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Elevated polygenic burden for autism is associated with differential DNA methylation at birth.  
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ABSTRACT 

Background: Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder 

characterized by deficits in social communication and restricted, repetitive behaviors, interests, or 

activities. The etiology of ASD involves both inherited and environmental risk factors, with 

epigenetic processes hypothesized as one mechanism by which both genetic and non-genetic variation 

influence gene regulation and pathogenesis.  

 

Methods: We quantified neonatal methylomic variation in 1,263 infants - of whom ~50% went on to 

subsequently develop ASD – using DNA isolated from a unique collection of archived blood spots 

taken shortly after birth. We used matched genetic data from the same individuals to examine the 

molecular consequences of ASD genetic risk variants, identifying methylomic variation associated 

with elevated polygenic burden for ASD. In addition, we performed DNA methylation quantitative 

trait loci (mQTL) mapping to prioritize target genes from ASD GWAS findings.  

 

Results: Although we did not identify specific loci showing consistent changes in neonatal DNA 

methylation associated with later ASD, we found a significant association between increased 

polygenic burden for autism and methylomic variation at two CpG sites located proximal to a robust 

GWAS signal for ASD on chromosome 8.  

 

Conclusions: This study is the largest analysis of DNA methylation in ASD yet undertaken and the 

first to integrate both genetic and epigenetic variation at birth in ASD. We demonstrate the utility of 

using a polygenic risk score to identify molecular variation associated with disease, and of using 

mQTL to refine the functional and regulatory variation associated with ASD risk variants. 

 

KEYWORDS  

Autism, DNA methylation, genetics, neonatal, genome-wide association study (GWAS), epigenome-

wide association study (EWAS), birth, DNA methylation quantitative trait loci (mQTL) 
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BACKGROUND 

Autism spectrum disorder (ASD) defines a group of complex neurodevelopmental disorders marked 

by deficits in social communication and restricted, repetitive behaviors, interests, or activities[1]. 

ASD affects ~1-2% of the population, and confers severe lifelong disability[2-4]. Quantitative genetic 

studies indicate that ASD is highly heritable[5, 6], although population-based epidemiologic studies 

of environmental risks and ASD liability modelling using family designs also indicate environmental 

factors as important[7]. Genetic studies have shown that autism risk is strongly associated with both 

rare inherited and de novo DNA sequence variants[8-11]. In contrast, the identification of common 

genetic variants associated with ASD using genome-wide association studies (GWAS) has proven 

harder than for other complex neuropsychiatric traits such as schizophrenia[12], at least in part due to 

a lack of large sample datasets. Recent collaboration between the Psychiatrics Genomics Consortium 

autism workgroup (PGC-AUT) and the Lundbeck Foundation Initiative for Integrative Psychiatric 

Research (iPSYCH) has greatly expanded the number of ASD cases with GWAS data, identifying 

three genome-wide significant associations for ASD and evidence for a substantial polygenic 

component in signals falling below the stringent genome-wide significance threshold (Grove et al, 

https://www.biorxiv.org/content/early/2017/11/25/224774). None of the three ASD-associated loci are 

predicted to result in coding changes or altered protein structure; instead they are hypothesized to 

influence gene regulation. Previous studies of other neurodevelopmental disorders have reported an 

enrichment of disease-associated variation in regulatory domains, including enhancers and regions of 

open chromatin[13]. 

 

Epigenetic variation induced by non-genetic exposures has been hypothesized to be one mechanism 

by which environmental factors can affect risk for ASD[14, 15]. Recent studies have provided initial 

evidence for autism-associated epigenetic variation in both brain and peripheral tissues[16-21], 

although these analyses have been undertaken on relatively small numbers of samples with limited 

statistical power. Existing analyses have assessed epigenetic variation in samples collected after a 

diagnosis of ASD has been assigned and are potentially confounded by factors such as smoking[22-

24], medication [25, 26], other environmental toxins[27] and reverse causation[28]. Furthermore, they 

have not investigated the role of genetic variation in mediating associations between epigenetic 

variation and ASD. The integration of genetic and epigenetic data will facilitate a better understanding 

of the molecular mechanisms involved in autism, especially given the high heritability of ASD and 

recent data showing how the epigenome can be directly influenced by genetic variation[29-32]. For 

example, we have previously demonstrated the potential for using polygenic risk scores (PRS) – 

defined as the sum of trait-associated alleles across many genetic loci, weighted by GWAS effect 

sizes – as disease biomarkers with utility for exploring the molecular genomic mechanisms involved 

in disease pathogenesis [33]. Of note, PRS-associated epigenetic variation is potentially less affected 

by factors associated with the disease itself, which can confound case–control analyses.  
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In this study, we quantified DNA methylation for ~1,316 individuals (comprising equal numbers of 

ASD cases and matched controls, 50% male/female) isolated from neonatal blood spots collected 

proximal to birth (mean = 6.08 days; sd = 3.24 days; Supplementary Figure 1). Known epigenetic 

signatures for gestational and chronological age[34, 35], and exposure to maternal smoking during 

pregnancy[23], were used to confirm the robust nature of genome-wide DNA methylation data 

generated from neonatal blood spots. Matched genome-wide single nucleotide polymorphism (SNP) 

genotyping data from the same individuals enabled us to undertake an integrated genetic-epigenetic 

analysis of ASD, exploring the extent to which neonatal methylomic variation at birth is associated 

with elevated polygenic burden for ASD. Finally, we generated an extensive database of DNA 

methylation quantitative trait loci (mQTL) in neonatal blood samples, which were used to characterize 

the molecular consequences of genetic variants associated with ASD.  

 

METHODS 

Overview of the MINERvA cohort 

Denmark has a comprehensive neonatal screening program which is used to test for innate errors of 

metabolism, hypothyroidism and other treatable disorders. Neonatal blood is collected on standard 

Guthrie cards and residual material is stored within the Danish Neonatal Screening Biobank. The 

reason for storing the samples in prioritized order is: (1) diagnosis and treatment of congenital 

disorders, (2) diagnostic use later in infancy after informed consent, (3) legal use after court order, (4) 

research projects pending approval by the Scientific Ethical Committee System in Denmark, The 

Danish Data Protection Agency and the NBS-Biobank Steering Committee. Thus, research is possible 

assuming sufficient material remains for the proceeding priorities[36]. Cases and controls were 

selected from the iPSYCH case-control sample, which has been recently described[37]. Briefly, the 

iPSYCH study population comprises all singletons born in Denmark between May 1st 1981 and 

December 31st 2005, who are still alive and residing in Denmark at their first birthday and with a 

known mother. iPSYCH ASD cases comprise all children in the study population with an ASD 

diagnosis reported before December 31st 2012. iPSYCH controls comprise 30,000 persons randomly 

selected from the study population (about 2% of the total study population).  

The MINERvA study profiled a subsample of 1,316 iPSYCH samples, including an equal 

number of ASD cases and controls that were selected using the following criteria. Cases were born 

between 1998 and 2002, with both parents born in Denmark themselves. We selected a 1:1 male to 

female ratio (i.e. by ‘oversampling’ ASD females). Cases and controls were excluded if they had a 

reported diagnosis (before December 31st 2012) of select known genetic disorders: Down syndrome, 

Fragile X, Angelman, Prader Willi, Zellweger, William, tuberous sclerosis, Rett, Tourette, 

neurofibromatosis, Duchennes, Cornelia de Lange, DiGeorge, Smith-Lemli-Opitz, Klinfelter. In 

addition, controls were excluded if they had died or emigrated from Denmark before December 31st 
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2012, or had any reported psychiatric diagnosis. Eligible controls were individually matched to cases 

on sex, month of birth (month before, same month, or month after case month) and year of birth. 

Among the controls fulfilling these criteria, additional matching criteria were applied as closely as 

possible with regard to gestational age (in weeks) and the same urbanicity level of maternal residence 

at time of birth as cases. All perinatal data used for case-control matching, plus additional information 

on birth weight and maternal smoking were obtained from the Danish Medical Birth Register or the 

Central Person Register. Detailed maternal smoking data was used to generate a binary variable 

indicating whether the mother smoked during pregnancy or not. All diagnoses used for ASD case 

identification and case/control exclusions were obtained from the Danish Psychiatric Central Research 

Register (DPCRR) and Danish National Patient Register (DNPR). In Denmark, children and 

adolescents suspected of ASD or other mental or behavioral disorders are referred by general 

practitioners or school psychologists to a child and adolescent psychiatric department for a 

multidisciplinary evaluation, and their conditions are diagnosed by a child and adolescent psychiatrist. 

Registry reporting is done only by psychiatrists following mandatory training in the use of the World 

Health Organization International Classification of Diseases (ICD)[38]. The following ICD-10 

diagnosis codes were used: ASD - F84.0, F84.1, F84.5, F84.8, F84.9; any psychiatric disorder – F00-

F99. Reported diagnoses for the conditions used as exclusions were obtained from the DNPR, which 

holds all data on in- and out-patient diagnoses given at discharge from somatic wards in all hospitals 

and clinics since 1995[39]. Supplementary Table 1 gives a full overview of relevant diagnosis 

codes. The MINERvA study was approved by the Regional Scientific Ethics Committee in Denmark 

and the Danish Data Protection Agency. 

 

DNA methylation profiling in MINERvA 

Neonatal dried blood spot samples were retrieved from the Danish Neonatal Screening Biobank, 

within the Danish National Biobank, as part of the iPSYCH study. Neonatal DNA extractions and 

DNA methylation quantification was performed at the Statens Serum Institut (SSI, Copenhagen, 

Capital Region, Denmark), building on a previously described protocol[40]. Briefly, from each dried 

blood spot sample two disks of 3.2mm were used with the Extract-N-Amp Blood PCR kit (Sigma-

Aldrich, St. Louis, United States of America) and eluted in 200µL buffer. 160µL of the isolated 

genomic DNA was converted with sodium bisulfite using the EZ-96 DNA Methylation Kit (Zymo 

Research, California, United States of America). DNA methylation was quantified across the genome 

using the Infinium HumanMethylation450k array (“450K array”) (Illumina, California, United States 

of America) and a modified protocol as previously described[39]. Fully methylated and unmethylated 

control samples were included on each plate throughout each stage of processing. 

 

MINERvA 450K array data pre-processing and quality control 
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Signal intensities for 1,316 neonatal blood samples, 14 fully methylated control samples and 14 fully 

unmethylated control samples were imported into the R programming environment using the 

methylumIDAT() function in the methylumi package[41]. Our stringent quality control (QC) pipeline 

included the following steps: 1) checking methylated and unmethylated signal intensities and 

excluding samples where either the median methylated or unmethylated intensity values were < 2500, 

2) using the ten control probes to ensure the sodium bisulfite conversion was successful, excluding 

any samples with a median score < 80, 3) identifying the fully methylated and fully unmethylated 

control samples were in the correct location on each plate, 4) using the 65 SNP genotyping probes on 

the array to identify duplicate samples, 5) multidimensional scaling of data from probes on the X and 

Y chromosomes separately to confirm reported gender, 6) comparing genotype data for up to 65 SNP 

probes on the 450K array with SNP array data, 7) using the pfilter() function in wateRmelon[42] to 

exclude samples with more than 1% of probes characterized by a detection P-value > 0.05, in addition 

to probes characterized by > 1% of samples having a detection P-value > 0.05. In total, 1,263 samples 

(96.0%) passed all QC steps and were included in subsequent analyses. Normalization of the DNA 

methylation data was performed used the dasen() function in the wateRmelon package[42].  

 

SNP genotyping and derivation of ASD polygenic risk scores  

DNA was extracted at SSI as above and whole genome amplified in triplicate using the REPLI-g kit 

(Qiagen, Hilten, Germany). The triplicates were pooled and then quantified using Quant-iT picogreen 

(Invitrogen, California, United States of America). Samples were genotyped at the Broad Institute 

(Boston, Massachusetts, United States of America) using the Infinium PsychChip v1.0 array 

(Illumina, San Diego, California, United States of America) using a standard protocol. Phasing and 

imputation was done using SHAPEIT[43] and IMPUTE2 with haplotypes from the 1000 Genomes 

Project, phase 3[44, 45] as described previously[37]. ASD polygenic risk scores (PRSs) were 

generated as a weighted sum of associated variants as previously described[46]. Briefly, results from 

the largest autism genome-wide association study (GWAS) available from a combined effort by the 

Psychiatric Genomics Consortium (PGC) and iPSYCH (Grove et al, 

https://www.biorxiv.org/content/early/2017/11/25/224774) was used to select genetic variants and 

provide weights. As the MINERvA cohort is a subset of the broader iPSYCH cohort we used GWAS 

results excluding MINERvA samples, so that there was no overlap between the training cohort and 

the test cohort. Ten different significance thresholds (pT) from 5x10-8 to 1 were used to select sets of 

genetic variants, which were LD clumped using plink with setting –clump-p1 1 –clump-p2 1 –cump-r2 

0.1 –clump-kb 500 to generate PRSs. 

 

Statistical analysis 

All statistical analyses were performed using the R statistical environment version 3.2.2[47]. To 

validate the validity and robustness of our blood spot DNA methylation measures, we implemented 
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two DNA methylation clock algorithms to derive estimates for both age in years[35] and gestational 

age in weeks[34] for each sample. In addition, for each sample, we computed a score for prenatal 

exposure to maternal smoking using DNA methylation data as previously described by Elliott et 

al[22]. To identify DNA methylation sites associated with ASD status in the MINERvA discovery 

dataset, a linear model was fitted for each DNA methylation site with DNA methylation as the 

dependent variable, case/control status as an independent variable and a set of possible confounders as 

covariates: sex, experimental array number, urbanicity level, birth month, birth year, gestational age, 

and cell composition variables estimated using the Houseman algorithm with a reference dataset for 

whole blood[48, 49]. Regional analysis was performed using the combP software[50]. Subsequent 

replication and meta-analysis was performed using summary statistics available from two U.S. based 

studies: the Study to Explore Early Development (SEED)[51] and the Simons Simplex Collection 

(SSC)[52]. A complete description of the SEED and SSC data can be found elsewhere [53]. Meta-

analysis to combine the EWAS results from MINERvA, SEED, and SSC studies was performed for 

DNA methylation loci present in at least two of the three studies using Fisher’s method for combining 

P-values, focusing on DMPs where the same direction of effect was reported across all three studies. 

To identify DNA methylation sites associated with elevated autism polygenic risk burden, a linear 

model was used with DNA methylation as the dependent variable and ASD PRS, the number of non-

missing genotypes contributing to the PRS, the first five genetic principal components, sex, 

experimental array number, six cell composition variables, smoking score, gestational age, and birth 

weight included as independent variables as described above. 

 

DNA methylation quantitative trait loci (mQTL) and co-localization analyses 

All DNA methylation sites located within 250kb of the three genome-wide significant genetic variants 

identified in the PGC-AUT GWAS [Grove et al, 

https://www.biorxiv.org/content/early/2017/11/25/224774] were identified and cis (defined as a 

500kb window) mQTL analysis was performed using the 1,257 samples within MINERvA that had 

both DNA methylation and imputed genotype data. mQTL were identified using an additive linear 

model to test if the number of alleles (coded 0, 1, or 2) predicted DNA methylation at each site, 

including covariates for sex, and the first five principal components from the genotype data fitted 

using the MatrixEQTL package[54]. Co-localization analysis was performed for each DNA 

methylation site as previously described[55] using the R coloc package (http://cran.r-

project.org/web/packages/coloc). From both the PGC-AUT GWAS data and our mQTL results we 

inputted the regression coefficients, their variances and SNP minor allele frequencies, and the prior 

probabilities were left as their default values.  This methodology quantifies the support across the 

results of each GWAS for 5 hypotheses by calculating the posterior probabilities, denoted as PPi for 

hypothesis Hi. 

H0: there exist no causal variants for either trait; 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2017. ; https://doi.org/10.1101/225193doi: bioRxiv preprint 

https://doi.org/10.1101/225193
http://creativecommons.org/licenses/by/4.0/


 9 

H1: there exists a causal variant for one trait only, ASD; 

H2: there exists a causal variant for one trait only, DNA methylation; 

H3: there exist two distinct causal variants, one for each trait; 

H4: there exists a single causal variant common to both traits.  

 

RESULTS 

Robust epigenetic signatures of chronological age and prenatal tobacco exposure validate DNA 

methylation data generated from neonatal blood spots 

Following our stringent QC pipeline (see Materials and Methods) our final MINERvA DNA 

methylation dataset included 1,263 samples comprising 629 ASD cases and 634 controls. The 

characteristics of this sample are displayed in Table 1; of note, due to oversampling female cases, we 

had a near equal ratio of males and females (632:631). There were no significant differences between 

ASD cases and controls for maternal or paternal age, days to blood spot sampling, or birth weight (P > 

0.05). There was a significantly higher rate of maternal smoking for the ASD cases (P = 0.003) and 

evidence of higher smoking quantity (P = 0.006). We used DNA methylation data to derive estimates 

of gestational age[34] and chronological age[35] for each sample. The mean predicted gestational age 

was 37.7 weeks (sd = 1.35 weeks; Supplementary Figure 2) compared to the actual mean of 39.6 

weeks (sd = 1.77 weeks), with a strong positive correlation between estimated and actual gestational 

age (r = 0.602; Figure 1A). The mean predicted chronological age was 0.495 years (sd = 0.298; 

Supplementary Figure 3) and this was less strongly correlated with actual age (r = 0.139; Figure 

1B), consistent with data from Knight et al[34]. Of note, “days to sampling” - i.e. the time between 

birth and blood draw - was not correlated with either predicted gestational age or chronological age, 

and controlling for this did not improve the strength of the correlation with gestational age 

(Supplementary Figure 4). We next tested robust markers of smoking exposure during 

pregnancy[23] and adulthood, using an established algorithm[22] to calculate a DNA methylation 

derived “smoking score” which we compared to reported in utero exposure. We identified a highly 

significant association between this smoking score and actual exposure, with offspring exposed to 

tobacco smoking in utero having higher smoking scores compared to offspring who were not exposed 

(P = 8.41 x 10-95) (Figure 1C)[22, 33]. Taken together these analyses show that neonatal blood spots 

can be used to generate reliable DNA methylation data that can robustly identify exposure-/trait-

associated variation. 

 

Methylomic variation in perinatal blood is not significantly associated with childhood autism. 

Our initial analysis focused on identifying neonatal blood DNA methylation differences among 

MINERvA neonates who went on to develop a childhood diagnosis of ASD. Using a linear model to 

identify DNA methylation differences in ASD cases (N = 629) compared to controls (N = 634) we did 

not identify any differentially methylated positions (DMPs) passing a genome-wide significance 
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threshold adjusted for multiple testing (P < 1x10-7). 20 ASD-associated DMPs were identified at a 

“discovery” threshold of P < 5x10-5 (Supplementary Figures 5 & 6; Supplementary Table 2); the 

most significant association was at cg12699865 which is located the 5’UTR of RALY where the mean 

level of DNA methylation was 0.647% lower (P = 7.63x10-7) in ASD cases (Supplementary Figure 

7). Regional analysis combining the EWAS p-values for DNA methylation sites within a sliding 

window did not identify any significant ASD-associated differentially methylation regions. Given the 

higher prevalence of ASD diagnosis in males we tested for an interaction between autism status and 

sex but identified no significant associations (P < 1x10-7) and only seven DMPs at our discovery 

threshold of P< 5x10-5 (Supplementary Table 3).  

 We next meta-analyzed these findings with summary statistics from 450K array 

measurements for two U.S based studies of autism – the Study to Explore Early Development 

(SEED)[51] and Simons Simplex Collection (SSC)[52]. Although neither of these datasets was 

generated on blood samples collected immediately after birth, they enabled us to assess a combined 

sample size of 1,425 ASD cases and 1,492 controls (Supplementary Table 4). We first took the top 

ranked loci identified in each independent study and compared the directions of effect (i.e. difference 

between autism and controls); we did not find any excess of consistent associations (all sign test P > 

0.05; Supplementary Figure 8; Supplementary Table 5). Second, we combined the p-values from 

the EWAS results of the three samples using Fisher’s Method (Figure 2A & Supplementary Figure 

9). There were no sites where the combined P-value survived correction for multiple testing (P < 

1x10-7), although 45 ASD-associated DMPs were identified at the discovery P-value threshold (P < 5 

x 10-5) (Supplementary Table 6). The most significant DNA methylation site, based on a consistent 

direction of effect across all three studies, was cg03618918 (combined P = 3.85x10-7; pooled mean = 

1.17%; Figure 2B), located ~10kb from ITLN1. In general, the estimated effects of ASD-associated 

DMPs (P < 5x10-5) was very small (Supplementary Figure 10), typically ~1% difference between 

ASD and controls. Taken together, these data suggest that ASD is not associated with robust 

methylomic signatures in blood obtained during early childhood. 

 

Increased polygenic burden for autism is associated with methylomic variation in blood at birth 

Like many complex diseases, individual genetic variants associated with autism explain only a tiny 

proportion of an individual’s risk[6, 56].  Polygenic risk scores (PRS), which essentially count the 

number of risk alleles across multiple associated loci, have been used successfully to capture the 

polygenic architecture of complex traits including autism[46]. PRS have been used to establish 

genetic correlations between traits[6] and there has been recent interest in using PRS as a quantitative 

variable to identify molecular biomarkers of high genetic burden[33, 57, 58]. PRS-associated 

epigenetic variation is potentially less affected by non-genetic risk factors for the disease itself which 

can confound case-control analyses, although pleiotropic effects of these genetic variants, which may 

themselves influence DNA methylation, cannot be excluded. We generated autism PRS for the 
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iPSYCH-MINERvA sample using recent results from a meta-analysis of samples in PGC-AUT 

(Grove et al, https://www.biorxiv.org/content/early/2017/11/25/224774) excluding the subset of 

individuals included the MINERvA cohort (n = 45,162; 39.4% autism cases). Individual PRSs were 

calculated using a range of different GWAS P-value thresholds (pT = 5x10-8, …, 1) to identify the 

optimal set of SNPs with the largest difference between ASD cases and controls in MINERvA. All 

scores based on P-values < 1 significantly predicted autism status (P < 0.05; Supplementary Table 7, 

Supplementary Figure 11), with a PRS based on pT = 0.1 having the most significant difference (P = 

9.49x10-13) between ASD cases and controls (Figure 3A). There was a strong positive correlation 

between scores based on SNPs selected at relatively relaxed significance thresholds (i.e. pT > 0.001; 

Supplementary Figure 12), with weaker correlations between scores based on more limited (but 

more strongly associated) sets of variants, potentially reflecting the more dramatic effect a single SNP 

has on the PRS when the total number of SNPs is small. We next performed an EWAS of ASD PRS 

(Supplementary Figure 13 and Supplementary Figure 14), observing strong correlations (r > 0.5) 

between the results of analyses of scores based on pT > 0.01 (Supplementary Figure 15). Examples 

of PRS-associated DMPs identified using the most predictive ASD PRS (pT < 0.1) are shown in 

Supplementary Figure 16; in total, we identified two DMPs significantly associated (P < 1x10-7) 

with elevated polygenic burden (cg02771117: P = 3.14 x 10-8 and cg27411982: P = 8.38 x 10-8), with 

49 DMPs associated at a more relaxed “discovery” P-value threshold (P < 5 x 10-5) (Figure 3 and 

Supplementary Table 8). Both cg02771117 and cg27411982 are located on chromosome 8, but are 

~5kb apart and annotated to two different genes (FAM167A and RP1L1, respectively). Differential 

DNA methylation at these sites on chromosome 8 is identified in each of the eight most inclusive 

ASD PRS EWAS analyses (i.e. those using the most relaxed GWAS p-value threshold) 

(Supplementary Figure 14). Of note, both DMPs flank a significant genetic association signal 

identified in the latest ASD GWAS (Supplementary Figure 17). To establish whether the PRS-

associated methylation signal in this region reflected direct effects of the GWAS signal itself, we 

iteratively added PRS variants within 100kb of these two sites as covariates in our EWAS in order of 

significance (see Materials and Methods). After the addition of the four most significant genetic 

variants, which were independently associated with cg02771117 (Supplementary Figure 18), the 

ASD PRS term was no longer significant (P = 0.0518; Supplementary Table 9). In contrast 

cg27411982 was still nominally significant even after the addition of 12 ASD associated SNPs, four 

of which however were independently associated and largely explained the association between the 

ASD PRS and DNA methylation (Supplementary Figure 19; Supplementary Table 10). These data 

suggest that the PRS-associated variation in DNA methylation at both cg02771117 and cg27411982 

results from the combined effects of multiple genetic variants associated with ASD in this region. In 

order to demonstrate that the PRS EWAS results are not simply a consequence of the ASD cases 

within the full MINERvA sample, we repeated the analysis separately for cases and controls. P-values 

from this approach were strongly correlated with those for the analysis across all samples 
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(Supplementary Figure 20), indicating that the methylomic consequences of high genetic burden are 

consistent across both groups. 

 

Alignment of DNA methylation quantitative trait loci and ASD genetic signals 

None of the GWAS-AUT identified variants tag known nonsynonymous mutations; consistent with 

other complex phenotypes it is likely that disease-associated variants instead influence the regulation 

of gene expression[13, 59]. Building on our previous work showing how DNA methylation 

quantitative trait loci (mQTLs) can be used to refine GWAS loci through the identification of discrete 

sites of variable methylation associated with disease risk variants[29, 33] we used the matched 

MINERvA DNA methylation and genetic data (see Materials and Methods) to identify mQTL 

located in the vicinity of ASD-associated GWAS variants (Figure 4, Supplementary Figure 21). 

Simply aligning mQTL data with GWAS results is not sufficient to infer that there is relationship 

between ASD and DNA methylation in these regions; instead it may reflect two distinct causal 

variants - one associated with ASD and the other with DNA methylation - in strong linkage 

disequilibrium. To establish whether there was evidence of a single causal variant influencing both 

DNA methylation and ASD in the regions nominated by the GWAS we performed a Bayesian co-

localization analysis[55]. Briefly, this approach compares the pattern of association results from two 

independent GWAS (i.e. of ASD and DNA methylation) to see if associations colocalize to the same 

causal variant. We considered mQTL data for 457 unique Illumina 450K probes located within 250kb 

of three independent autosomal ASD GWAS variants. The posterior probabilities involving 91 DNA 

methylation sites are supportive of a co-localized association signal for both ASD and DNA 

methylation (PP3+PP4 > 0.99; Supplementary Table 11). Four of these sites located on chromosome 

20 had a higher posterior probability for both ASD and DNA methylation being associated with the 

same causal variant compared to them being associated with different causal variants (PP4/PP3 > 1; 

Supplementary Figure 22; Supplementary Figure 23) and the genes annotated to these sites (KIZ, 

XRN2, and NKX2-4) represent putative candidates for a potential functional role in ASD.  

 

DISCUSSION 

In this study, we quantified neonatal methylomic variation in 1,263 infants selected from the iPSYCH 

cohort[37] including samples from individuals who went on to develop ASD and carefully-matched 

control samples. It represents the first attempt to integrate analyses of both genetic and epigenetic 

variation in ASD, demonstrating the utility of using a polygenic risk score to identify molecular 

variation associated with disease, and of using DNA methylation quantitative trait loci to refine the 

functional and regulatory variation associated with ASD risk variants. While ASD itself was not 

associated with significant differences in neonatal DNA methylation, at a genome-wide significance 

threshold, increased polygenic burden for autism was found to be associated with methylomic 

variation at specific loci in blood at birth. Our analysis of ASD PRS and DNA methylation 
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supplements an increasing body of literature investigating the effects of high genetic burden for other 

complex traits on molecular variation[33, 57, 58]. We find that two CpGs located on chromosome 8 

are associated with genetic risk for ASD, and are proximal to a robust GWAS signal for ASD. 

Furthermore, multiple associated SNPs on chromosome 8 have a polygenic effect on DNA 

methylation at these two CpG sites, demonstrating how a complex genetic architecture can converge 

on a common molecular consequence.  

 

This study has several advantages over previous analyses of DNA methylation in ASD. We assessed a 

relatively large set of samples that is balanced with regard to both disease status and numbers of males 

and females. This contrasts with previous studies that have been undertaken on much smaller numbers 

of samples and focused primarily on ASD in males. Our control samples were stringently matched to 

cases on the basis of a number of criteria (see Methods) to minimize the effects of confounding 

variables that often lead to false positives in molecular epidemiology. Furthermore, our use of 

neonatal DNA samples - collected before diagnosis and the manifestation of any ASD symptoms - 

means that we are uniquely positioned to identify epigenetic variation associated with later disease or 

elevated polygenic burden for later ASD, avoiding the confounding exposures often associated with 

disease (for example, medication, stress, and reverse causation)[60]. Finally, our study profiled whole 

blood from neonatal infants rather than cord blood; this minimizes confounding by maternal blood 

DNA and means our data can be more easily compared to blood datasets derived from later in life.  

 

We find little evidence to support an association between DNA methylation at birth and ASD, 

confirming this finding in a meta-analysis of three studies with a total sample of 2,917. Power 

calculations show that we have >90% power in our meta-analysis to identify a ASD-associated 

difference of 0.3% and a difference of 0.7% in the MINERvA cohort alone. While this suggests the 

lack of association was not due to sample size, we cannot fully conclude that DNA methylation is not 

associated with the onset of ASD. First, our analyses were constrained by the technical limitations of 

the Illumina 450K array which only assays ~ 3% of CpG sites in the genome.  Second, this work 

necessitated the use of a peripheral tissue that may provide limited information about variation in the 

presumed tissue of interest, i.e. the brain[61]. This is a salient point for understanding the role DNA 

methylation plays in the disease process; however biomarkers, by definition need to be measured in 

an accessible tissue and therefore justify the use of blood from neonates in this study. Third, given the 

chronology of sample collection prior to ASD diagnosis, it is plausible that we were looking too early 

on in the disease process. Another limitation of our study is the possibility of diagnostic 

misclassification, however validation of select diagnoses (e.g., schizophrenia, single-episode 

depression, dementia, and childhood autism) has been performed with good results[38, 62]. 
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In contrast, we find that polygenic burden for ASD is robustly associated with DNA methylation at 

two CpG sites on chromosome 8, with 49 DMPs associated with ASD polygenic burden at a more 

relaxed “discovery” P-value threshold. Of note, both sites flank a significant genetic association signal 

identified in the latest ASD GWAS and our data suggest that the PRS-associated variation at these 

sites results from the combined effects of multiple genetic variants associated with ASD in this 

region. Finally, we have used mQTL analyses to annotate this extended genomic region nominated by 

GWAS analyses of ASD, using co-localization analyses to highlight potential regulatory variation 

causally involved in disease. Of interest, we found evidence that several SNPs on chromosome 20 

were causally-associated with both ASD and DNA methylation and the genes annotated to these sites 

(KIZ, XRN2, and NKX2-4) represent putative candidates for a potential functional role in ASD.  

 

CONCLUSIONS 

In summary, our data provide evidence for differences in DNA methylation at birth associated with an 

elevated polygenic burden for ASD. Our study represents the first analysis of epigenetic variation at 

birth associated with autism and highlights the utility of polygenic risk scores for identifying 

molecular pathways associated with etiological variation.  
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Figure Legends 

 

Figure 1: DNA methylation data from neonatal blood spots can be used to accurately predict 

age and maternal smoking status. A) Scatterplot of gestational age predicted from DNA 

methylation data (using an algorithm generated by Knight et al[34]) against actual gestational age. 

Autism cases are in red and controls are in green. B) Scatterplot of chronological age predicted from 

DNA methylation data (using the online Epigenetic Clock software[35]) against actual gestational 

age. Autism cases are in red and controls are in green. C) Boxplot of a smoking score derived from 

DNA methylation data[22] stratified by maternal smoking status during pregnancy.  

 

Figure 2: A cross-cohort meta-analysis finds little evidence of autism-associated methylomic 

variation in neonatal and childhood blood samples. A) Manhattan plot of P-values from the autism 

EWAS meta-analysis (total n = 2,917). P-values were calculated using Fisher’s method for combining 

P-values; solid circles indicate sites where the direction of effect was consistent across all contributing 

cohorts, empty triangles indicate where there were different directions of effect in at least two studies. 

The red horizontal line indicates experiment-wide significance (P < 1x10-7). B) Forest plot of 

cg03618918, the most significant DNA methylation sites associated with ASD in the meta-analysis. 

The effect is the mean difference in DNA methylation between autism cases and controls. The sizes of 

the boxes are proportional to the sample size of that cohort. 

 

Figure 3. Polygenic burden for autism is associated with significant variation in DNA 

methylation at birth. A) Density plot of polygenic risk score (PRS) (pT = 0.01) split by ASD case 

control status. B) Q-Q plots of the ASD PRS (pT = 0.01) EWAS analysis in neonatal blood DNA. C) 

Manhattan plot of the ASD PRS (pT = 0.01) EWAS analysis in neonatal blood DNA. The red 

horizontal line indicates experiment-wide significance (P < 1x10-7); blue horizontal line indicates a 

‘discovery’ significance threshold (P < 5x10-5). Scatterplots of genome-wide significant CpG sites 

where DNA methylation (y-axis) at D) cg02771117 and E) cg27411982 is correlated with ASD PRS 

(x-axis). Red points indicate ASD cases, green points indicate controls. F) Scatterplots of –log10 P-

value from the EWAS of ASD PRS comparing the results from an analysis performed in all 

individuals (x-axis) against the results from an analysis performed separately for cases and controls 

and then combined with a meta-analysis (y-axis). 

 

Figure 4. DNA methylation quantitative trait loci (mQTL) mapping can localize putative causal 

loci associated with ASD. Presented here is a genomic region (chr8:10268916-10918152) identified 

in a recent GWAS analysis of ASD [Grove et al, 

https://www.biorxiv.org/content/early/2017/11/25/224774]. At the top of the figure is a schematic 

detailing the genes located in this region which are identified by their Entrez ID number. All genetic 
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variants identified in the ASD GWAS (P < 1x10-4) are represented by vertical solid lines where the 

color reflects the strength of the association ranging from gray (less significant P-values) to black 

(more significant P-values). A red vertical line indicates the most significant genetic variant in this 

region. All DNA methylation sites tested for neonatal blood mQTL in the MINERvA dataset are 

indicated by red vertical lines and genetic variants by blue vertical lines. Significant neonatal blood 

mQTLs (P < 1x10-13) are indicated by black diagonal lines between the respective genetic variant and 

DNA methylation site. Additional examples of mQTLs in genomic regions showing genome-wide 

significant association with ASD are given in Supplementary Figure 21. 
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Table 1. Characteristics of samples included in the MINERvA cohort. * = primary characteristics 
used to match cases and controls. ** = secondary characteristics used to match cases and controls as 
closely as possible. 

Characteristic Unit/Category ASD  Controls P-value 
Sex* (%) male 52.0 49.8 0.933 

Birth year* (%) 

1998 31.8 30.6 

0.991 
1999 28.3 29 
2000 7 6.78 
2001 13.7 14.2 
2002 19.2 19.4 

Gestational age** (mean 
(SD)) weeks 39.6 

(1.82) 
39.6 

(1.72) 0.96 

Urbanicity** (%) 

1: Capital 18.1 17 

0.879 

2: Suburb of the capital 14.9 13.4 

3: Municipalities having a town with 
more than 100,000 inhabitants 8.27 8.68 

4: Municipalities having a town with 
between 10,000 and 100,000 

inhabitants 
27.3 29.2 

5: Other municipalities in Denmark 
(largest town has less than 10,000 

inhabitants) 
31.3 31.7 

Time to sampling (Mean 
(SD)) days 6.01 

(3.15) 
6.15 

(3.33) 0.46 

Maternal age - Mean (SD) years 29.2 
(4.94) 

29.7 
(4.57) 0.07 

Paternal age - Mean (SD) years 32.1 
(6.04) 

31.9 
(5.40) 0.476 

Maternal smoking during 
pregnancy (%) 

Smoke at any time 29.0 21.2 
0.00256 

Non-smoker 71.0 78.8 

Maternal smoking amount 
during pregnancy (%) 

5 or less cigarettes per day 6.46 7.25 

0.00573 
6-10 cigarettes per day 11.2 7.59 

11-20 cigarettes per day 9.6 5.06 

21 or more cigarettes per day 1.05 1.18 

Birth weight - Mean (SD) grams 3512 
(581) 

3541 
(542) 0.355 
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Figure 1: DNA methylation data from neonatal blood spots can be used to 
accurately predict age and maternal smoking status. A) Scatterplot of 
gestational age predicted from DNA methylation data (using an algorithm 
generated by Knight et al34) against actual gestational age. Autism cases are in red 
and controls are in green. B) Scatterplot of chronological age predicted from DNA 
methylation data (using the online Epigenetic Clock software35) against actual 
gestational age. Autism cases are in red and controls are in green. C) Boxplot of a 
smoking score derived from DNA methylation data22 stratified by maternal smoking 
status during pregnancy. 
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Figure 2: A cross-cohort meta-analysis finds little evidence of autism-
associated methylomic variation in neonatal and childhood blood samples. A) 
Manhattan plot of P-values from the autism EWAS meta-analysis (total n = 2,917). 
P-values were calculated using Fisher’s method for combining P-values; solid 
circles indicate sites where the direction of effect was consistent across all 
contributing cohorts, empty triangles indicate where there were different directions 
of effect in at least two studies. The red horizontal line indicates experiment-wide 
significance (P < 1x10-7). B) Forest plot of cg03618918, the most significant DNA 
methylation sites associated with ASD in the meta-analysis. The effect is the mean 
difference in DNA methylation between autism cases and controls. The sizes of the 
boxes are proportional to the sample size of that cohort.
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Figure 3. Polygenic burden for autism is associated with significant 
variation in DNA methylation at birth. A) Density plot of polygenic risk score 
(PRS) (pT = 0.01) split by ASD case status. B) Q-Q plots of the ASD PRS (pT = 
0.01) EWAS analysis in neonatal blood DNA. C) Manhattan plot of the ASD PRS 
(pT = 0.01) EWAS analysis in neonatal blood DNA. The red horizontal line 
indicates experiment-wide significance (P < 1x10-7); blue horizontal line 
indicates a ‘discovery’ significance threshold (P < 5x10-5). Scatterplots of 
genome-wide significant CpG sites where DNA methylation (y-axis) at D) 
cg02771117 and E) cg27411982 is correlated with ASD PRS (x-axis). Red points 
indicate ASD cases, green points indicate controls. F) Scatterplots of –log10 P-
value from the EWAS of ASD PRS comparing the results from an analysis 
performed in all individuals (x-axis) against the results from an analysis 
performed separately for cases and controls and then combined with a meta-
analysis (y-axis).
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Figure 4. DNA methylation quantitative trait loci (mQTL) mapping can 
localize putative causal loci associated with ASD. Presented here is a genomic 
region (chr8:10268916-10918152) identified in a recent GWAS analysis of ASD 
[Grove et al, submitted]. At the top of the figure is a schematic detailing the genes 
located in this region which are identified by their Entrez ID number. All genetic 
variants identified in the ASD GWAS (P < 1x10-4) are represented by vertical solid 
lines where the color reflects the strength of the association ranging from gray
(less significant P-values) to black (more significant P-values). A red vertical line 
indicates the most significant genetic variant in this region. All DNA methylation 
sites tested for neonatal blood mQTL in the Minerva dataset are indicated by red 
vertical lines and genetic variants by blue vertical lines. Significant neonatal blood 
mQTLs (P < 1x10-13) are indicated by black diagonal lines between the respective 
genetic variant and DNA methylation site. Additional examples of mQTLs in 
genomic regions showing genome-wide significant association with ASD are given 
in Supplementary Figure 21.
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