + b+ 1)−1. It turns out that the marginal distribution FZ449

of Z can be approximated by the marginal distribution FZ ′ of Z′, i.e.450

FZ (z; π0, s, µ, ψ, a, b) ≈ FZ ′(z; π0, s′, µ, ψ, a′, b′) (10)

where Z′ | Y ′ = y′ ∼ BB(y′, a′, b′) and Y ′ ∼ ZINB(π0, s′µ, ψ). When we misspecify capture451

efficiency η as η′, then a, b, and s correspondingly become a′ = η
1−η′b, b′ = η

η′b and s′ = η
η′ s to452
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keep a similar marginal distribution. This is illustrated in Supplementary Fig.6.453

The above result means that if we misspecify the capture efficiency by using η′ rather than η,454

the misspecification can be approximately corrected by scaling the size factor estimates accordingly.455

The remaining effect will be compensated by adaptive estimation of τ. Certainly it is still preferable456

to get capture-efficiency estimates as close as possible to the true value. Motivated by the above457

results and our experience with real datasets showing that capture-efficiency is the biggest factor458

contributing to the variation in the observed library sizes, we devised a method for generating459

functional capture efficiencies when spike-ins are not available:460

This method requires the range of capture efficiency be supplied. Let the lower and upper461

bounds of this range be minη and maxη, respectively. The cell-specific capture efficiencies are462

specified as follows:463

• Compute library size for each cell and denote the log10 of these by L1, L2, . . . LN . To minimize464

the impact of a few genes having very large counts, we can also use trimmed sums instead of465

full sums here. Denote the minimum and maximum log10 library size as Lmin and Lmax .466

• Calculate weight for cell j as w j =
Lj−Lmin

Lmax−Lmin
.467

• Estimate the capture efficiency for cell j as (1 − w j)minη +w j maxη. This ensures that cells468

with larger library size will have larger capture efficiency and the capture efficiency estimates469

are bounded within (minη,maxη) interval.470

We refer to this as the ranked random capture efficiency.471

Estimating the parameters τ j472

Besides the capture efficiencies, the parameters τ j in the logistic model for the beta-binomial473

dispersion parameter are also crucial for the dropout model. Like capture efficiencies, we can opt to474
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use τ j estimated from spike-ins for endogenous genes, when spike-ins are available. But we can475

only estimate τ j using endogenous gene counts when spike-ins are not available. We found that the476

τ j estimates for endogenous genes often differ from those for the spike-ins in real scRNA-seq data.477

Therefore, we strongly advise users to estimate the parameters τ j using endogenous gene counts.478

This also make the model more robust to misspecification of capture efficiencies, as the τ̂ j will now479

account for the variation due to inaccurate capture efficiencies. However, estimating cell-specific τ̂ j480

using endogenous genes can be a difficult task especially for sparse data with low counts or large481

zero fractions. We therefore implemented two options for obtaining the τ̂ j estimates. The first482

one is to assume τ̂ j are constant across cells, resulting two global parameters (τ0, τ1). Under this483

assumption, we have484

Within each EM iteration, after the M-step (see Supplementary methods)485

• Given µ̂i, ŝ j and capture efficiency estimates η̂ j , the correlation parameter for each gene i is486

estimated by maximizing487

∑
j

log PBB(zi j | yi j = ŝ j µ̂i, η̂ j, ρi) (11)

where PBB is the Beta-Binomial density with probability η̂ j , size parameter ŝ j µ̂i and dispersion488

parameter ρi.489

• The τ0 and τ1 estimates are updated as the intercept and slope estimates of the following490

regression model:491

log
ρi

1 − ρi
= τ0 + τ1 log{ µ̂i(1 − π̂0i)} (12)

When we have enough information in the data, the other option is to estimate cell-specific τ̂ j492
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by493

• Given E(yi j | zi j) from the E-step and CE estimates η̂ j , for each cell j, the cell-specific494

parameters τ0 j and τ1 j are updated by maximizing the following log-likelihood495

∑
i

log PBB(zi j | yi j = E(yi j | zi j), η̂ j, ρi j), (13)

where ρi j is a function of τ0 j and τ1 j through496

log
ρi j

1 − ρi j
= τ0 j + τ1 j log{ µ̂i(1 − π̂0i)} (14)

DE analyses497

Differential expression across two cellular groups for the ith gene is assessed by testing the hypotheses:498

499

H0 : β1i = 0 vs H1 : β1i , 0 (15)

using the likelihood ratio test (LRT) statistic,500

−2{`I(θi = θ̂
H0
i ) − `I(θi = θ̂i)} (16)

where θH0
i is the maximum likelihood estimator (MLE) of θi under the restriction that β1i = 0, θ̂i is501

the MLE under the unrestricted model and `I is the log-likelihood of the observed incomplete data502

zi j . For simple two cell-type comparisons, the statistic is approximately distributed as χ21 under503

H0. More generally, when performing DE across p different cell-types or conditions, the statistic is504

approximately distributed as χ2p under H0.505
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Public datasets506

• Tung et al. dataset: This dataset is from the (Tung et al., 2017) benchmarking scRNA-seq507

experiment. We downloaded the filtered UMI count matrix from their GitHub repository508

(https://github.com/jdblischak/singleCellSeq). The full dataset contains three Yoruba (YRI)509

induced pluripotent stem cell (iPSC) lines, with three 96-well plates per individual. ERCC510

spike-ins (Jiang et al., 2011) and UMI were used. Each replicate was also used to generate a511

matching bulk RNA-seq sample. We only used data of two individuals NA19101 (201 cells)512

and NA19239 (221 cells) for the analyses. Reference genuine DEGs were derived by selecting513

the 500 DEGs with smallest p-values produced by limma-voom (Ritchie et al., 2015) using the514

bulk RNA-seq samples of the two individuals.515

• Soumillon et al. dataset: This dataset is publicly available from Gene Expression Omnibus516

(GEO) repository GSE53638. Cells were collected at different stages and different time517

points of directed differentiation of human adipose-derived stem/stromal cells (Soumillon518

et al., 2014). FACS sorted cells were sequenced using the SCRB-seq protocol with UMI. To519

benchmark DE methods using a two group comparison, we compare the stage-3 differentiated520

cells at day 0 (baseline, 943 cells) versus day 7 (1006 cells). All three time points day 0,521

day 3 (1019 cells) and day 7 of stage-3 differentiated cells were used for the three group DE522

analysis. Cells have been filtered by the authors and genes with log total UMI counts over one523

median absolute deviation (MAD) lower than the median were removed after subsetting the524

cells. The matching bulk RNA-seq data have only one sample per time point. Therefore, we525

selected the 500 genes with the largest log fold-change as the reference genuine DEGs for two526

group comparison. We also used the 500 genes with largest variances across three time points527

for benchmarking the three group analysis. Log fold-changes and variances were calculated528

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/225177doi: bioRxiv preprint 

https://doi.org/10.1101/225177
http://creativecommons.org/licenses/by-nc-nd/4.0/


DECENT

based on log count per million (CPM) with high prior count 5 for stabilization.529

• Savas et al. dataset: The experiment profiled the transcriptomes of tumour infiltrating T cells530

from triple-negative breast cancer patients. The full dataset is available from GSE110686.531

Pre-processing and cluster analysis were performed as described in (Savas et al., 2018). We532

used the CD8+ TRM (606 cells) and CD8+ non-TRM (1097 cells) clusters (CD8+γδ together533

with CD8+ effector memory) as the two groups to be compared. Data from case one was used534

in the analysis. A corresponding bulk RNA-seq experiment is available from GSE110938,535

comparing CD8+CD103+ and CD8+CD103− FACS sorted populations. The bulk DEGs used536

as our reference gene list is available as a supplementary table in the original paper.537

• Chen et al. dataset: The single-cell and bulk RNA-seq data are both available from GEO538

entry GSE113660. The scRNA-seq experiment profiled over six thousand cells from the Rh41539

cell line. After quality control and cluster analysis, two clusters representing respectively540

CD44+ (3074 cells) and CD44− (3801 cells) populations were obtained. The cluster labels541

were acquired through personal contact with the authors. Genes with total UMI count less542

than 100 were filtered out. The matching bulk RNA-seq data has three batches. Each batch543

contains a CD44 high, a CD44 low and an unsorted sample obtained via FACS-sorting. The544

top 500 DEGs comparing CD44 high and CD44 low samples were used as reference DEGs.545

• Zeisel et al. dataset: The experiment sequenced three thousand cells in the mouse somatosen-546

sory cortex and hippocampal CA1 region. Cells were classified into two levels of cell types.547

The dataset is available from the authors via: http://linnarssonlab.org/cortex. We only used548

the cells within the "pyramidal CA1" level 1 class for our analysis. This dataset exhibits very549

high proportions of spike-in counts in most cells. This suggests intense competition between550

the spike-in and endogenous molecules for read counts and the quantification of endogenous551
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genes is likely to be affected. To moderate this, we removed cells with more than 50% UMI552

counts coming from spike-ins when fitting the model for endogenous genes (remaining 932553

cells). We further filtered out genes with total UMI counts over one MAD lower than the554

median.555

• ERCC spike-in datasets: Apart from the ERCC spike-in data within the Tung et al.556

and Zeisel et al. dataset, three other datasets were downloaded from their NCBI GEO557

repositories: GSE54695 (Grun et al.), GSE65525 (Klein et al.) and GSE63473 (Macosko558

et al.). The Zheng et al. ERCC spike-in experiment is available on the 10x Genomic559

website: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/ercc.560

All spike-in datasets underwent the same filtering steps. We removed spike-ins that have561

nominal count < 0.05 or a mean observed count higher than the nominal count. We filtered562

out cells with total UMI counts more than 2 MADs below the median total UMI count.563

• osmFISH dataset: The authors applied a newly developed cyclic single-molecule FISH564

protocol, termed ouroboros smFISH (osmFISH) to cells from the mouse somatosensory cortex565

tissue. The experiment quantified RNA molecules from 33 target genes in more than four566

thousand cells in a brain tissue section. The smFISH count data and cluster labels are available567

at http://linnarssonlab.org/osmFISH/.568

Fitting the dropout models using ERCC spike-ins569

We use a Poisson distribution to model the pre-dropout molecule count of spike-ins:570

p(yi j = k) =
ck

i

k!
exp(−ci) (17)
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Under both the binomial and beta-binomial dropout models, the capture efficiency η j is estimated571

as in (10) above. It is either the MLE or MME for η j (see Supplementary Methods). In our572

investigation of the beta-binomial dropout model, we also needed to estimate the parameters ρi or573

τ j in each cell-wise model. To take into account this Poisson variation in the estimation of τ j for574

spike-ins, we first simulate the unobserved count ỹi j under Poisson(ci). Each spike-in was simulated575

50 times to achieve stable estimation. Then the the MLEs ρ̂i or τ̂ j under either BB(ỹi j, η j, ρi) or576

BB(ỹi j, η j, logit−1(τ0 j + τ1 j log(ci)) can be obtained by maximizing the beta-binomial likelihood577

function.578

Calculating the deviances for the binomial and beta-binomial dropout models579

Under the binomial dropout model, the distribution zi j is another Poisson distribution with rate η jci580

because the binomial thinning of Poisson is still Poisson (Casella and Berger, 2002). Therefore, the581

binomial deviance for spike-in i in cell j is simply:582

dB(zi j, η̂ jci) = 2

(
zi j log

zi j

η̂ jci
− zi j + η̂ jci

)
(18)

Under the beta-binomial dropout model zi j | yi j ∼ BB(η j, yi j, ρi j), the deviance for spike-in i583

in cell j is given by,584

dBB(zi j, η̂ jci, ρ̂i j) = −2{log P(zi j ; ci, η̂ j, ρ̂i j) − log P(zi j ;
zi j

η̂ j
, η̂ j, ρ̂i j)} (19)

where P(zi j ; c, η, ρ) = ∑
y P(zi j | yi j ; η, ρ)P(yi j ; c) is the marginal probability distribution of the585

observed data. Here P(zi j | yi j ; η, ρ) and P(yi j ; c) are the beta-binomial and Poisson probability586

mass function (PMF). In practice, the marginal distribution was calculated numerically using587

Gaussian quadrature that approximates the summation as integration with a continuity correction.588
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Then the deviances for cell j models are589

DB(z j, η̂ jc) =
n∑

i=1

dB(zi j, η̂ jci) (20)

or590

DBB(z j, η̂ jc) =
n∑

i=1

dBB(zi j, η̂ jci) (21)

which asymptotically follow χ2n−1 and χ
2
n−3, respectively, under the null hypothesis.591

Testing for overdispersion and zero-inflation in the smFISH data592

We denote the smFISH molecule count of gene i in cell j by yi j , as it is supposed to be a accurate593

quantification of the actual RNA count without dropout. To investigate the pre-dropout distribution,594

we fitted three models: Poisson(s j µi), NB(s j µi, ψi) and ZINB(s j µi, ψi, πi) to the (yi j), where s j is595

the cell-wise size factor with the restriction s̄ = 1, µi is the gene-wise mean parameter, ψi is the596

gene-specific NB dispersion parameter and πi is the gene-specific zero-inflation parameter. Under597

all three models, the parameters s j can all be estimated by MLE ŝ j =
∑

i yi j
1
m

∑
j

∑
i yi j

, where m is the598

number of cells. This allowed us to fit gene-wise models easily using the R GLM framework with599

the ŝ j supplied as offsets. We used the glm function from the stats package to fit the Poisson models,600

the glm.nb function from the MASS (v7.3-50) package for fitting the NB models and the zeroinfl601

function in the pscl package (v1.5.2) for the ZINB models. To test for overdispersion in each gene,602

we used the Cameron and Trivedi’s score test (Cameron and Trivedi, 1990) on the fitted gene-wise603

Poisson model. We used the dispersiontest function implemented in the AER(v1.2-5) R package604

with NB2 as the alternative model. As for testing zero-inflation, we performed a likelihood-ratio test605

between the fitted NB and ZINB model of each gene. Note that the null distribution in this case is606

asymptotically 1
2 χ

2
0 +

1
2 χ

2
1 rather than χ21 since the null hypothesis πi = 0 is on the boundary of the607
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parameter space [0,1].608

Simulation609

We simulated data for 500 cells belonging to two different cell types (224 vs 276 cells for each610

type). For each cell, the observed count data for 3000 endogenous genes and 92 ERCC spike-ins are611

generated from a zero-inflated negative binomial (ZINB) model for the pre-dropout count. For each612

gene, the gene-specific mean and dispersion parameters are sampled randomly from the empirical613

distribution of these parameters in Tung’s data for NA19101 and NA19239 cell lines. Because614

Tung’s data contains atypically low percentage of zero counts for scRNA-seq data (≈ 35%), the615

mean parameter for our simulation studies is scaled by a factor of 0.1, resulting in approximately616

80% zero counts in the dataset. Approximately 10% of the genes are designated as DE genes and617

their fold-change parameters are randomly generated from Gamma(2,2) distribution. For non DE618

gene, the fold change parameters are set to 1.619

Biological zeroes are added through zero-inflated parameter π0, generated from Beta (3,17)620

distribution, which results in an average of 15% biological zeroes in the pre-dropout counts. The621

capture efficiency (CE) parameters are also generated from the empirical distribution of CE in data622

for NA19101 and NA19239 cell lines. Once the pre-dropout counts are simulated, the observed623

counts are generated by applying Beta-Binomial dropout model to the pre-dropout counts. Global624

dropout parameters are used with τ0 = −1.5 and τ1 = −0.3. Finally, the size factor parameters are625

generated separately for the two cell-types so on average the first cell type has smaller size factor626

than the second. This is achieved by generating the size factors for the first cell type from (scaled)627

Gamma (4,5) distribution and for the second cell type from (scaled) Gamma (5,4) distribution.628

The scaling factors are chosen so that the average size factors across all cells is equal to 1. Before629

performing the benchmarking, we removed low abundance genes that are expressed in less than 3630
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cells.631

Performance evaluation632

The performance of different methods for identifying genuine DEGs was evaluated using the partial633

Receiver Operating Characteristic (pROC) curve of true positive rate (TPR) plotted against false634

positive rate (FPR) within the range of FPR < 0.1 and false discovery rate (FDR) curve showing the635

FDR among the top n discovered DEGs. These rates are defined as:636

TPR =
TP

TP + FN
(22)

FPR =
FP

FP + T N
(23)

FDR =
FP

FP + TP
(24)

where TP, FP, TN and FN denote number of true positives, false positives, true negatives and false637

negatives, respectively.638

Benchmark settings639

DECENT were run with its default parameters on the Soumillon et al. and Savas et al. datasets.640

Cell-specific estimation of τ j was used in Tung et al. data and disabled in all the other data.641

This is because an acceptable amount of information in the data is required in order to obtain642

reliable cell-specific τ j estimates. Generally we suggest trying cell-specific estimation only on643

datasets having less than ∼70% observed zeros, and ideally with spike-ins to estimate the capture644

efficiencies. We increased the range of ranked random capture efficiencies for Chen et al. data from645

the default [0.02, 0.1] to [0.04, 0.2] given its high counts. We used the default settings for MAST646

(v1.6.1), Monocle2 (v2.8.0), TASC and edgeR (v3.22.2). Log CPM with prior count 1 was used647
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as input for MAST and the likelihood ratio test is used in edgeR. As for SCDE (v1.99.2), we set648

min.count.threshold to 1, increased min.nonfailed to 10 as suggested by the authors for using it on649

large-scale UMI data. For ZINB-WaVE (v1.2.0), the performance appears to be very sensitive to the650

parameter epsilon, and so we selected the optimal epsilon parameter for each dataset from a range of651

103 to 1013. The groups to be compared were supplied as cell-level covariate X. Other parameters652

including those in the following weighted edgeR analysis were left as default.653

To derive reference DEGs, we used default settings of limma-voom (v3.36.1) for the DE654

analyses of the Tung et al. and Chen et al. matching bulk RNA-seq data. In these two cases, we655

retained genes with cpm > 1 in more than 3 samples. For the Chen et al. bulk data, a batch dummy656

variable was included in the design matrix to perform paired comparisons. For the Soumillon et657

al. bulk data, we retained genes with non-zero measurements in both day 0 and day 7 samples for658

two group comparison, and those which are positive in all three time points for the three group659

comparison. The top DEGs were inferred by ranking in terms of log fold-changes or variances as660

describe above.661

TheR scripts used for the analyses are available viaGitHub:https://github.com/cz-ye/DECENT-662

analysis.663

Software availability664

DECENT is implemented as aRpackage and available from theGitHub repository: https://github.com/cz-665

ye/DECENT.666
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Figures827

Figure 1: Modeling extra-binomial variation in the molecule capturing process. We evaluate
the binomial and beta-binomial dropout models using the ERCC spike-in data from the Tung et
al. experiment. (a) The observed distribution (red) of deviances with cell-wise binomial dropout
model shows notable deviation from the expected χ2 distribution the under null hypothesis. This
indicates inadequacy of the binomial dropout model. (b) Modeling the relationship between the
spike-in nominal count ci and the dispersion parameter ρ in the beta-binomial dropout model. If the
parameter is estimated in a spike-in specific manner, a high correlation between the ρi estimates and
the true pre-dropout mean abundance, namely the nominal count ci, can be observed, which are
shown as black points. We build a cell-wise linear model to characterize this relationship. Each
blue line represents a fitted cell-wise model, which is shown to adequately describe this relationship.
(c): A scatter plot comparing the cell-wise deviances under the binomial and beta-binomial dropout
models to assess goodness-of-fit. Deviances were standardized by dividing by the degrees of freedom
to enable comparison, and logged. The blue and red marginal densities represent the observed
distributions of deviances under the two models respectively. It can be seen that the beta-binomial
dropout model fits better than the binomial model in the majority of the cells.
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Figure 2: Inferring pre-dropout molecule counts in simulation. (a) Scatter plot comparing for
each gene the estimated proportion of zeros of the fitted pre-dropout distribution with the true
proportion of zeros in the pre-dropout counts. (b) Scatter plot comparing the expected variance of
the fitted pre-dropout distribution with the true gene-wise variance in the pre-dropout counts. (c)
Scatter plot comparing the expected value of pre-dropout count (see Supplementary methods for
details) under the fitted model with the true pre-dropout counts. We showed a random subsample of
5 percent of all the non-zero counts. The estimated pre-dropout counts used to calculate (a) and
(b) were based on single imputation, i.e., drawing a single value from the conditional pre-dropout
distribution for each gene and each cell given the parameter estimates and the observed data. The
estimated pre-dropout counts shown in (c) were calculated as the expected value of the conditional
pre-dropout distribution (See Supplementary Methods).
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Figure 3: Differential expression analysis of simulated data. (a) Partial receiver operating
characteristic curve for differential expression methods on the simulated data. (b) False discovery
rate curves for differential expression methods on the simulated data. Both curves only focus on the
low p-value region, since other regions were of little interest in actual DE analysis. Z-edgeR stands
for ZINB-WaVE-adjusted edgeR.
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Figure 4: Partial receiver operating characteristic curves for differential expression methods
on real datasets. Evaluating the performance of different methods by partial receiver operating
characteristic curves using (a) Tung et al., (b) Soumillon et al., (c) Savas et al. and (d) Chen et al.
datasets. DEGs from matching bulk RNA-seq data were used as gold-standard for benchmarking.
DECENT achieves highest accuracy of identifying genuine DEGs in all four datasets. We used
pROC to focus on the low p-value region with high specificity. DE methods are denoted by different
colors. Z-edgeR stands for ZINB-WaVE-adjusted edgeR. TASC requires spike-ins and was only
evaluated using the Tung et al. data.
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Figure 5: False discovery rate curves for differential expression methods on real datasets.
Evaluating the performance different method by false discovery rate (FDR) curves using (a) Tung et
al., (b) Soumillon et al., (c) Savas et al. and (d) Chen et al. datasets. Bulk DEGs were considered
as conditional positives. DECENT consistently showed the lowest number of false discoveries at the
same number of declared DEGs across all four datasets. Again only the top one thousand DEGs
were considered to focus on the region of interested. DE methods are denoted by different colors.
Z-edgeR denotes ZINB-WaVE-adjusted edgeR. TASC requires spike-ins and was only evaluated
using Tung et al. data.
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Figure 6: Controlling Type I error rate. We evaluated nominal p-value distributions and type I
error rates produce by differential expression methods in absence of genuine DEGs. In panels (a)
and (c), nominal p-values were obtained by comparing two random split group of cells from the
NA19239 cell line in the Tung et al. dataset. The random split and comparison was performed 20
times. For panels (b) and (d), nominal p-values were produced by different methods on two randomly
sampled groups from stage 3 day 0 cells in the Soumillon et al. data. The sampling and comparison
was again performed 20 times. (a) (b) shows quantile-quantile plots of nominal p-values produced
by different methods comparing the quantiles of their distribution with the uniform distribution.
(c) (d) shows observed type I error rates by using a p-value cut-off of 0.05 on nominal p-values
produced by different DE methods. Each box was generated based on the same comparisons (n=20)
using for both datasets. DECENT nsp denotes DECENT without using spike-ins to estimate capture
efficiencies. Overall, DECENT exhibits normal p-value distributions and reasonable control of type
I errors in both case.
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